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S1. Covariate balancing

Jiang and others (2019) proposed weighting the genetic variants in such a way that the pleiotropic

effects are balanced out. Such a weighting scheme, however, will tend to reduce the strength of the

association between the risk factor and the weighted genetic variants. A constrained optimization

approach was therefore proposed, which aims to maximise the covariance between the weighted

genetic variants and the risk factor under the constraint that the covariances between the weighted

genetic variants and each of the covariates are zero.

We can adapt the constrained optimization approach to the summarized data case as follows.

Letting α be a p× 1 vector of weights, cov (Gα,X) = α′ΣGβX and cov (Gα,W ) = α′ΣGβW . We
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thus wish to maximise with respect to α the objective function α′ΣGβ̂X , subject to α′ΣGβ̂W = 0

and α′ΣGα = 1. The second constraint is a normalising condition so that a unique solution is

possible. When p > k, this can be solved in closed form by

α = α̃ =
ξ

ξ′ΣGξ
, (S1.1)

where

ξ = β̂X − β̂W
(
β̂′WΣGβ̂W

)−1 (
β̂′WΣGβ̂X

)
. (S1.2)

The causal effect is then estimated by

α̃′ΣGβ̂Y

α̃′ΣGβ̂X
. (S1.3)

In practice, ΣG is unknown. However, since S is approximately proportional to ΣG, we can replace

ΣG by S in (S1.1), (S1.2) and (S1.3).

In order to see that this estimator is equivalent to that obtained by the multivariable inverse-

variance weighted method, let B̂ =
[
β̂X β̂W

]
. The multivariable inverse-weighted estimator for[

θ δ′
]′

is obtained by regressing S1/2β̂Y on S1/2B̂, that is,

(
B̂′SB̂

)−1 (
B̂′Sβ̂Y

)
=

[
β̂′XSβ̂X β̂′XSβ̂W
β̂′WSβ̂X β̂′WSβ̂W

]−1 [
β̂′XSβ̂Y
β̂′WSβ̂Y

]
.

The estimator of θ is the first entry of this vector. By the matrix inversion lemma, the top row

of the first term on the right hand side is

[
1
V − 1

V

(
β̂′XSβ̂W

)(
β̂′WSβ̂W

)−1]

where

V = β̂′XSβ̂X −
(
β̂′XSβ̂W

)(
β̂′WSβ̂W

)−1 (
β̂′WSβ̂X

)
.
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The estimator for θ is thus

β̂′XSβ̂Y −
(
β̂′XSβ̂W

)(
β̂′WSβ̂W

)−1 (
β̂′WSβ̂Y

)
β̂′XSβ̂X −

(
β̂′XSβ̂W

)(
β̂′WSβ̂W

)−1 (
β̂′WSβ̂X

)

=

{
β̂X − β̂W

(
β̂′WSβ̂W

)−1 (
β̂′WSβ̂X

)}′
Sβ̂Y{

β̂X − β̂W
(
β̂′WSβ̂W

)−1 (
β̂′WSβ̂X

)}′
Sβ̂X

=
α̃′Sβ̂Y

α̃′Sβ̂X
.

S2. Derivation of the two step estimation procedure

We wish to find

arg min
θ,δ

1

2

(
β̂Y − θβ̂X − β̂W δ

)′
S
(
β̂Y − θβ̂X − β̂W δ

)
+ λ

k∑
i=1

|δi| . (S2.4)

Following the notation of Kang and others (2016), we let PM = M (M ′M)
−1
M ′ for some matrix

M with d rows such that M ′M is invertible, and PM⊥ = Id−PM . Note that PMPM = PM⊥PM⊥ =

PM , PMPM⊥ = 0, PM + PM⊥ = Id and PMM = M . Denoting by ‖·‖2 the `2 norm, (S2.4) can

be written as

1

2
arg min

θ,δ

∥∥∥S1/2
(
β̂Y − θβ̂X − β̂W δ

)∥∥∥2
2

+ λ

k∑
i=1

|δi| . (S2.5)

Let b = S1/2β̂X . Then

1

2

∥∥∥S1/2
(
β̂Y − θβ̂X − β̂W δ

)∥∥∥2
2

+ λ

k∑
i=1

|δi|

=
1

2

∥∥∥(Pb + Pb⊥)S1/2
(
β̂Y − θβ̂X − β̂W δ

)∥∥∥2
2

+ λ

k∑
i=1

|δi|

=
1

2

∥∥∥PbS1/2
(
β̂Y − θβ̂X − β̂W δ

)∥∥∥2
2

+
1

2

∥∥∥Pb⊥S1/2
(
β̂Y − θβ̂X − β̂W δ

)∥∥∥2
2

+ λ

k∑
i=1

|δi|

=
1

2

∥∥∥PbS1/2
(
β̂Y − β̂W δ

)
− θS1/2β̂X

∥∥∥2
2

+
1

2

∥∥∥Pb⊥S1/2β̂Y − Pb⊥S1/2β̂W δ
∥∥∥2
2

+ λ

k∑
i=1

|δi| . (S2.6)
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The second and third terms of (S2.6) are independent of θ. The first term of (S2.6) can be set to

zero for any value of δ = δ∗ by putting

θ =

(
β̂Y − β̂W δ∗

)′
Sβ̂X

β̂′XSβ̂X
. (S2.7)

Thus, (S2.5) can be solved by minimising the second and third terms of (S2.6) with respect to δ,

then setting θ according to (S2.7). This is the two step procedure.

S3. The choice of tuning parameter

A common approach to choosing the tuning parameter, λ, from the data isK-fold cross-validation.

The set of genetic variants is split into K folds, and the estimation procedure is performed, over a

range of λ values, holding out each fold in turn. The λ chosen is that which minimizes the mean,

across each fold, of a particular target function. A natural choice for the cross-validation target

function is the mean squared error, that is

1

p

(
β̂Y − β̂W δ̂λ − θ̂λβ̂X

)′
S
(
β̂Y − β̂W δ̂λ − θ̂λβ̂X

)
. (S3.8)

An alternative is to make the choice of λ in Step 1, independent of β̂X . That is, the cross-validation

target function is

1

p

(
β̂Y − β̂W δ̂λ

)′
S1/2Pb⊥S

1/2
(
β̂Y − β̂W δ̂λ

)
. (S3.9)

The use of (S3.8) as target function will give the smallest test mean squared error and would

be expected to give the more precise estimation. The use of (S3.9) will tend to select more

covariates, since any covariate-outcome effects which are mediated through the risk factor will

not be discounted. It will tend to therefore be more conservative in the sense that the standard

deviation of the estimates will be larger. Unless otherwise specified, the results reported in this

paper use cross-validation with K = 10 and (S3.8) as target function.

It is common practice to apply the one standard error rule in cross-validation procedures,

where the chosen value is the smallest that is no more than one standard deviation above the
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λ which minimizes the target function (Hastie and others, 2009). Use of this rule will tend to

induce more sparsity, and is used, for example, by Kang and others (2016). In our case, however,

removing a covariate from the analysis that is causing pleiotropy will lead to bias, whereas leaving

in a covariate that is not needed will just make the estimator less efficient. Thus, it is preferable

to lean on the side of under penalization. This is in contrast to, for example the application in

Kang and others (2016), and other regularization methods mentioned previously, which induce

sparsity on the number of instruments. Leaving in an invalid instrument will cause bias, whereas

removing a valid instrument will just lower the power of the method in detecting a causal effect.

In Section S4.3, we re-analyse the simulation results reported in Section 4 using the one standard

error rule. The performance is generally similar, although the results using the one standard error

rule tend to be more biased when there are a larger number of pleiotropic covariates.

S4. Further simulation results

S4.1 Mean squared error plots

Figure S1 plots the mean squared error for each scenario and method for the cases presented in

Table 1.

S4.2 Inference

In this section we show the results of performing inference using methods discussed in Section 3.3.

Using the same set of simulations as those presented in Table 1, confidence intervals were com-

puted by performing the multivariable inverse-variance weighted method using sets of covariates

which were chosen as follows.

1. All covariates ignored (IVW).

2. The two step regularization procedure using the mean squared error, given by (S3.8), in

cross-validation (2 sample(a)).
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Fig. S1. Logarithm of the mean squared errors for each scenario (S1–S2) and number of truly pleiotropic
covariates (01–35). Plots (a) and (b), where θ = 0.2 and θ = 0, respectively, show the results from
simulations where there is sparsity in the covariate effects on the outcome. Plots (c) and (d), where
θ = 0.2 and θ = 0, respectively, show the results from simulations where there is sparsity in the genetic
variant effects on the covariates.
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3. The two step regularization procedure where cross-validation was performed independent

of the genetic variant-risk factor associations, that is, using (S3.9) as target function (2

sample(b)).

4. The two step regularization procedure using an independent sample and the mean squared

error, given by (S3.8), in cross-validation (3 sample(a)).

5. The two step regularization procedure using an independent sample and where cross-

validation was performed independent of the genetic variant-risk factor associations, that

is, using (S3.9) as target function (3 sample(b)).

6. The double estimation procedure (Double est.).

7. All covariates included (MV-All).

8. Only truly pleiotropic covariates included (Oracle).

In each case, the model was fitted using the MendelianRandomization package in R with

random effects (that is, allowing over-dispersion, see Thompson and Sharp, 1999 and Burgess

and Thompson, 2017) and 95% confidence intervals derived using the normal distribution. The

means of the standard errors, coverage (that is, the proportion of confidence intervals containing

the true causal effect) and power (that is, the proportion of confidence intervals not containing

zero) are shown in Table S1 (for θ = 0.2) and Table S2 (for θ = 0). Note that in the θ = 0 case,

power in fact refers to the Type I error rate.

See Section 4 for discussion of the results. One further point to note is that the use of (S3.9)

in cross-validation tends to give coverage closer to 0.95 than the use of (S3.8), although not

uniformly. It also gives wider confidence intervals, suggesting that it is more conservative in

covariate selection (that is, tends to give lower levels of sparsity).
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S4.3 Use of the one standard error rule

Table S3 shows the results of the regularization and post-regularization procedures applied to

the same simulations as shown in Table 1 but with the one standard error rule applied. Figure S2

plots the mean squared errors for the procedures against those for the results without using the

one standard error rule. The use of the one standard error rule results in higher mean squared

error when using the regularization procedure. When using the post-regularization procedure,

the one standard error rule typically has lower mean squared error with a smaller number of

instruments (that is, in scenario 1), and a higher mean squared error with a larger number of

instruments (that is, in scenario 2).

S4.4 Increased correlation among the covariates

Table S4 shows the results for simulations run under the same parameters as those in Table 1

(when θ = 0.2) but with γWj = 0.5 and εWij ∼ N
(
0, 0.75 + 1/k2

)
, i = 1, . . . , p, j = 1, . . . , k.

This makes the correlation between each covariate approximately 0.25. The variance of the εWij

was reduced accordingly so that the signal to noise ratio for each covariate was unchanged.

S4.5 Simulations with p = 200 instruments

Table S5 shows the results for simulations run under the same parameters as those in Table 1

(when θ = 0.2) but with p = 200 and γWj , j = 1, . . . , k, set to either 1/k or 0.5 (with the variance

of the εWij adjusted as in Section S4.4).

S5. Data sources for the applied analysis

The associations between the genetic variants and urate concentration were taken from White

and others (2016). Note that, although the singificance level for inclusion of a genetic variant was
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Fig. S2. Logarithm of the mean squared errors for each scenario (S1–S2) and number of truly pleiotropic
covariates (01–35), comparing the regularization and post-regularization methods with and without the
one standard error rule applied. Plots (a) and (b), where θ = 0.2 and θ = 0, respectively, show the results
from simulations where there is sparsity in the covariate effects on the outcome. Plots (c) and (d), where
θ = 0.2 and θ = 0, respectively, show the results from simulations where there is sparsity in the genetic
variant effects on the covariates.
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Table S4. Mean and standard deviation (SD) of estimates from the various methods when there is sparsity
in the covariate effects on the outcome, θ = 0.2 and γWj = 0.5, j = 1, . . . , k. Scenario 1 (p = 10) has
k = 8 covariates of which either 1, 2 or 4 are truly pleiotropic. Scenario 2 (p = 80) has k = 70 covariates
of which either 7, 21, or 35 are truly pleiotropic.

θ = 0.2
1 / 7 Covariates 2 / 21 Covariates 4 / 35 Covariates

p Method Mean SD Mean SD Mean
10 IVW 0.217 0.077 0.240 0.104 0.290 0.140

Reg 0.201 0.055 0.211 0.071 0.214 0.089
Post-reg 0.199 0.059 0.209 0.101 0.203 0.106
MV-All 0.199 0.224 0.209 0.258 0.198 0.293
Oracle 0.200 0.032 0.200 0.037 0.198 0.057

80 IVW 0.293 0.108 0.471 0.198 0.664 0.249
Reg 0.214 0.056 0.253 0.106 0.313 0.160
Post-reg 0.202 0.068 0.222 0.117 0.260 0.164
MV-All 0.209 0.188 0.222 0.262 0.235 0.318
Oracle 0.193 0.038 0.201 0.069 0.217 0.109

Table S5. Mean and standard deviation (SD) of estimates from the various methods when there is sparsity
in the covariate effects on the outcome, θ = 0.2, p = 200 and k = 90.

θ = 0.2
7 Covariates 21 Covariates 35 Covariates

Method Mean SD Mean SD Mean
γWj = 1/k

IVW 0.286 0.108 0.470 0.179 0.666 0.236
Reg 0.192 0.031 0.194 0.046 0.200 0.057
Post-reg 0.172 0.040 0.166 0.054 0.168 0.063
MV-All 0.166 0.053 0.163 0.062 0.167 0.067
Oracle 0.190 0.021 0.185 0.034 0.183 0.045

γWj = 0.5
IVW 0.286 0.108 0.470 0.179 0.666 0.236
Reg 0.207 0.035 0.232 0.060 0.268 0.084
Post-reg 0.200 0.043 0.216 0.067 0.238 0.088
MV-All 0.204 0.060 0.218 0.077 0.240 0.094
Oracle 0.193 0.022 0.198 0.040 0.215 0.060

5×10−8, one variant (rs164009) which had a p-value larger than 5×10−8, and less than 5×10−7,

was also included on the basis of a known biological role in urate metabolism. The associations

between the genetic variants and coronary heart disease as well as the covariates were taken from

GWAS data as summarized in Table S6, and accessed using PhenoScanner (Staley and others,

2016; Kamat and others, 2019).

Note that the analysis by White and others (2016) used the 2013 CARDIoGRAMplusC4D

dataset, whereas here we use the 2015 dataset. Similarly, White and others (2016) used the 2012
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Table S6. Sources of associations between the 31 genetic variants and the covariates.

Trait Consortium Study Sample Size
Coronary heart disease CARDIoGRAMplusC4D Nikpay and others (2015) 184 305
Fasting glucose MAGIC Dupuis and others (2010) 46 186
BMI GIANT Locke and others (2015) 339,224
Type 2 diabetes DIAGRAM Scott and others (2017) 159 208
HDL cholesterol GLGC Willer and others (2013) 187 167
LDL cholesterol GLGC Willer and others (2013) 173 082
Triglycerides GLGC Willer and others (2013) 177 861
Systolic blood pressure Neale Lab 2017 results 337 199
Diastolic blood pressure Neale Lab 2017 results 337 199

dataset from DIAGRAM and the 2010 dataset from GIANT, whereas here we use the 2017 and

2015 datasets, respectively. Finally, White and others (2016) obtained genetic variant associations

with the blood pressure traits from the ICBP consortium, whereas here we use the 2017 results

from the analysis of UK Biobank by the Neale Lab (http://www.nealelab.is/blog/2017/7/

19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank).

S6. Consistency

There are two notions of consistency relating to the Lasso: consistency in estimation, and con-

sistency in model selection (that is, that the procedure shrinks the correct coefficients, and only

those, to zero). As discussed in Section 7, it is the latter which is relevant to the consistency of the

post-regularization estimator. However, consistency in model selection is stronger than is needed.

As long as the Lasso procedure selects at least the truly non-pleiotropic covariates, then the post-

regularization estimator will be consistent. Note that this contrasts with the problem considered

by Kang and others (2016) and Windmeijer and others (2019), where consistent estimation relies

on selecting no invalid instruments. In that case, the stronger condition of consistency in model

selection is required.

For the Lasso to be consistent in model selection, the irrepresentable condition of Zhao and

Yu (2006) must be met. This condition places restrictions on the nature of the correlations
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between the important predictor variables (that is, the non-zero elements of the true coefficient

vector) and the unimportant predictor variables. If the covariates are independent, the Lasso

will be consistent in model selection. This will also be the case if the groups of important and

unimportant variables are independent of each other, even if they are correlated within group. If

the irrepresentable condition is not satisfied, Meinshausen and Yu (2009) have shown that, under

weaker conditions, the Lasso will still select the truly non-zero entries of the true coefficient vector

as well as some, but not too many, non-zero entries. These conditions will be met if the number

of covariates remains fixed as the number of observations increases.

In the model given by (2.1)–(2.3), the covariates are correlated via their association with the

common U . Thus, we cannot assume that the method will necessarily be consistent in model

selection. However, assuming the two sample setting, we may expect that, as the number of

variants gets large, it will still select at least the truly non-pleiotropic covariates. The simulations

reported in Section S4.4 demonstrate that the method performs well when correlation among

the covariates is increased, even when the pleiotropic and non-pleiotropic covariate groups are

correlated. Although there is some bias in Scenario 2 as the number of pleiotropic covariates

increase, this bias reduces when the number of instruments is increased to 200 (see Table S5).

These results support the assertion that the method is consistent in estimation.

S7. Correlated instruments

In the case of correlated instruments, the matrix ΣG is not diagonal, and so cannot be replaced

by S in (S1.3). Instead, we can estimate ΣG by Σ̂G, which is the p× p matrix whose inverse has

(i, j)th element σiσjρij where σi = se
(
β̂Y i

)
and ρij = cor (Gi, Gj). We then use generalized least

squares, that is, we fit the model given by (2.4) where ε =
[
ε1 · · · εp

]′
is normally distributed

with mean zero and covariance matrix Σ̂G.

In order to estimate the ρij ’s, we would need access to individual-level data. If this is not
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available, the estimator will remain unbiased if we ignore the correlations and use S as the

covariance matrix of ε. In fact, it will be unbiased if we use any positive-definite matrix as the

covariance matrix of ε. To see this, consider the form of the estimator given in Section S1, with

S replaced by some postive-definite matrix Ω.

θ̂ =

{
β̂X − β̂W

(
β̂′WΩβ̂W

)−1 (
β̂′WΩβ̂X

)}′
Ωβ̂Y{

β̂X − β̂W
(
β̂′WΩβ̂W

)−1 (
β̂′WΩβ̂X

)}′
Ωβ̂X

=

{
β̂X − β̂W

(
β̂′WΩβ̂W

)−1 (
β̂′WΩβ̂X

)}′
Ω
(
θβ̂X + β̂W δ + ε

)
{
β̂X − β̂W

(
β̂′WΩβ̂W

)−1 (
β̂′WΩβ̂X

)}′
Sβ̂X

= θ +

{
β̂X − β̂W

(
β̂′WΩβ̂W

)−1 (
β̂′WΩβ̂X

)}′
Ωε{

β̂X − β̂W
(
β̂′WΩβ̂W

)−1 (
β̂′WΩβ̂X

)}′
Ωβ̂X

,

and it follows that E
(
θ̂ − θ

)
= 0. The computed standard error of θ̂, however, will not be

correct if the instruments are correlated but the correlation is ignored. Note that the above is a

straightforward extension of the work of Burgess and others (2016) on summarized data methods

in Mendelian randomization in the single variable case.
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