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S1. COVARIATE BALANCING

Jiang and others (2019) proposed weighting the genetic variants in such a way that the pleiotropic
effects are balanced out. Such a weighting scheme, however, will tend to reduce the strength of the
association between the risk factor and the weighted genetic variants. A constrained optimization
approach was therefore proposed, which aims to maximise the covariance between the weighted
genetic variants and the risk factor under the constraint that the covariances between the weighted
genetic variants and each of the covariates are zero.

We can adapt the constrained optimization approach to the summarized data case as follows.

Letting « be a p x 1 vector of weights, cov (Ga, X) = o/Xgfx and cov (Ga, W) = o' T fw. We
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thus wish to maximise with respect to « the objective function O/Egﬁx, subject to O/ZGBW =0
and o/Yga = 1. The second constraint is a normalising condition so that a unique solution is

possible. When p > k, this can be solved in closed form by

- £
a=a= , S1.1
ISPVl (L)
where
~ ~ s ~ -1 . A
¢ =Bx — Bw (BwSabw)  (BiwTabx). (S1.2)
The causal effect is then estimated by
N/Z 3
&Zaby. (S1.3)
a'Yabx

In practice, ¥ is unknown. However, since S is approximately proportional to ¥, we can replace
Y¢ by Sin (S1.1), (S1.2) and (S1.3).

In order to see that this estimator is equivalent to that obtained by the multivariable inverse-
variance weighted method, let B = [BX BW} The multivariable inverse-weighted estimator for

[9 6’]/ is obtained by regressing Sl/ZBY on SY2B, that is,

ysB) " (g5, - [PrShx @scs@wy [@&S@Y}
(B'sB)  (B'siv) [ﬁ’WSﬁX BiyShw) By Shy]

The estimator of 6 is the first entry of this vector. By the matrix inversion lemma, the top row

of the first term on the right hand side is
. R !
[; — & (B 5B ) (B SBw) ]

where

v = Biesix — (Besiw) (Bursiw) " (Buvsi).
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The estimator for 6 is thus
~ ~ A A ~ ~ -1 /. ~
B SBy — (B SBw ) (Biwshw) (B shy)
~ ~ A A ~ ~ -1 /. A~
BeSx = (BxShw ) (BwsBw)  (Bisix)

[ b (trsiu) ™ (Bsin) ) s

S U G S S
{ﬁx — Bw (B Shw) (ﬁ'wsﬁx)} SBx
&'S By

C&SAx

S2. DERIVATION OF THE TWO STEP ESTIMATION PROCEDURE

We wish to find
Ll 5 5 "ol A 5 5 a
arg min 5 (5y — 0By — ﬁW6> S (5y — 0By — 5W5) +AY 6] (S2.4)
: i=1
Following the notation of Kang and others (2016), we let Py; = M (M'M) ™" M’ for some matrix
M with d rows such that M’M is invertible, and Py;. = I;—Pys. Note that Py Py = Py Pyyr =
Prry Py Py =0, Py + Py = 15 and Py M = M. Denoting by ||-||, the £ norm, (52.4) can

be written as

5172 (By — 03x — Bwo) HZ + )\Xk: 161 (S2.5)
=1

1 .
— arg min
0,6
Let b = S/23. Then

% H51/2 (51/ —0Bx — /BW(S)HE + /\Zk: |3
=1

Z% (P, + Pyu) S*/2 (BY — 0Bx —BW5)H2+>\§:|51'
=1
= % p,SY? (BY —0Bx — BW5) Hz + % HPble/z (51/ —0Bx — BW(S) Hz + )\Zk: |6 ]
=1
_ % P,S'/? (BY — Bwa) — 951/2BXHz n % HPbLsWBY _ PI,le%W&Hz n )\zk: 16:]. (S2.6)

i=1
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The second and third terms of (S2.6) are independent of §. The first term of (S2.6) can be set to
zero for any value of § = §* by putting
. . ro
(By - Bwo) Shx
BSBx

Thus, (S2.5) can be solved by minimising the second and third terms of (S2.6) with respect to 9,

(S2.7)

then setting 6 according to (S2.7). This is the two step procedure.

S3. THE CHOICE OF TUNING PARAMETER

A common approach to choosing the tuning parameter, A, from the data is K-fold cross-validation.
The set of genetic variants is split into K folds, and the estimation procedure is performed, over a
range of A values, holding out each fold in turn. The A chosen is that which minimizes the mean,
across each fold, of a particular target function. A natural choice for the cross-validation target

function is the mean squared error, that is

= (B — Bwds— 0B ) S (By — By — Ba ). ($339)
An alternative is to make the choice of X in Step 1, independent of /3’ <. That is, the cross-validation
target function is
]13 (BY - BWS)\>/ SY2p,. 82 (BY - BWS)\) . (S3.9)
The use of (S3.8) as target function will give the smallest test mean squared error and would
be expected to give the more precise estimation. The use of (S3.9) will tend to select more
covariates, since any covariate-outcome effects which are mediated through the risk factor will
not be discounted. It will tend to therefore be more conservative in the sense that the standard
deviation of the estimates will be larger. Unless otherwise specified, the results reported in this
paper use cross-validation with K = 10 and (S3.8) as target function.
It is common practice to apply the one standard error rule in cross-validation procedures,

where the chosen value is the smallest that is no more than one standard deviation above the
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A which minimizes the target function (Hastie and others, 2009). Use of this rule will tend to
induce more sparsity, and is used, for example, by Kang and others (2016). In our case, however,
removing a covariate from the analysis that is causing pleiotropy will lead to bias, whereas leaving
in a covariate that is not needed will just make the estimator less efficient. Thus, it is preferable
to lean on the side of under penalization. This is in contrast to, for example the application in
Kang and others (2016), and other regularization methods mentioned previously, which induce
sparsity on the number of instruments. Leaving in an invalid instrument will cause bias, whereas
removing a valid instrument will just lower the power of the method in detecting a causal effect.
In Section S4.3, we re-analyse the simulation results reported in Section 4 using the one standard
error rule. The performance is generally similar, although the results using the one standard error

rule tend to be more biased when there are a larger number of pleiotropic covariates.

S4. FURTHER SIMULATION RESULTS
S4.1  Mean squared error plots

Figure S1 plots the mean squared error for each scenario and method for the cases presented in

Table 1.

S4.2  Inference

In this section we show the results of performing inference using methods discussed in Section 3.3.
Using the same set of simulations as those presented in Table 1, confidence intervals were com-
puted by performing the multivariable inverse-variance weighted method using sets of covariates
which were chosen as follows.

1. All covariates ignored (IVW).

2. The two step regularization procedure using the mean squared error, given by (S3.8), in

cross-validation (2 sample(a)).
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Fig. S1. Logarithm of the mean squared errors for each scenario (S1-S2) and number of truly pleiotropic
covariates (01-35). Plots (a) and (b), where # = 0.2 and 8 = 0, respectively, show the results from
simulations where there is sparsity in the covariate effects on the outcome. Plots (¢) and (d), where
0 = 0.2 and 0 = 0, respectively, show the results from simulations where there is sparsity in the genetic
variant effects on the covariates.
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7.

8.

The two step regularization procedure where cross-validation was performed independent
of the genetic variant-risk factor associations, that is, using (S3.9) as target function (2
sample(b)).

The two step regularization procedure using an independent sample and the mean squared
error, given by (S3.8), in cross-validation (3 sample(a)).

The two step regularization procedure using an independent sample and where cross-
validation was performed independent of the genetic variant-risk factor associations, that
is, using (S3.9) as target function (3 sample(b)).

The double estimation procedure (Double est.).

All covariates included (MV-All).

Only truly pleiotropic covariates included (Oracle).

In each case, the model was fitted using the MendelianRandomization package in R with

random effects (that is, allowing over-dispersion, see Thompson and Sharp, 1999 and Burgess

and Thompson, 2017) and 95% confidence intervals derived using the normal distribution. The

means of the standard errors, coverage (that is, the proportion of confidence intervals containing

the true causal effect) and power (that is, the proportion of confidence intervals not containing

zero) are shown in Table S1 (for # = 0.2) and Table S2 (for § = 0). Note that in the § = 0 case,

power in fact refers to the Type I error rate.

See Section 4 for discussion of the results. One further point to note is that the use of (S3.9)

in cross-validation tends to give coverage closer to 0.95 than the use of (S3.8), although not

uniformly. It also gives wider confidence intervals, suggesting that it is more conservative in

covariate selection (that is, tends to give lower levels of sparsity).
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Table S1. Mean, standard deviation (SD), mean standard errors (SE), coverage (Cov) and power (Pow) of estimates from the various methods
with @ = 0.2. Scenario 1 (p = 10) has k = 8 covariates of which either 1, 2 or 4 are truly pleiotropic. Scenario 2 (p = 80) has k = 70 covariates
of which either 7, 21, or 35 are truly pleiotropic.

1 / 7 Covariates

2 / 21 Covariates

4 / 35 Covariates

p Method Mean SD SE Cov Pow Mean SD SE Cov Pow Mean SD SE Cov Pow
Sparsity in the covariate effects on the outcome
10 IVW 0.219 0.077 0.040 0.729 0.958 0.240 0.103 0.0564 0.667 0920 0.289 0.146 0.074 0.595 0.852
2 sample (a)  0.201  0.066 0.050 0.894 0.922 0.198 0.073 0.056 0.888 0.865 0.210 0.096 0.073 0.859  0.788
2 sample (b)  0.201  0.146 0.081 0.900 0.794 0.192 0.143 0.082 0.900 0.757 0.209 0.132 0.090 0.883 0.714
3 sample (a)  0.197 0.074 0.059 0.937 0.891 0.200 0.080 0.065 0.922 0.839 0.208 0.118 0.086 0.914 0.745
3 sample (b)  0.196 0.213 0.097 0951 0.763 0.194 0.114 0.094 0939 0.708 0.205 0.135 0.102 0.928  0.666
Double est. 0.202 0.100 0.072 0926 0.804 0.199 0.132 0.094 0909 0.736 0.203 0.136 0.104 0.892 0.684
MV-All 0.198 0.282 0.190 0.961 0425 0.188 0.239 0.196 0963 0.38 0.196 0.252 0.190 0.957 0.418
Oracle 0.199 0.030 0.032 0947 0999 0.198 0.037 0.039 0956 0.982 0.198 0.058 0.056 0.953  0.903
80 IVW 0.290 0.110 0.043 0392 0970 0478 0.194 0.069 0.216 0975 0.678 0.243 0.089 0.081 0.988
2 sample (a) 0.181 0.060 0.044 0.846  0.923 0.184 0.088 0.069 0.879 0.719 0.185 0.121 0.091 0.848  0.539
2 sample (b)  0.180 0.062 0.045 0.836 0.908 0.185 0.091 0.070 0.867 0.717 0.18 0.122 0.093 0.853  0.529
3 sample (a)  0.186 0.051 0.049 0947 0936 0.186 0.083 0.084 0951 0.618 0.18 0.120 0.120 0.941  0.370
3 sample (b) 0.187 0.051 0.050  0.943 0.938 0.187 0.084 0.084 0.960 0.623 0.186 0.122  0.122 0.931 0.357
Double est. 0.185 0.058 0.048 0.871 0918 0.185 0.084 0.073 0911 0720 0.191 0.114 0.096 0.895 0.522
MV-All 0.167 0.178 0.181 0.947 0.153 0.169 0.194 0.200 0.952 0.145 0.160 0.223 0.223 0.943 0.131
Oracle 0.192 0.032  0.033 0.950 1.000 0.189 0.054 0.054 0.942 0.941 0.180 0.083 0.080 0.939 0.615
Sparsity in the genetic effects on the covariates
10 IVW 0.219 0.077 0.041 0.749 0.957 0.240 0.104 0.055 0.679 0915 0.288 0.146 0.075 0.598 0.851
2 sample (a)  0.201  0.047 0.039 0908 0.971 0.200 0.061 0.048 0.883 0.929 0.207 0.094 0.064 0.858 0.835
2 sample (b)  0.200 0.131  0.057 0912 0901 0.200 0.104 0.063 0.902 0.865 0.200 0.122 0.079 0.876  0.737
3 sample (a)  0.199 0.053 0.048 0.948 0.938 0.198 0.087 0.063 0.936 0.870 0.198 0.102 0.083 0.906 0.748
3 sample (b) 0.199 0.133 0.071 0951 0.847 0.196 0.096 0.078 0.954 0.789  0.197 0.146 0.098 0.928  0.679
Double est 0.201  0.065 0.053 0925 0914 0.198 0.114 0.069 0915 0.836 0.206 0.142 0.092 0.887 0.729
MV-All 0.197 0.176 0.127 0956 0.619 0.199 0.172 0.141 0952 0.565 0.204 0.199 0.154 0.945 0.463
Oracle 0.199 0.032 0.034 0951 0999 0.198 0.039 0.041 0958 0.977 0.198 0.060 0.058 0.951 0.884
80 IVW 0.290 0.112 0.046 0.432 0966 0.478 0.194 0.071 0.226 0975 0.678 0.243 0.089 0.084 0.988
2 sample (a)  0.197 0.053 0.041 0.872 0.987 0.208 0.083 0.064 0.876 0.837 0.207 0.116 0.087 0.859 0.625
2 sample (b)  0.198  0.052 0.041 0.869 0.992 0.207 0.085 0.066 0.882 0.815 0.208 0.118 0.088 0.856  0.621
3 sample (a)  0.193  0.054 0.053 0948 0.926 0.193 0.088 0.087 0.943 0.627 0.187 0.125 0.122 0.935 0.379
3 sample (b)  0.193  0.055 0.054 0942 0916 0.195 0.089 0.088 0.944 0.614 0.191 0.128 0.123 0.933  0.376
Double est 0.196 0.053 0.042 0.895 0978 0.202 0.081 0.067 0.896 0.802 0.205 0.112 0.091 0.887 0.602
MV-All 0.188 0.124 0.126 0955 0.362 0.194 0.168 0.168 0.945 0.233 0.175 0.202 0.204 0.953 0.165
Oracle 0.191  0.040 0.041 0960 0996 0.189 0.063 0.063 0944 0.849 0.180 0.092 0.087 0.929  0.559
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S4.3  Use of the one standard error rule

Table S3 shows the results of the regularization and post-regularization procedures applied to
the same simulations as shown in Table 1 but with the one standard error rule applied. Figure S2
plots the mean squared errors for the procedures against those for the results without using the
one standard error rule. The use of the one standard error rule results in higher mean squared
error when using the regularization procedure. When using the post-regularization procedure,
the one standard error rule typically has lower mean squared error with a smaller number of
instruments (that is, in scenario 1), and a higher mean squared error with a larger number of

instruments (that is, in scenario 2).

S4.4  Increased correlation among the covariates

Table S4 shows the results for simulations run under the same parameters as those in Table 1
(when 6 = 0.2) but with yw; = 0.5 and ew;; ~ N (0,0.75+1/k?), i =1,...,p, j = 1,... k.
This makes the correlation between each covariate approximately 0.25. The variance of the ey,

was reduced accordingly so that the signal to noise ratio for each covariate was unchanged.

S4.5  Simulations with p = 200 instruments

Table S5 shows the results for simulations run under the same parameters as those in Table 1
(when 6 = 0.2) but with p = 200 and vw;, j =1,...,k, set to either 1/k or 0.5 (with the variance

of the ey ,; adjusted as in Section S4.4).

S5. DATA SOURCES FOR THE APPLIED ANALYSIS

The associations between the genetic variants and urate concentration were taken from White

and others (2016). Note that, although the singificance level for inclusion of a genetic variant was
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Fig. S2. Logarithm of the mean squared errors for each scenario (S1-S2) and number of truly pleiotropic
covariates (01-35), comparing the regularization and post-regularization methods with and without the
one standard error rule applied. Plots (a) and (b), where § = 0.2 and 0 = 0, respectively, show the results
from simulations where there is sparsity in the covariate effects on the outcome. Plots (¢) and (d), where
0 = 0.2 and 6 = 0, respectively, show the results from simulations where there is sparsity in the genetic
variant effects on the covariates.
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Table S4. Mean and standard deviation (SD) of estimates from the various methods when there is sparsity
in the covariate effects on the outcome, 6 = 0.2 and yw; = 0.5, 5 = 1,..., k. Scenario 1 (p = 10) has
k = 8 covariates of which either 1, 2 or 4 are truly pleiotropic. Scenario 2 (p = 80) has k = 70 covariates
of which either 7, 21, or 35 are truly pleiotropic.

0 =0.2
1/ 7 Covariates 2 / 21 Covariates 4 / 35 Covariates
p Method Mean SD Mean SD Mean
10 IVW 0.217 0.077 0.240 0.104 0.290 0.140
Reg 0.201 0.055 0.211 0.071 0.214 0.089

Post-reg  0.199 0.059 0.209 0.101 0.203 0.106
MV-All 0.199 0.224 0.209 0.258 0.198 0.293
Oracle 0.200 0.032 0.200 0.037 0.198 0.057
80 IVW 0.293 0.108 0.471 0.198 0.664 0.249
Reg 0.214 0.056 0.253 0.106 0.313 0.160
Post-reg  0.202 0.068 0.222 0.117 0.260 0.164
MV-All 0.209 0.188 0.222 0.262 0.235 0.318
Oracle 0.193 0.038 0.201 0.069 0.217 0.109

Table S5. Mean and standard deviation (SD) of estimates from the various methods when there is sparsity
in the covariate effects on the outcome, 8 = 0.2, p = 200 and k = 90.

0=0.2
7 Covariates 21 Covariates 35 Covariates
Method Mean SD Mean SD Mean
’ij = ]./k
IVW 0.286  0.108 0.470 0.179  0.666 0.236
Reg 0.192 0.031 0.194 0.046  0.200 0.057

Post-reg  0.172  0.040 0.166 0.0564  0.168 0.063
MV-All 0.166  0.063 0.163 0.062 0.167  0.067
Oracle 0.190 0.021 0.185 0.034 0.183 0.045

')’Wj =0.5
IVw 0.286  0.108 0470 0.179  0.666 0.236
Reg 0.207  0.035 0.232  0.060  0.268 0.084

Post-reg  0.200 0.043 0.216 0.067 0.238 0.088
MV-All 0.204 0.060 0.218 0.077 0.240  0.094
Oracle 0.193  0.022 0.198 0.040 0.215 0.060

5x 1078, one variant (rs164009) which had a p-value larger than 5 x 1078, and less than 5 x 1077,
was also included on the basis of a known biological role in urate metabolism. The associations
between the genetic variants and coronary heart disease as well as the covariates were taken from
GWAS data as summarized in Table S6, and accessed using PhenoScanner (Staley and others,
2016; Kamat and others, 2019).

Note that the analysis by White and others (2016) used the 2013 CARDIoGRAMplusC4D

dataset, whereas here we use the 2015 dataset. Similarly, White and others (2016) used the 2012
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Table S6. Sources of associations between the 31 genetic variants and the covariates.

Trait Consortium Study Sample Size
Coronary heart disease =~ CARDIoGRAMplusC4D  Nikpay and others (2015) 184 305
Fasting glucose MAGIC Dupuis and others (2010) 46186
BMI GIANT Locke and others (2015) 339,224
Type 2 diabetes DIAGRAM Scott and others (2017) 159208
HDL cholesterol GLGC Willer and others (2013) 187167
LDL cholesterol GLGC Willer and others (2013) 173082
Triglycerides GLGC Willer and others (2013) 177861
Systolic blood pressure  Neale Lab 2017 results 337199
Diastolic blood pressure Neale Lab 2017 results 337199

dataset from DIAGRAM and the 2010 dataset from GIANT, whereas here we use the 2017 and
2015 datasets, respectively. Finally, White and others (2016) obtained genetic variant associations
with the blood pressure traits from the ICBP consortium, whereas here we use the 2017 results
from the analysis of UK Biobank by the Neale Lab (http://www.nealelab.is/blog/2017/7/

19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank).

S6. CONSISTENCY

There are two notions of consistency relating to the Lasso: consistency in estimation, and con-
sistency in model selection (that is, that the procedure shrinks the correct coefficients, and only
those, to zero). As discussed in Section 7, it is the latter which is relevant to the consistency of the
post-regularization estimator. However, consistency in model selection is stronger than is needed.
As long as the Lasso procedure selects at least the truly non-pleiotropic covariates, then the post-
regularization estimator will be consistent. Note that this contrasts with the problem considered
by Kang and others (2016) and Windmeijer and others (2019), where consistent estimation relies
on selecting no invalid instruments. In that case, the stronger condition of consistency in model
selection is required.

For the Lasso to be consistent in model selection, the irrepresentable condition of Zhao and

Yu (2006) must be met. This condition places restrictions on the nature of the correlations
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between the important predictor variables (that is, the non-zero elements of the true coefficient
vector) and the unimportant predictor variables. If the covariates are independent, the Lasso
will be consistent in model selection. This will also be the case if the groups of important and
unimportant variables are independent of each other, even if they are correlated within group. If
the irrepresentable condition is not satisfied, Meinshausen and Yu (2009) have shown that, under
weaker conditions, the Lasso will still select the truly non-zero entries of the true coefficient vector
as well as some, but not too many, non-zero entries. These conditions will be met if the number
of covariates remains fixed as the number of observations increases.

In the model given by (2.1)—(2.3), the covariates are correlated via their association with the
common U. Thus, we cannot assume that the method will necessarily be consistent in model
selection. However, assuming the two sample setting, we may expect that, as the number of
variants gets large, it will still select at least the truly non-pleiotropic covariates. The simulations
reported in Section S4.4 demonstrate that the method performs well when correlation among
the covariates is increased, even when the pleiotropic and non-pleiotropic covariate groups are
correlated. Although there is some bias in Scenario 2 as the number of pleiotropic covariates
increase, this bias reduces when the number of instruments is increased to 200 (see Table S5).

These results support the assertion that the method is consistent in estimation.

S7. CORRELATED INSTRUMENTS

In the case of correlated instruments, the matrix Y is not diagonal, and so cannot be replaced
by S in (S1.3). Instead, we can estimate X by $¢, which is the p x p matrix whose inverse has
(1,7)t" element 0;0jpij where o; = se (Byl) and p;; = cor (G, G;j). We then use generalized least
squares, that is, we fit the model given by (2.4) where € = [51 e E-Zp]l is normally distributed
with mean zero and covariance matrix fig.

In order to estimate the p;;’s, we would need access to individual-level data. If this is not
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available, the estimator will remain unbiased if we ignore the correlations and use S as the
covariance matrix of €. In fact, it will be unbiased if we use any positive-definite matrix as the
covariance matrix of . To see this, consider the form of the estimator given in Section S1, with

S replaced by some postive-definite matrix €.

/

{Bx — b (i) " (i) b 0y

{BX — Bw (B{/VQBW> - (5/WQﬁX> }l QBx
/ Q

{BX — Bw (B{;VQBW) B (5/VVQﬂX)} (HBX + Bwd + 5)

{BX — Bw (B/WQBW)_I (B{)VQBX> }/SBX

{BX — Bw (B%QBW)_I (B'WQBX>} Qe
—0+

7 )
{f = b (B0iw) ™ (390x) | b

and it follows that FE (é — 9) = 0. The computed standard error of é, however, will not be
correct if the instruments are correlated but the correlation is ignored. Note that the above is a
straightforward extension of the work of Burgess and others (2016) on summarized data methods

in Mendelian randomization in the single variable case.
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