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Supporting Figure 1. The elemental mapping characterization of APF-sphere. The elements 
of C, O, and N are indicated by red, blue, and green. The scale bar is 100 nm.
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Supporting Figure 2. The characterization of APF-bowl obtained by solvent-assisted 

repolymerization process for 5 min (a, d), 20 min (b, e), and 180 min (c, f). The scanning electron 

microscopy (SEM) images (a-c, Scale bar, 500 nm) and transmission electron microscopy (TEM) 

images (d-f, Scale bar, 200 nm), respectively.
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Supporting Figure 3. The characterization of 13C nuclear magnetic resonance (13C NMR). 

(a) 13C CP/MAS NMR spectra of APF-sphere (0 min) and APF-bowl obtained after the reaction 

time of 5 min, 20 min, and 180 min. The c-13C and r-13C refer to the carbon content ratio on the 

branched-chain and benzene ring, respectively. (b) Trend diagram of c-13C/r-13C ratio of samples 

in reversible de/re-polymerization process, which reaction time was (i) 0 min, (ii) 5 min, (iii) 20 

min, and (iv) 180 min.
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Supporting Figure 4. The energy dispersive X-ray spectra (EDS) characterization of sphere-

shaped and bowl-shaped chips. The EDS of APF-sphere and APF-sphere&Au are displayed in 

(a) and (b), respectively. The elemental contents of C, N, O, and Au are summarized in Supporting 

Figure 4c. The EDS of APF-bowl, APF-bowl&0.72Au, APF-bowl&0.96Au, and APF-

bowl&1.20Au, are displayed in (d), (e), (f) and (g), respectively. The elemental contents of C, N, 

O, and Au are summarized in Supporting Figure 4h.
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Supporting Figure 5. The 3D plot of atomic force microscopy (AFM) image for the 
characterization of the APF-bowl&0.96Au surface roughness.
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Supporting Figure 6. The thermogravimetric (TG) characterizations of APF-bowl and 
APF-bowl&MAu (M = 0.72, 0.96, 1.20).
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Supporting Figure 7. The X-ray Diffraction (XRD) pattern of APF-bowl&0.96Au. The typical 
peaks at 2θ of 38.2°, 44.4°, 64.6°, and 77.5° were assigned to rings of (111), (200), (220) and (311) 
of Au.
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Supporting Figure 8. The X-ray photoelectron spectroscopy (XPS) characterization. The full 
spectra of (a) APF-sphere&Au and (b) APF-bowl&Au, are displayed, respectively.
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Supporting Figure 9. Ultraviolet-visible (UV-vis) absorbance spectra of APF-sphere, APF-
bowl, and APF-bowl&0.96Au.
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Supporting Figure 10. The bar graph of laser desorption/ionization mass spectrometry (LDI 

MS) detection. Mean signal intensities of sodium and potassium adducted ([M+Na]+and [M+K]+) 

signals of (a) valine, (b) glycyl-glycine, and (c) uracil, by using the matrix of (i) APF-

sphere&0.72Au, (ii) APF-sphere&0.96Au, and (iii) APF-sphere&1.20Au. Three independent LDI 

MS experiments were conducted, and the small metabolites were at a concentration of 1 ng/nL.
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Supporting Figure 11. The bar graph of LDI MS detection. Mean signal intensities of 

potassium adducted  ([M+K]+) signals of (a) valine, (b) glycyl-glycine, and (c) uracil, by using the 

matrix of (i) APF-sphere&Au, (ii)APF-bowl&0.72Au, (iii) APF-bowl&0.96Au, and (iv) APF-

bowl&1.20Au. Three independent LDI MS experiments were conducted, and the small 

metabolites were at a concentration of 1 ng/nL.
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Supporting Figure 12. The uniform distribution of Au nanoparticles was adopted for 

calculating the space of neighboring Au nanoparticles in APF-bowl&0.96Au, which was 

25.83 nm.
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Supporting Figure 13. The protein tolerance of APF-bowl&0.96Au in LDI MS detection. (a) 

The mass spectrum of the mixture of methionine (Met, 1 ng/nL) and BSA (5mg/mL). (b) The mass 

spectrum of the mixture of BSA (5mg/mL) and typical small metabolites (including valine (Val), 

glycyl-glycine (Gly), and uracil (Ura), each at a concentration of 1 ng/nL). The sodium adducts 

([M+Na]+) and potassium adducts ([M+K]+) of small metabolites were labeled in the figure.
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Supporting Figure 14. The elemental mapping characterizations. Elemental mappings of C, 

N, O, Au, and S for a submicroreactor-methionine mixture. The scale bars were 100 nm.
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Supporting Figure 15. The typical MS spectra of ovarian cancer patients before and after 

chemotherapy. The MS spectrum of an ovarian cancer patient (a) before chemotherapy, (b) after 

cycle 1 chemotherapy (C1), (c) after cycle 2 chemotherapy (C2), and (d) after cycle n chemotherapy 

(Cn, n ≥ 5), by using APF-bowl&0.96Au as the matrix. The LDI MS experiments were all 

conducted in the positive ion mode, and the matrix suspension of APF-bowl&0.96Au was 1 ng/nL.



17

Supporting Figure 16. Power analysis based on a pilot dataset. The 10 SMFs (5/5, before 

chemotherapy/after chemotherapy) were analyzed to obtain the minimum required sample for a 

robust machine learning model. The minimum sample size of 16 per group will achieve a predicted 

power of ~0.8.
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Supporting Figure 17. Machine learning of serum metabolic fingerprints (SMFs) for 

differentiation between the ovarian cancer patients before chemotherapy and in C1 group. 

The machine learning methods of (a) elastic net (EN), (b) the least absolute shrinkage and selection 

operator (LASSO), (c) partial least squares (PLS), and (d) decision tree,  were respectively applied. 

The PLS was demonstrated as the best candidate for differentiation of patients before 

chemotherapy and patients in C1 group. The receiver operating characteristics (ROC) curves of 

training and test set are respectively presented in blue and yellow with area-under-the-curve (AUC) 

labeled.
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Supporting Figure 18. Machine learning of SMFs for differentiation between the ovarian 

cancer patients before chemotherapy and in C2 group. The machine learning method of (a) EN, 

(b) LASSO, (c) PLS, and (d) decision tree, were respectively applied. LASSO was demonstrated 

as the best candidate for differentiation of patients before chemotherapy and in C2 group. The ROC 

curves of training and test set are respectively presented in blue and yellow with AUC labeled.
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Supporting Figure 19. Machine learning of SMFs for differentiation between the ovarian 

cancer patients before chemotherapy and in Cn group. The machine learning methods of (a) 

EN, (b) LASSO, (c) PLS, and (d) decision tree, were respectively applied. LASSO was 

demonstrated as the best candidate for differentiation of patients before chemotherapy and in Cn 

group. The ROC curves of training and test set are respectively presented in blue and yellow with 

AUC labeled. 
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Supporting Figure 20. The pathway analysis based on the established biomarker panel for 

chemotherapy monitoring. Two pathways were identified to correlate with the established 

metabolic biomarker panel (Supporting Table 6), in which the glyoxylate and dicarboxylate 

metabolism with pathway impact of 0.22 are presented in the red circle and (2) Glycine, serine, 

and threonine metabolism with pathway impact of 0.05 were presented in the yellow circle. The 

size of the circle correlates with corresponding pathway impact.
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Supporting Table 1. The diverse biomedical applications by regulating surface roughness.
No. Reference Materials with 

surface roughness Property Biomedical 
Application

This 
study — APF-bowl&0.96Au

Increased adsorption site and 
high selectivity for 

metabolites, and plasmon 
transfer within the nano-scaled 

cavities to facilitate LDI 
efficiency

Submicroreactor 
for metabolite 

detection 

Ref (1)
Wang et al. Adv. 

Healthcare 
Mater. 2018, 7, 

1800318

The mixture of Mg 
particles and gallium-

indium alloy

Excellent thermal 
conductivity, favorable 
formability, and benign 

biocompatibility

Ref (2)
Chen et al. ACS 
Nano 2018, 12, 
6, 5646–5656

Rattle-structured 
rough nanocapsules 
(Au@HSN-PGEA, 

AHPs) 

Desirable surface roughness 
and NIR responsiveness

Photothermal 
therapy

Ref (3)
Song et al. ACS 
Nano 2017, 11, 
6, 6102-6113

Branched nanoporous 
gold nanoshells

Enhanced physico-optical 
properties for laser irradiation 

triggered drug release

Ref (4)
Niu et al. Adv. 

Mater. 2013, 25, 
43, 6233-6237

Nanoparticles 
mimicking virus 

surface topography

Enhanced biomolecules 
binding and cellular uptake 

efficacy

Drug/cellular 
delivery

Ref (5)
Kocer et al. Adv. 
Mater. 2017, 29. 

27, 1606407

Light responsive 
liquid crystal polymer 

networks

Switched cell migration 
patterns upon in situ temporal 

changes in surface nano-
roughness

Ref (6)
Zhou et al. J. 

Mater. Chem. B 
2015, 3, 4439-

4450

Ultrafine poly(L-lactic 
acid) (PLLA) 
microfibers

Anisotropic wettability and 
greater protein adsorption

Cell adhesion, 
migration, and 

regulation

Ref (7)

Li et al. ACS 
Appl. Mater. 

Interfaces 2021, 
13, 27, 32205–

32216

Stimuli-responsive 
lysozyme 

nanocapsules (NCP)

Remarkably reduced 
adsorption of proteins, 

polysaccharides, and bacteria

Ref (8)
Xu et al. J. 

Hazard Mater. 
2018, 5, 343, 

285-297

PET fabrics coated 
with TiO2nanowires

Excellent UV photocatalytic 
activity

Ref (9)
Duy et al. 

Nanoscale, 2019, 
11, 16455-16462

Si nanopillar array

Against Gram-negative 
Pseudomonas and 

Staphylococcus aureus due to 
nanostructure-induced rupture.

Antibacterial

Ref 
(10)

Shi et al. Small 
2018, 14, 27, 

e1800819

Lotus leaf onto PDMS 
substrates

Increased contact area and 
high sensitivity as a flexible 

piezoresistive pressure sensor

Ref 
(11)

Qi et al. Sens. 
Actuators B 
Chem. 2019, 
279, 170-176

3D sulfur/nitrogen co-
doped graphene

Detection of catechol and 
hydroquinone with low 

detection limits

Ref Shu et al. Small Au nanoparticles Fast, sensitive, and selective 

Sensors
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(12) Methods 2020, 4, 
4, 1900469

deposited on a 
dopamine-bubble layer

detection of small metabolites
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Supporting Table 2. Comparison between the present APF-bowl&Au with previous 
reported anisotropic morphologies as LDI MS matrix.

No. Reference Matrix Substrat
e

Property for LDI 
MS detection

Detected 
molecules

Applicat
ion

This 
study — APF-bowl&Au APF-

bowl

Enhanced laser 
desorption/ionization 

efficiency and 
desirable adsorption 
of small molecule 

metabolites

Serum 
metabolic 

fingerprints 
(MW < 1000 

Da)

Chemoth
erapy 

monitori
ng

Ref 
(13)

Tseng et al. 
Anal. Chem. 

2018, 90 (12), 
7283-7291

Self-Assembled 
Chiral Gold 

Supramolecules
—

High absorption 
efficiency of laser 
energy, analyte-

binding capacity, and 
homogeneity

Carnitine 
(MW > 1000 

Da)

Ref 
(14)

Yoon et al. 
Chem. Comm. 
2018, 54 (45), 

5688-5691

Donut-shaped 
C18-Au surface 

Au 
surface

Simplified sample 
preparation process

Neuropeptide 
(MW > 1000 

Da)

Ref 
(15)

Li et al. Chem. 
Comm. 2019, 55 
(15), 2166-2169

Au nanobowls
Au 

nanobow
ls

High stability with 
reduced analysis time

Oligonucleoti
des (MW > 
1000 Da)

Ref 
(16)

Ge et al. J. 
Chromatogr. A. 

2020, 1615.

Apatamer-Au 
doped COFs COFs

Selective and 
satisfactory extraction 

property to insulin

Insulin 
(MW > 1000 

Da)

Ref 
(17)

Huang et al. 
Anal. Chem. 

2018, 90 (14), 
8607-8615.

Au/diphenylala
nine nanosheets

Dipheny
lalanine 
nanoshe

ets

Laser light absorption 
ability 

Anabolic 
steroids and 

estrogens 
(MW < 1000 

Da)

Ref 
(18)

Wang et al. ACS 
Appl. Mater. 

Interfaces 2020, 
12 (38), 42567-

42575.

Porous TiO2 
film 

immobilized 
with gold 

nanoparticles 
(AuNPs-
FPTDF) 

Porous 
TiO2 
film

High detection 
sensitivity, good 

repeatability, and low 
background noise

Various small 
molecules 

(e.g., amino 
acids)

(MW < 1000 
Da)

Ref 
(19)

Kim et al. Small 
2021, 17 (49), 

2103745

Au nanoisland 
functionalized 
ZnO nanotubes 
(AuNI-ZNTs).

ZnO 
nanotube

s

Favorable desorption 
process

Fatty acids 
and 

monosacchari
des (MW < 
1000 Da)

Ref 
(20)

Kim et al. Adv. 
Funct. Mater. 
2021, 31 (29), 

2102475.

Au-modified 
TiO2 nanowires 
(npAu-TNW) 

TiO2 
nanowir

es

Efficient photo 
thermal conversion

Neurotransmi
tter (MW < 
1000 Da)

Ref 
(21)

Kim et al. ACS 
Appl. Mater. 

Interfaces 2019, 
11 (22), 20509-

20520

Au 
nanoislands/Ti
O2 nanowires

TiO2 
nanowir

es

Improved desorption 
and ionization 

performance of the 
heterostructure

Immunosuppr
essors (MW < 

1000 Da)

Targeted 
molecule 
detection

https://doi.org/10.1002/smll.202103745
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Ref 
(22)

Li et al. J. 
Hazard. Mater. 

2022, 423, 
126893

AuNPs/NiFe-
LDHs

NiFe-
LDHs

High peak intensity 
and low background 

noise

Metronidazol
e (MW < 
1000 Da)

Ref 
(23)

Alexandra et al. 
ACS Nano 2020, 

14 (6), 6785-
6794

Au-coated 
black silicon 

substrates

Black 
silicon 

substrate
s

Efficient transference 
of metabolites from 

the tissues to the 
substrate surface

Animal 
tissues and 

human 
fingerprints

Untarget
ed 

molecule 
detection
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Supporting Table 3. The intensity of typical small molecule metabolites by LDI MS 
detection.

[M+Na]+ [M+K]+

Analyte 
[1] Matrix [2]

Intensity [3] S/N[4] Intensity [3] S/N[4]

APF-bowl 98.24±9.91 <3 71.33±18.58 <3

APF-bowl&0.72Au 25009.70±706.00 38.33±8.08 19847.00±4105.37 22.67±2.08

APF-bowl&0.96Au 84296.30±3165.98 452.33±35.73 86458.70±1740.00 368±54.81

APF-bowl&1.20Au 12798.00±605.31 197.00±25.94 7022.33±1412.69 90.00±8.54

Valine

APF-sphere&Au 4075.33±936.84 105.00±19.05 1724.00±705.82 42.33±16.92

APF-bowl 14.33±4.04 <3 8.67±4.62 <3

APF-bowl&0.72Au 22110.43±2226.08 13.17±3.65 6928.56±2044.43 <3

APF-bowl&0.96Au 31812.11±628.43 22.97±6.96 7527.68±1153.59 <3

APF-bowl&1.20Au 11596.84±710.45 4.77±1.46 7020.84±1096.67 <3

Glucose

APF-sphere&Au 311.00±52.68 4 369.33±79.22 4.67±0.58

APF-bowl 2.67±1.15 <3 2.00±2.00 <3
APF-bowl&0.72Au 2554.67±211.68 <3 6383.89±2327.44 13.67±3.43

APF-bowl&0.96Au 4873.83±650.27 6.53±0.93 23072.09±2143.88 28.20±2.31

APF-bowl&1.20Au 1389.84±236.56 7.95±0.21 7120.56±1938.47 40.57±8.00

Decanoic 
acid

APF-sphere&Au 25.00±10.15 <3 454.60±132.26 39.40±11.78

APF-bowl 8.33±6.03 <3 3.67±4.62 <3

APF-bowl&0.72Au 79122.19±703.42 552.83±72.79 18469.92±854.70 103.90±13.57

APF-bowl&0.96Au 102523.00±3693.55 895.37±122.61 52491.24±6294.13 353.77±59.98

APF-bowl&1.20Au 47228.93±2711.96 423.83±99.95 11814.52±1894.13 83.53±25.27

Glycyl-
glycine

APF-sphere&Au 3840.57±136.77 121.07±23.85 805.29±240.54 22.80±1.92

APF-bowl 10.33±3.51 <3 1.67±1.53 <3

APF-bowl&0.72Au 1648.97±471.5 16.10±5.52 9156.38±1776.74 65.30±13.40

APF-bowl&0.96Au 10079.41±2383.43 127.73±61.05 56563.98±18589.20 550.30±301.43

APF-bowl&1.20Au 395.67±43.94 <3 274.2±17.36 9.30±0.14

Uracil

APF-sphere&Au 242.09±33.81 6.80±1.90 5636.52±370.03 132.90±40.07

APF-bowl 9±2.65 <3 10.00±4.36 <3

APF-bowl&0.72Au 1739.34±636.98 159.17±60.71 836.9±419.77 74.80±36.63

APF-bowl&0.96Au 2738.58±1729.88 227.4±146.09 7056.78±2583.48 592.20±223.28

APF-bowl&1.20Au 1369.22±282.99 121.07±23.23 533.95±150.17 46.43±13.06

Leucine

APF-sphere&Au 45.08±19 4.2±1.9 175.62±32.97 16.40±2.46

[1] Six typical metabolites in human serum, including valine, glucose, decanoic acid, glycyl-
glycine, uracil, and leucine, were utilized for evaluating the detection performance of different 
matrices in LDI MS.
[2] The matrices, including APF-bowl, APF-bowl&0.72Au, APF-bowl&0.96Au, APF-
bowl&1.20Au, and APF-sphere&Au, were applied for LDI MS detection with the concentration 
of 1 ng/nL.
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[3] The intensity of sodium and potassium adducts of small molecule metabolites ([M+Na]+ and 
[M+K]+) was calculated by three independent experiments with standard deviation.
[4] S/N refers to the signal to noise ratio of sodium and potassium adducts of small molecule 
metabolites, which was calculated by three independent experiments with standard deviation.
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Supporting Table 4.The total ion count (TIC) of mass spectra from a representative serum 
sample of an ovarian cancer patient.

TICMatrix
1 2 3 Average [1]

APF-sphere&Au 739900 710963 643666 698177±49375
APF-bowl&0.72Au 1443224 1350514 1342195 1378644±56082
APF-bowl&0.96Au 5889989 6108490 6594293 6197590±360507
APF-bowl&1.20Au 956918 955830 976908 963219±11868

[1] The averaged TIC with standard deviation was calculated based on three independent 
experiments.
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Supporting Table 5. Demographic information and clinical feature of ovarian cancer 
patients.

Serum sample available [3]Patient 
ID Age Physiological 

type [1]
Disease 
stage [2] Before C1 C2 Cn

1 57 MOC IIC √ √
2 60 HGSOC II √ √ √
3 49 HGSOC IV √ √ √
4 57 HGSOC IA √ √
5 52 HGSOC III √ √ √
6 52 HGSOC IV √ √
7 70 HGSOC IIIC √ √
8 61 HGSOC IIIC √ √ √
9 56 HGSOC IIIC √ √
10 56 HGSOC IIIC √ √ √
11 62 HGSOC IIIC √ √
12 75 HGSOC IIIC √ √
13 63 HGSOC IC √ √ √
14 51 HGSOC IC √ √ √
15 65 EOC IA √ √
16 54 HGSOC IA √ √
17 67 HGSOC IV √ √ √
18 65 HGSOC IIB √ √
19 74 OCCC IIIC √ √ √ √
20 61 HGSOC IIB √ √ √
21 61 HGSOC IIIC √ √ √
22 46 HGSOC IIIC √ √ √
23 56 HGSOC IIIC √ √ √
24 64 HGSOC IIIC √ √ √ √
25 48 HGSOC IIA √ √ √
26 50 HGSOC IC √ √ √
27 60 HGSOC IC √ √ √ √
28 60 HGSOC IIB √ √ √
29 64 HGSOC IA √ √ √ √
30 65 HGSOC IIIC √ √ √
31 49 HGSOC IIIC √ √ √
32 63 HGSOC IV √ √ √ √
33 80 HGSOC IIIC √ √ √
34 36 HGSOC IC √ √
35 37 OCCC IIIC √ √ √ √
36 71 LGSOC III √ √ √ √
37 30 HGSOC IIIC √ √ √ √
38 71 MOC IC √ √ √
39 36 OCCC IV √ √
40 66 HGSOC IIIC √ √ √ √
41 41 HGSOC IIIA √ √
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42 65 HGSOC IIIC √
43 53 HGSOC IV √ √ √
44 63 HGSOC IIIC √ √
45 57 HGSOC IV √ √ √
46 38 HGSOC III √ √ √ √
47 61 HGSOC III √ √ √ √
48 73 HGSOC IIIC √ √ √ √
49 48 HGSOC IIIC √ √ √ √
50 35 HGSOC IIB √ √ √ √
51 64 HGSOC IIIC √ √ √ √
52 66 HGSOC IV √ √ √
53 53 HGSOC IIIC √ √ √ √
54 59 HGSOC IIIC √ √ √
55 44 HGSOC IIIC √ √ √ √
56 64 HGSOC IIIC √ √ √ √
57 66 LGSOC IV √ √ √ √
58 63 HGSOC IIIC √ √ √ √
59 54 HGSOC IIB √ √ √
60 50 HGSOC IIIC √ √ √
61 44 HGSOC IIIC √ √ √
62 65 HGSOC IV √ √ √
63 56 HGSOC IIIC √ √ √
64 53 HGSOC IIIC √ √ √ √
65 64 HGSOC IIIC √ √ √ √
66 51 HGSOC IIIC √ √ √ √
67 62 OCCC I √ √ √ √
68 53 OCCC IIIC √ √

[1] The physiological type was obtained from the pathological examination, including 58 cases of 
high-grade serous ovarian carcinoma (HGSOC), 5 cases of ovarian clear cell carcinoma (OCCC), 
2 cases of mucinous ovarian carcinoma (MOC), 1 case of endometrioid ovarian carcinoma (EOC), 
and 2 cases of low grade serous ovarian carcinoma (LGSOC). 
[2] The disease stage was obtained according to the standards of Federation International of 
Gynecology and Obstetrics (FIGO) 2018 for ovarian cancer.
[3] The serum sample available for the patient before chemotherapy (Before), after cycle 1 of 
chemotherapy (C1), C2, and Cn (n ≥ 5) is marked with ‘√’.



31

Supporting Table 6. The diagnostic parameters of before chemotherapy and chemotherapy 
cycle 1 (C1) by elastic net (EN), least absolute shrinkage and selection operator (LASSO), 
partial least squares (PLS) regression, and decision tree.

Machine learning 
methods

Diagnostic 
performance

Training set 
(before/C1, 49/35)

Test set (before/C1, 
17/12)

AUC 1.00 0.74

Sensitivity (%) 0.98 0.59

Specificity (%) 1.00 0.83
EN

Accuracy (%) 0.98 0.66

AUC 1.00 0.70

Sensitivity (%) 0.96 0.59

Specificity (%) 1.00 0.83
LASSO

Accuracy (%) 0.96 0.66

AUC 0.81 0.78

Sensitivity (%) 0.78 0.65

Specificity (%) 0.77 0.92
PLS

Accuracy (%) 0.76 0.72

AUC 0.92 0.59

Sensitivity (%) 0.84 0.47

Specificity (%) 0.83 0.67
Decision tree

Accuracy (%) 0.81 0.55
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Supporting Table 7. The diagnostic parameters of before chemotherapy and chemotherapy 
cycle 2 (C2) by EN, LASSO, PLS, and decision tree.

Machine learning 
method

Diagnostic 
performance

Training set 
(before/C2, 49/41)

Test set (before/C2, 
17/13)

AUC 0.99 0.98

Sensitivity (%) 0.96 0.83

Specificity (%) 0.98 1.00
EN

Accuracy (%) 0.95 0.92

AUC 0.99 1.00

Sensitivity (%) 0.96 0.93

Specificity (%) 0.96 1.00
LASSO

Accuracy (%) 0.98 1.00

AUC 0.77 0.78

Sensitivity (%) 0.69 0.70

Specificity (%) 0.76 0.88
PLS

Accuracy (%) 0.63 0.62

AUC 0.95 0.94

Sensitivity (%) 0.82 0.90

Specificity (%) 0.92 0.94
Decision tree

Accuracy (%) 0.85 0.85
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Supporting Table 8. The diagnostic parameters of before chemotherapy and chemotherapy 
cycle n (Cn) based on EN, LASSO, PLS, and decision tree.

Machine learning 
method

Diagnostic 
performance

Training set 
(before/Cn, 49/57)

Test set (before/Cn, 
17/19)

AUC 0.98 0.93

Sensitivity (%) 0.98 0.88

Specificity (%) 0.96 0.89
EN

Accuracy (%) 0.96 0.86

AUC 0.98 0.89

Sensitivity (%) 0.94 0.76

Specificity (%) 0.96 0.89
LASSO

Accuracy (%) 0.94 0.81

AUC 0.80 0.89

Sensitivity (%) 0.73 0.94

Specificity (%) 0.77 0.74
PLS

Accuracy (%) 0.75 0.75

AUC 0.94 0.89

Sensitivity (%) 0.86 0.88

Specificity (%) 0.88 0.84
Decision tree

Accuracy (%) 0.84 0.86
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Supporting Table 9. The potential biomarkers selected from SMFs.

No. Metabolite [1] HMDB ID [2] m/z Adduct p1 
[3] p2 

[4] p3 
[5]

1 Hydroxybutyric 
acid HMDB0001352 103.95 [M]+ ** ** ****

2 Maleic acid HMDB0000176 116.84 [M+H]+ * ** ****

3 D-Cysteine HMDB0003417 121.96 [M+H]+ *** **** ****

4 N-
Acetylasparagine HMDB0006028 212.95 [M+K]+ ** ** ****

5
3-Hydroxy-2-
methylpyridine-
4,5-dicarboxylate

HMDB0006955 235.95 [M+K]+ ** *** ****

6 Dihydroneopterin 
phosphate HMDB0006824 335.85 [M+H]+ * *** ****

[1] The metabolites include hydroxybutyric acid, maleic acid, D-cysteine, N-acetylasparagine, 3-
hydroxy-2-methylpyridine-4,5-dicarboxylate, and dihydroneopterin phosphate, which were 
screened out by machine learning methods and constructed as the metabolic biomarker panel for 
chemotherapy monitoring.
[2] refers to the ID of the corresponding metabolite in the human metabolite database 
(https://hmdb.ca/).
[3] The p1 value was calculated by the t-test based on the intensities between ovarian cancer patients 
before chemotherapy and after cycle 1 chemotherapy (C1) at the corresponding m/z value.
[4] The p2 value was calculated by the t-test based on the intensities between ovarian cancer patients 
before chemotherapy and after cycle 2 chemotherapy (C2) at the corresponding m/z value.
[5] The p3 value was calculated by the t-test based on the intensities between ovarian cancer patients 
before chemotherapy and after cycle n chemotherapy (Cn, n≥5) at corresponding m/z value. (* 
represented p < 0.05, ** represented p < 0.01, *** represented p < 0.001, and **** represented p 
< 0.0001).

https://hmdb.ca/
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Supporting Table 10. The statistics of potential biomarkers after variable cycle of 
chemotherapy.

No. Metabolite p (C1 vs Cn) p (C2 vs Cn) Fold change [1] Log2(Fold change) 

[1]

1 Hydroxybutyric acid * * 1.43 0.51

2 Maleic acid * * 1.93 0.95

3 D-Cysteine ** 0.06 2.09 1.06

4 N-Acetylasparagine * * 2.58 1.37

5
3-Hydroxy-2-

methylpyridine-4,5-
dicarboxylate

** * 1.86 0.89

6 Dihydroneopterin 
phosphate * * 1.65 0.73

[1] The fold change analysis was conducted based on the SMFs of ovarian cancer patients before 
and after chemotherapy.
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