Cu-Catalyzed Cross-Coupling of Nitroarenes with Aryl Boronic Acids to Construct Diarylamines

Xinyu Guan,¹ Haoran Zhu,¹ and Tom G. Driver¹

¹ Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, USA, 60607-7061 tgd@uic.edu

Supporting Information

Contents:

I.	Cu-Catalyzed Formation of Diarylamines	<i>s</i> -2
II.	Mechanistic Experiments	<i>s</i> -13
III.	Spectral Data.	<i>s</i> -17

General. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using 500 MHz or 300 MHz spectrometers. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. High-resolution mass spectra were obtained by peak matching. Melting points are reported uncorrected. Infrared spectroscopy was obtained using a diamond attenuated total reflectance (ATR) accessory. Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator. HPLC analysis was conducted on an Agilent 1100 instrument equipped with a binary pump and diode array detector. Liquid chromatography was performed using forced flow (flash chromatography) of the indicated solvent system on 60Å (40 – 60 µm) mesh silica gel (SiO₂). Medium pressure liquid chromatography (MPLC) was performed to force flow the indicated solvent system down columns that had been packed with 60Å (40 – 60 µm) mesh silica gel (SiO₂). All reactions were carried out under an atmosphere of nitrogen in glassware, which had been oven-dried. Unless otherwise noted, all reagents were commercially obtained and, where appropriate, purified prior to use. Acetonitrile, methanol, Toluene, THF, Et₂O, and CH₂Cl₂ were dried by filtration through alumina according to the procedure of Grubbs.¹ Metal salts were stored in a nitrogen atmosphere dry box.

^{1.} Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

I. Cu-Catalyzed Formation of Diarylamines

A. Screening of Reductive Cross-coupling Conditions

In a 10 mL Schlenk tube under nitrogen, methyl 4-nitrobenzoate, 4-methoxyphenylboronic acid, catalyst and ligands were suspended in 1 mL of solvent. To the resulting mixture was added the silane reductant and the Schlenk tube was sealed. The reaction mixture was heated. After 30 h, the reaction mixture was cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and the residue was analyzed using ¹H NMR spectroscopy using CH_2Br_2 as the internal standard.

Table s1. Optimization of Cu-catalyzed reductive cross-coupling reaction conditions to form diarylamines.

		MeO ₂ C	NO ₂ + MeC		B(OH) ₂	catalyst, ligand silane solvent T °C, 30 h	→ Me0	D ₂ C	H N	+ DMe	H ₂ N CO ₂ Me	(s1)		
	ArNO ₂	ArB(OH)₂				1 0,0011		3	la				%. Yield	%. Yield
Entryª	(equiv)	(equiv)	catalyst	mol %	ligand	mol %	silane	equiv	additive	mol %	solvent (0.1 M)	(°C)	3aª	anilineª
1	1.0	1.0	Pd(OAc) ₂	10	Cy₂PhP	20	PhSiH₃	3.0	none		PhMe	100	0	86
2	1.0	1.0	Ni(acac) ₂	10	Cy₂PhP	20	PhSiH₃	3.0	none		PhMe	100	n.r.	n.r.
3	1.0	1.0	Fe(OAc) ₂	10	Cy₂PhP	20	PhSiH₃	3.0	none		PhMe	100	dec.	dec.
4	1.0	1.0	Cu(OAc) ₂	10	Cy₂PhP	20	PhSiH₃	3.0	none		PhMe	100	21	40
5	1.0	1.0	Cu(OAc) ₂	10	DPPB	10	PhSiH₃	3.0	none		PhMe	100	39	42
6	1.0	1.0	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		PhMe	100	35	21
7	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		PhMe	100	65	32
8	1.0	2.0	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		PhMe	100	33	42
9	1.5	1.0	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		PhMe	100	42	54
10	2.0	1.0	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		PhMe	100	45	69
11	1.5	1.0	CuCl	10	DPPB	20	PhSiH₃	3.0	none		PhMe	100	25	0
12	1.5	1.0	CuOTf•PhMe	10	DPPB	20	PhSiH₃	3.0	none		PhMe	100	n.r.	0
13	1.5	1.0	Cu ₂ O	10	DPPB	20	PhSiH₃	3.0	none		PhMe	100	0	60
14	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		xylenes	100	55	35
15	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		DMF	100	10	10
16	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		DME	100	23	74
17	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		1,4-dioxane	100	56	40
18	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		DCE	100	52	42

Entryª	ArNO₂ (equiv)	ArB(OH) ₂ (equiv)	catalyst	mol %	ligand	mol %	silane	equiv	additive	mol %	solvent (0.1 M)	T (°C)	%, Yield 3a	%, Yield aniline
19	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		EtOH	100	n.r.	n.r
20	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		MeCN	100	52	28
21	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	AcOH	10	MeCN	100	46	33
22	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	K ₂ CO ₃	10	MeCN	100	0	45
23	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	KO <i>t</i> -Bu	10	MeCN	100	24	50
24	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	CsF	10	MeCN	100	39	28
25	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	MgO	10	MeCN	100	44	32
26	1.0	1.5	Cu(OAc) ₂	10	DPPB	10	PhSiH₃	3.0	none		MeCN	100	42	48
27	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN	100	55	26
28	1.0	1.5	Cu(OAc) ₂	2	DPPB	4	PhSiH₃	3.0	none		MeCN	100	50	31
29	1.0	1.5	Cu(OAc) ₂	1	DPPB	2	PhSiH₃	3.0	none		MeCN	100	31	47
30	1.0	1.5	CuCl ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN	100	35	50
31	1.0	1.5	CuCl ₂	5	DPPB	10	PhSiH₃	3.0	AgClO ₄	10	MeCN	100	0	64
32	1.0	1.5	CuCl ₂	5	DPPB	10	PhSiH₃	3.0	$AgSbF_6$	10	MeCN	100	0	80
34	1.0	1.5	Cu(acac) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN	100	50	21
34	1.0	1.5	Cu(tfacac) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN	100	45	28
35	1.0	1.5	CuSO ₄	5	DPPB	10	PhSiH₃	3.0	none		MeCN	100	36	34
36	1.0	1.5	Cu(TFA) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN	100	55	25
37	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN	80	61	24
38	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN	60	63	33
39	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN	40	21	8
40	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN	RT	n.r.	n.r.
41	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		MeCN/PhMe (9:1)	60	55	25
42	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		MeCN/PhMe (4:1)	60	70	20
43	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		MeCN/PhMe (1:1)	60	76	18
44	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		MeCN/xylenes (1:1)	60	55	26
45	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		MeCN/PhCF ₃ (1:1)	60	65	24
46	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		MeCN/iPrOAc (1:1)	60	61	25
47	1.0	1.5	Cu(OAc) ₂	10	DPPB	20	PhSiH₃	3.0	none		MeCN/DCE (1:1)	60	67	29
48	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN/DMF (1:1)	60	60	19
49	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN/PhCF ₃ (1:1)	60	65	24
50	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.0	none		MeCN/PhMe (1:1) ^b	60	60	24

Entryª	ArNO ₂	ArB(OH) ₂	catalyst	mol %	ligand	mol %	silane	equiv	additive	mol %	solvent (0.1 M)	T (°C)	%, Yield	%, Yield
51	(equiv) 1 0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH ₂	3.0	none		MeCN/PhMe (1·1)⁰	60	60	24
52	1.0	1.5		5	DPPP	10	PhSiHa	3.0	none		MeCN/PhMe (1·1)	60	55	27
53	1.0	1.5	$Cu(OAc)_2$	5	Davenhos	10	PhSiH ₂	3.0	none		MeCN/PhMe (1:1)	60	31	50
54	1.0	1.5	Cu(OAc) ₂	5	DPEPhos	20	PhSiH ₂	3.0	none		MeCN/PhMe (1:1)	60	31	26
55	1.0	1.5	$Cu(OAc)_2$	5	BINAP	10	PhSiH ₂	3.0	none		MeCN/PhMe (1:1)	60	33	37
56	1.0	1.5	Cu(OAc) ₂	5	Ph₀P	20	PhSiH ₂	3.0	none		MeCN/PhMe (1:1)	60	0	89
57	1.0	1.5	$Cu(OAc)_2$	5	1 10-phen	10	PhSiHa	3.0	none		MeCN/PhMe (1:1)	60	0	90
58	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	Me ₂ CISiH	4.0	none		MeCN/PhMe (1:1)	60	nr	n r
59	1.0	1.5	$Cu(OAc)_2$	5	DPPB	10	iPr ₂ SiH	4.0	none		MeCN/PhMe (1:1)	60	n r	n r
60	1.0	1.5	$Cu(OAc)_2$	5	DPPB	10		4.0	none		MeCN/PhMe (1:1)	60	27	48
61	1.0	1.5		5		10		4.0	none		MeCN/PhMe (1:1)	60	27 p.r	40 n r
62	1.0	1.5		5		10		4.0	nono		MeCN/PhMe (1:1)	60		10.1.
62	1.0	1.5	$Cu(OAc)_2$	5		10	FHIMO	4.0	none			60	21	40
63	1.0	1.5		5	DPPB	10	Phoin ₃	3.2	none		MeGN/Phille (1:1)	60	70	18
64	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.4	none		MeCN/PhMe (1:1)	60	62	21
65	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	3.6	none		MeCN/PhMe (1:1)	60	28	58
66	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	2.8	none		MeCN/PhMe (1:1)	60	83	16
67	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH₃	2.6	none		MeCN/PhMe (1:1)	60	83	20
68	1.0	1.5	Cu(OAc) ₂	5	DPPB	10	PhSiH ₃	2.4	none		MeCN/PhMe (1:1)	60	55	17

^a As determined using ¹H NMR spectroscopy with CH₂Br₂ as the internal standard. ^b0.2 M solution. ^c0.05 M solution.

B. Optimized Conditions

To a 10 mL Schlenk tube under nitrogen was added 0.10 mmol of nitroarene and 0.15 mmol of arylboronic acid. A solution of Cu(OAc)₂ (5 mol %) and 1,4-bis(diphenylphosphino)butane (dppb) (10 mol %) in 0.5 mL of MeCN were then added. The resulting mixture was diluted with 0.5 mL of toluene, and 0.0303 g of phenyl silane (2.8 equiv) was added in one portion before the Schlenk tube was sealed under nitrogen. The reaction mixture was heated to 60 °C. After 30 h, analysis of the reaction mixture using thin layer chromatography indicated that the reaction was complete. The mixture was cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and the residue was purified using MPLC to afford diarylamine **3a**.

C. Characterization Data

1. Scope and limitations with regards to the nitroarene

Methyl 4-((4-methoxyphenyl)amino)benzoate 3a.² The optimized method was followed by adding 0.0181 g of methyl 4nitrobenzoate, 0.0228 g of 4-methoxyphenylboronic acid and 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4bis(diphenylphosphino)butane (dppb) in 0.50 mL of MeCN. Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded 3a as a white solid (0.0214 g, 83%). The spectral data of **1a** matched that reported by Organ and co-workers:² mp = 83–84 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.87 (d, *J* = 8.7 Hz, 2H), 7.13 (d, *J* = 8.9 Hz, 2H), 6.90 (d, *J* = 8.9 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 5.92 (s, 1H), 3.86 (s, 3H), 3.81 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.1 (C), 156.6 (C), 149.8 (C), 133.3 (C), 131.5 (CH), 124.5 (CH), 120.0 (C), 114.8 (CH), 113.2 (CH), 55.6 (CH₃), 51.6 (CH₃); IR (thin film): 3384, 2954, 2801, 1690, 1595, 1520, 1448, 1411, 1346, 1248, 1236, 798, 763, 690 cm⁻¹.

1 mmol scale reaction to afford methyl 4-((4-methoxyphenyl)amino)benzoate 3a. The optimized method was followed by adding 0.181 g of methyl 4-nitrobenzoate, 0.228 g of 4-methoxyphenylboronic acid and 0.009 g Cu(OAc)₂ and 0.043 g of 1,4-bis(diphenylphosphino)butane (dppb) in 5.00 mL of MeCN. Then 5.00 mL of toluene and 0.303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **3a** as a white solid (0.209 g, 81%).

4-Methoxy-*N***-(4-(trifluoromethyl)phenyl)aniline 3b.**³ The optimized method was followed by adding 0.0191 g of 4nitrobenzotrifluoride, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded **3b** as a dark brown foam (0.0224 g,

^{2.} Pompeo, M.; Farmer, J.L.; Froese, R. D. J.; Organ, M.G. Angew. Chem. Int. Ed. 2014, 53, 3223.

84%). The spectral data of **3b** matched that reported by Nocera and co-workers:³ ¹H NMR (CDCl₃, 500 MHz) δ 7.42 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 5.72 (s, 1H), 3.82 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.5 (C), 148.6 (C), 133.7 (C), 126.7 (q, J_{CF} = 3.7 Hz, CH), 124.7 (q, J_{CF} = 270.3 Hz, C), 124.3 (CH), 120.6 (q, J_{CF} = 32.8 Hz, C), 114.8 (CH), 113.7 (CH), 55.7 (CH₃); ¹⁹F NMR (CDCl₃, 282 MHz) δ -61.2; IR (thin film): 3415, 2936, 2837, 1670, 1563, 1454, 1377, 1150, 797 cm⁻¹.

N-(4-Methoxyphenyl)-4-chloroaniline 3c.⁴ The optimized method was followed by adding 0.0158 g of 4-chloro-1nitrobenzene, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded **3c** as a pale yellow foam (0.0199 g, 85%). The spectral data of **3c** matched that reported by Fort and co-workers:⁴ ¹H NMR (CDCl₃, 500 MHz) δ 7.22 (t, *J* = 7.5 Hz, 2H), 7.08 (s, 2H), 6.92 – 6.83 (m, 5H), 5.50 (s, 1H), 3.81 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.6 (C), 151.8 (C), 135.2 (CH), 129.2 (C), 124.0 (CH), 122.6 (CH), 116.7 (CH), 114.8 (C), 55.6 (CH₃); IR (thin film): 3379, 3010, 2954, 2838, 1562, 1521, 1499, 1387, 783, 695 cm⁻¹.

4-Methoxy-N-phenylaniline 3d.⁵ The optimized method was followed by adding 0.0123 g of nitrobenzene, 0.0228 g of 4methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **3d** as a pale yellow solid (0.0132 g, 66%). The spectral data of **dc** matched that reported by Lavigne and Cesar and co-workers:⁵ mp = 104–106 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.15 (d, *J* = 10.0 Hz, 2H), 7.05 (s, 2H), 6.87 (d, *J* = 10.0 Hz, 2H), 6.81 (s, 2H), 5.49 (s, 1H), 3.80 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.3 (C), 145.2 (C), 129.3 (CH), 122.2 (CH), 119.6 (CH), 115.7 (CH), 114.7 (CH), 55.6 (CH₃) only signals visible; IR (thin film): 3387, 3013, 2960, 2841, 1561, 1507, 1498, 1443, 1307, 1252, 1236, 750, 693 cm⁻¹.

N-(4-Methoxyphenyl)-4-methoxylaniline 3e. The optimized method was followed by adding 0.0153 g of 4-nitroanisole, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043g 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. The cross-coupling product was not observed and 4-nitroanisole starting material was recovered.

^{3.} Sun, R.; Qin, Y.; Nocera, D.G. Angew. Chem. Int. Ed. 2020, 59, 9527.

^{4.} Desmarets, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029.

^{5.} Zhang, Y.; Cesar V.; Storch, G.; Lugan N.; Lavigne, G. Angew. Chem. Int. Ed. 2014, 53, 6482.

N-(4-Methoxyphenyl)-4-nitrolaniline 3f.⁶ The optimized method was followed by adding 0.0168 g of 1,4-dinitrobenzene, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded **3f** as a brown solid (0.0144 g, 59%). The spectral data of **3f** matched that reported by Buchwald and co-workers:⁶ mp = 137–140 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.09 (d, J = 9.3 Hz, 2H), 7.16 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 9.3 Hz, 2H), 6.77 (d, J = 9.3 Hz, 2H), 6.10 (s, 1H), 3.84 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 157.5 (C), 151.8 (C), 139.1 (C), 132.0 (C), 126.4 (CH), 125.5 (CH), 115.0 (CH), 112.6 (CH), 55.6 (CH₃); IR (thin film): 3326, 3199, 3124, 2953, 2835, 1592, 1511, 1482, 1444, 1293, 1230, 762, 749, 697 cm⁻¹.

N-(4-Methoxyphenyl)-3-trifluoromethylaniline 3g.⁴ The optimized method was followed by adding 0.0191 g of 3-(trifluoromethyl)nitrobenzene, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded **3g** as a white solid (0.0238 g, 89%). The spectral data of **3g** matched that reported by Lavigne and Cesar and co-workers:⁴ mp = 56–58 °C; ¹H NMR (500 MHz; CDCl₃) δ ¹H NMR (501 MHz, CDCl₃) δ 7.29 (t, *J* = 7.9 Hz, 1H), 7.13 – 7.05 (m, 3H), 7.03 (d, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 5.62 (s, 1H), 3.82 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 156.2 (C), 146.0 (C), 134.3 (C), 131.6 (q, J_{CF} = 31.7 Hz, C), 129.8 (CH), 124.2 (q, J_{CF} = 272.5 Hz, C), 123.5 (CH), 117.9 (CH), 115.6 (q, J_{CF} = 3.8 Hz, CH), 55.5 (CH₃); ¹⁹F NMR (CDCl₃, 282 MHz) δ –62.8; IR (thin film): 3421, 2944, 2812, 1673, 1559, 1421, 1375, 1141, 772 cm⁻¹.

N-(4-Methoxyphenyl)-3-methylaniline 3h.⁵ The optimized method was followed by adding 0.0137 g of 3-nitrotoluene, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added.Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded **3h** as a yellow oil (0.0156 g, 73%). The spectral data of **3h** matched that reported by Fort and co-workers:^{5 1}H NMR (500 MHz; CDCl₃) δ 7.13 – 7.05 (m, 3H), 6.87 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 7.7 Hz, 2H), 6.67 (d, J = 6.6 Hz, 1H), 3.81 (s, 3H), 2.29 (s, 3H). ¹³C NMR (CDCl₃ 125 MHz) δ 155.3 (C), 145.2 (C), 139.2 (C), 129.2 (CH), 124.4 (C), 122.3 (CH), 120.6 (CH), 116.4 (CH), 114.7 (CH), 112.9 (CH), 55.6 (CH₃), 21.6 (CH₃); IR (thin film): 3406, 2956, 2817, 1665, 1523, 1436, 1354, 1014, 912, 772 cm⁻¹.

N-(4-Methoxyphenyl)-3-methoxyaniline 3i.⁷ The optimized method was followed by adding 0.0153 g of 4-nitroanisole, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g $Cu(OAc)_2$ and 0.0043 g of 1,4-

^{6.} Wolfe, J.P.; Tomori, H.; Sadighi, J.P.; Yin J.; Buchwald, S.L. J. Org. Chem. 2000, 65, 1158.

bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **3i** as a white foam (0.0195 g, 85%). The spectral data of **3i** matched that reported by Hartwig and co-workers:⁷ ¹H NMR (CDCl₃, 500 MHz) δ 7.21 – 7.04 (m, 3H), 6.86 (d, J = 8.8 Hz, 2H), 6.58 – 6.42 (m, 2H), 6.40 (d, J = 7.8 Hz, 1H), 5.62 (s, 1H), 3.80 (s, 3H), 3.76 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 160.8 (C), 155.5 (C), 146.7 (C), 135.4 (C), 130.1 (CH), 122.8 (CH), 114.7 (CH), 108.4 (CH), 104.8 (CH), 101.4 (CH), 55.6 (CH₃), 55.2 (CH₃); IR (thin film): 3380, 2924, 2071, 1634, 1414, 1379, 952 cm⁻¹.

2-[(4-Methoxyphenyl)amino]benzonitrile 3j.⁸ The optimized method was followed by adding 0.0148 g of 2nitrobenzonitrile, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded 3j as a white solid (0.0186 g, 83%). The spectral data of **3j** matched that reported by Zeng and co-workers:⁸ mp = 118–120 °C; ¹H NMR (500 MHz; CDCl₃) δ 7.46 (d, *J* = 5.0 Hz, 1H), 7.31 (t, *J* = 5.0 Hz, 1H), 7.15 (d, *J* = 5.0 Hz, 2H), 6.93-6.89 (m, 3H), 6.75 (t, *J* = 5.0 Hz, 1H), 6.18 (s, 1H), 3.83 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 157.3 (C), 149.0 (C), 134.0 (CH), 132.9 (CH), 132.3 (C), 125.7 (CH), 118.1 (CH), 117.8 (C), 114.9 (CH), 112.9 (CH), 96.9 (CN), 55.6 (CH₃); IR (thin film): 3392, 2921, 2852, 2241, 1317, 1290, 1203, 966 cm⁻¹.

N-(4-Methoxyphenyl)-2-bromoaniline 3k. The optimized method was followed by adding 0.0202 g of 2-bromo-1nitrobenzene, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded 3k as a yellow oil (0.0248 g, 89%). The spectral data of 3l matched that reported by Martin, Rossi and co-workers:⁹ ¹H NMR (CDCl₃, 500 MHz) δ 7.48 (d, *J* = 10.0 Hz, 1H), 7.14 – 7.08(m, 3H), 6.95 – 6.89 (m, 3H), 6.65 (t, *J* = 5.0 Hz, 1H), 5.94 (s, 1H), 3.82 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.4 (C), 143.3 (C), 134.2 (C), 132.8 (CH), 128.2 (CH), 124.7 (CH), 119.6 (CH), 114.8 (CH), 114.0 (CH), 110.6 (C), 55.6 (CH₃); IR (thin film): 3401, 3061, 2925, 2878, 1603, 1422, 1250, 947 cm⁻¹.

N-(4-Methoxyphenyl)-2-ethylaniline 31.¹⁰ The optimized method was followed by adding 0.0151 g of 2-ethyl-1nitrobenzene, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded **31** as a yellow oil (0.0186 g, 82%). The spectral data of **31** matched that reported by Schmidt and co-workers:⁹ ¹H NMR (CDCl₃, 500 MHz) δ 7.19 (d, *J* = 5.0 Hz, 1H), 7.09 (t, *J*

^{7.} Shen, Q.; Ogata, T.; Hartwig, J.F. J. Am. Chem. Soc. 2008, 130, 6586.

^{8.} Rao, B.; Zeng, X. Org. Lett. 2014, 16, 314.

^{9.} Budén, M. E.; Vaillard, V. A.; Martin, S. E.; Rossi, R. A. J. Org. Chem. 2009, 74, 4490.

^{10.} Samblanet, D.C.; Schmidt, J.A.R. J. Organomet. Chem. 2012, 720, 7.

= 5.0 Hz, 1H), 7.04 – 6.99 (m, 3H), 6.90 – 6.85 (m, 3H), 3.80 (s, 3H), 2.62 (q, J = 5.0 Hz, 2H), 1.29 (t, J = 5.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.0 (C), 142.7 (C), 136.8 (C), 131.6 (C), 128.7 (CH), 126.7 (CH), 121.8 (CH), 120.5 (CH), 116.3 (CH), 114.7 (C), 55.6 (CH₃), 24.2 (CH₂), 13.5 (CH₃); IR (thin film): 3422, 3038, 2961, 2928, 2833, 1595, 1500, 1294, 1243, 1033, 824, 747 cm⁻¹.

N-(4-Methoxyphenyl)-2-methoxyaniline 3m.¹¹ The optimized method was followed by adding 0.0151 g of 2-ethyl-1nitrobenzene, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded **3m** as a yellow oil (0.0165 g, 72%). The spectral data of **3m** matched that reported by Ichitsuka, Koumura, Kobayashi and co-workers:¹¹ ¹H NMR (CDCl₃, 500 MHz) δ 7.13 (d, J = 10.0 Hz, 2H), 7.04 (d, J = 5.0 Hz, 1H), 6.88 – 6.76 (m, 5H), 5.98 (br s, 1H) 3.90 (s, 3H), 3.81 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.3 (C), 147.4 (C), 135.4 (C), 135.0 (C), 122.8 (CH), 121.0 (CH), 118.6 (C), 114.6 (CH), 112.6 (CH), 110.2 (CH), 55.6 (CH₃), only signals visible; IR (thin film): 3371, 2932, 1631, 1582, 1418, 1336, 929 cm⁻¹.

Methyl 4-(naphthalen-2-ylamino)benzoate 3n.¹⁷ The optimized method was followed by adding 0.0173 g of 2nitronaphthalene, 0.0228 g of 4-methoxyphennylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **3n** as a yellow oil (0.0266 g, 96%). The spectral data of **3n** matched that reported by Deng, Huang and co-workers:¹² ¹H NMR (CDCl₃, 500 MHz) δ 8.00 (dd, J = 5.0, 5.0 Hz, 2H), 7.60 (d, J = 10.0 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.28 – 7.11 (m, 6H), 6.93 – 6.91 (m, 2H), 5.66 (s, 1H), 3.84 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 153.2 (C), 149.0 (C), 134.2 (C), 128.6 (CH), 126.2 (CH), 126.0 (C), 125.4 (CH), 121.8 (CH), 121.1 (CH), 120.9 (CH), 114.8 (CH), 111.7 (CH), 55.6 (CH₃), only signals visible; IR (thin film): 3461, 3358, 3037, 2944, 2339, 1673, 1665, 1521, 1466, 1256, 1030, 837, 742 cm⁻¹.

4-Fluoro-*N***-(4-methoxyphenyl)pyridine-3-amine 30.**¹³ The optimized method was followed by adding 0.0142 g of 4-fluoro-3-nitropyridine, 0.0228 g of 4-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 – 20:80 EtOAc:hexanes) afforded 30 as a white solid (0.0164 g, 75%). The spectral data of **30** matched that reported by Clark and co-workers:¹¹ mp = 122–126 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.81 (s, 1H), 7.34 (m, 1H), 7.02 (d, J = 5 Hz, 2H), 6.87 (d, J = 5 Hz, 2H), 6.79 – 6.77 (m, 1H), 3.80 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 158.7 (C), 155.8 (C), 139.7 (C), 135.2 (C), 134.8 (d, J = 14.8 Hz, CH), 128.5 (d, J = 7.4 Hz, CH), 121.9 (CH), 115.0 (CH), 109.4 (d, J = 39.3 Hz, CH), 55.6 (CH₃). IR (thin film): 3253, 3177, 3052, 2911, 2865, 1508, 1336, 1259, 1033 cm⁻¹.

^{11.} Ichitsuka, T.; Takahashi, I.; Koumura, N.; Sato, K.; Kobayashi, S. Angew. Chem. Int. Ed. 2020, 59, 15891.

^{12.} Wang, Z.; Li, C.; Huang, H.; Deng, G-J. J. Org. Chem. 2020, 85, 9415.

^{13.} Wilson, R. J.; Rosenberg, A. J.; Kaminsky, L.; Clark, D. A. J. Org. Chem. 2014, 79, 2203.

2. Scope and limitations with regards to the boronic acid

Methyl 4-[4-(trifluoromethyl)anilino]benzoate 12a. The optimized method was followed by adding 0.0181 g of methyl 4-nitrobenzoate, 0.0285 g of 4-trifluoromethylphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **12a** as a white foam (0.0266 g, 90%). The spectral data of **12a** matched that reported by Winkler, Penning and co-workers:¹⁴ ¹H NMR (CDCl₃, 500 MHz) δ 7.97 (d, J = 5.0 Hz, 2H), 7.55 (d, J = 5.0 Hz, 2H), 7.19 (d, J = 5.0 Hz, 2H), 7.10 (d, J = 5.0 Hz, 2H), 6.18 (s, 1H), 3.90 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.7 (C), 146.1 (C), 144.5 (C), 131.5 (CH), 126.8 (q, J = 3.6 Hz, CH), 124.6 (q, J = 270.6 Hz, C), 123.9 (C), 123.0 (C), 117.9 (CH), 116.4 (CH), 51.9 (CH₃); ¹⁹F NMR (CDCl₃, 282 MHz) δ -61.8; IR (thin film) cm⁻¹; 3403, 2955, 2844, 1685, 1401, 1314, 1225, 764 cm⁻¹

Methyl 4-[(4-fluorophenyl)amino]benzoate 12b.¹² The optimized method was followed by adding 0.0181 g of methyl 4nitrobenzoate, 0.0210 g of 4-fluorophenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **12b** as a pale yellow viscous oil (0.0238 g, 97%). The spectral data of **12b** matched that reported by Xue and co-workers:¹⁵ ¹H NMR (CDCl₃, 500 MHz) δ 7.90 (d, J = 8.4 Hz, 2H), 7.16 – 7.13 (m, 2H), 7.04 (t, J = 8.4 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.91 (s, 1H), 3.87 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.3 (C), 159.5 (d, $J_{CF} = 241.3$ Hz, C), 149.1 (C), 137.0 (d, $J_{CF} = 2.8$ Hz, CH), 131.9 (CH), 123.7 (d, $J_{CF} = 8.1$ Hz, CH), 121.1 (C), 116.6 (d, $J_{CF} = 22.5$ Hz, CH), 114.2 (CH), 52.1 (CH₃); ¹⁹F NMR (CDCl₃, 282 MHz) δ –118.7; IR (thin film): 3401, 1687, 1579, 1461, 1413, 1245, 752 cm⁻¹.

Methyl 4-(tolylamino)benzoate 12c.¹³ The optimized method was followed by adding 0.0181 g of methyl 4-nitrobenzoate, 0.0204 g of 4-tolylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **4c** as a white solid (0.0217 g, 90%). The spectral data of **12c** matched that reported by Ma and co-workers:¹⁶ mp = 105–106 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.94 – 7.84 (m, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.11 – 7.02 (m, 2H), 6.96 – 6.86 (m, 2H), 6.01 (s, 1H), 3.87 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.1 (C), 148.9 (C), 138.1 (C), 133.2 (C), 131.5 (CH), 130.1 (CH), 121.4 (CH), 120.5 (C), 114.0 (CH), 51.7 (CH₃), 20.9 (CH₃); IR (thin film): 3396, 1676, 1553, 1477, 1405, 1062, 771 cm⁻¹.

^{14.} Adeniji, A.O.; Twenter, B.M.; Byrns, M.C.; Jin, Y.; Chen, M.; Winkler, J.D.; Penning, T.M. J. Med. Chem. 2012, 55, 2311.

^{15.} Li, G.; Yang, L.; Liu, J-J.; Zhang, W.; Cao, R.; Wang, C.; Zhang, Z.; Xiao, J.; Xue, D. Angew. Chem. Int. Ed. 2021, 60, 5230.

^{16.} Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164.

Methyl 4-(3-fluorophenylamino)benzoate 12d.¹⁷ The optimized method was followed by adding 0.0181 g of methyl 4nitrobenzoate, 0.0210 g of 3-fluorophenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **12d** as a white solid (0.0216 g, 88%). Diarylamine **12d** was previously reported by Griffioen *et al.*:¹⁴ mp = 39–40 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.00 – 7.90 (m, 2H), 7.30 – 7.26 (m, 1H), 7.05 – 6.99 (m, 2H), 6.93 – 6.84 (m, 2H), 6.73 (ddd, J = 10.1, 7.9, 2.7 Hz, 1H), 6.07 (s, 1H), 3.89 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.8 (C), 163.6 (d, J = 245.5 Hz, C), 146.9 (C), 142.9 (d, J = 9.3 Hz, C), 131.5 (CH), 130.7 (d, J = 9.7 Hz, CH), 122.2 (C), 115.6 (CH), 115.0 (CH), 109.3 (d, J = 21.3 Hz, CH), 106.4 (d, J = 24.5 Hz, CH), 51.8 (CH₃); IR (thin film): 3364, 3041, 2959, 2841, 1610, 1501,1232, 837, 764 cm⁻¹.

Methyl 4-(3-methoxyphenylamino)benzoate 12e.¹⁵ The optimized method was followed by adding 0.0181 g of methyl 4nitrobenzoate, 0.0228 g of 3-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **12e** as a pale yellow oil (0.0237 g, 92%). The spectral data of **12e** matched that reported by Winkler, Penning and co-workers:¹⁸ ¹H NMR (CDCl₃, 500 MHz) δ 7.92 (d, J = 8.8Hz, 2H), 7.24 (t, J = 8.1 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 7.9 Hz, 1H), 6.73 (t, J = 2.2 Hz, 1H), 6.61 (dd, J =8.2, 2.4 Hz, 1H), 6.14 (s, 1H), 3.88 (s, 3H), 3.79 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.0 (C), 160.7 (C), 147.9 (C), 142.3 (C), 131.5 (CH), 130.3 (CH), 121.2 (C), 115.0 (CH), 112.6 (CH), 108.3 (CH), 106.0 (CH), 55.3 (CH₃), 51.8 (CH₃); IR (thin film): 3361, 2945, 2813, 1689, 1517, 1440, 1409, 1352, 1248, 789, 689 cm⁻¹.

Methyl 4-(3-tolylamino)benzoate 12f.¹⁵ The optimized method was followed by adding 0.0181 g of methyl 4-nitrobenzoate, 0.0204 g of 3-methylphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **12f** as a yellow oil (0.0212 g, 88%). The spectral data of **12f** matched that reported by Winkler, Penning and co-workers:¹⁵ ¹H NMR (CDCl₃, 500 MHz) δ 7.91 (d, *J* = 8.8 Hz, 2H), 7.24 - 7.21 (m, 1H), 7.00 - 6.96 (m, 4H), 6.89 (d, *J* = 7.5 Hz, 1H), 6.00 (s, 1H), 3.87 (s, 3H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.0 (C), 148.2 (C), 140.8 (C), 139.5 (C), 131.5 (CH), 129.4 (CH), 124.0 (CH), 121.2 (CH), 117.6 (CH), 114.6 (CH), 51.8 (CH₃), 21.6 (CH₃), only signals visible; IR (thin film): 3412, 1691, 1565, 1523, 1481, 1416, 1059, 794 cm⁻¹.

^{17.} Griffioen, G.; Van Dooren, T.; Rojas de la Parra, V.; Allasia, S.; Marchand, A.; Kilonda, A.; Chaltin, P. Preparation of indolylethylbenzamide derivatives as inhibitors of TAU for the treatment of neurodegenerative diseases. WO2012080221 A1, 06/21/2012.

^{18.} Adeniji, A.O.; Twenter, B.M.; Byrns, M.C.; Jin, Y.; Chen, M.; Winkler, J.D.; Penning, T.M. J. Med. Chem. 2012, 55, 2311.

Methyl 4-((2-methoxyphenyl)amino)benzoate 12g.¹⁶ The optimized method was followed by adding 0.0181 g of methyl 4-nitrobenzoate, 0.0228 g of 2-methoxyphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **12g** as a light yellow oil (0.0219 g, 85%). The spectral data of **12g** matched that reported by Organ and co-workers:¹⁹ ¹H NMR (CDCl₃, 500 MHz) $\delta7.96 - 7.90$ (m, 2H), 7.40 (dd, J = 7.6, 1.8 Hz, 1H), 7.10 - 7.05 (m, 2H), 7.02 - 6.90 (m, 3H), 6.37 (s, 1H), 3.89 (s, 3H), 3.88 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta167.0$ (C), 149.5 (C), 147.6 (C), 131.4 (CH), 130.5 (C), 122.2 (CH), 121.2 (C), 120.8 (CH), 117.7 (CH), 115.2 (CH), 110.9 (CH), 55.6 (CH₃), 51.7 (CH₃); IR (thin film): cm⁻¹. 3324, 2950, 1682, 1447, 1398, 1084, 844 cm⁻¹

Methyl 4-((2-ethylphenyl)amino)benzoate 12h. The optimized method was followed by adding 0.0181 g of methyl 4nitrobenzoate, 0.0228 g of 2-ethylphenylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Visualization of the reaction progress using thin layer chromatography revealed that no reaction had occurred. The only visible species were methyl 4-nitrobenzoate and 2-ethylphenylboronic acid. The cross-coupling product was not observed.

Methyl 4-(naphthalen-1-ylamino)benzoate 12i.¹⁷ The optimized method was followed by adding 0.0181 g of methyl 4nitrobenzoate, 0.0258 g of 1-naphthylboronic acid and 0.50 mL of MeCN solution of 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb). Then 0.50 mL of toluene and 0.0303 g of phenylsilane were sequentially added. Purification by MPLC (3:97 - 20:80 EtOAc:hexanes) afforded **12i** as a yellow oil (0.0230 g, 83%). The spectral data of **12i** matched that reported by Deng, Huang and co-workers:¹⁷ ¹H NMR (CDCl₃, 500 MHz) δ 7.98 (d, *J* = 5.0 Hz, 2H), 7.90 (d, *J* = 5.0 Hz, 3H), 7.72 (s, 1H), 7.58 – 7.46 (m, 4H), 6.84 (d, *J* = 5.0 Hz, 1H), 6.22 (s, 1H), 3.87 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.0 (C), 147.9 (C), 138.5 (C), 134.3 (C), 131.6 (CH), 130.1 (C), 129.4 (CH), 127.7 (CH), 126.9 (CH), 126.7 (CH), 124.6 (CH), 121.5 (C), 121.3 (CH), 115.6 (CH), 115.0 (CH), 51.8 (CH₃); IR (thin film): 3467, 3385, 3042, 2933, 1677, 1623, 1586, 1496, 1464, 1330, 1180, 857, 738 cm⁻¹.

Methyl 4-(pyrimidine-2-ylamino)benzoate 12j.¹⁷ The optimized method was followed by adding 0.0362 g of methyl 4nitrobenzoate, 0.0372 g of pyrimidin-2-yl-boronic acid and 1.00 mL of MeCN solution of 0.0018 g Cu(OAc)₂ and 0.0086

^{19.} Pompeo, M.; Farmer, J. L.; Froese, R. D. J.; Organ, M. G. Angew. Chem. Int. Ed. 2014, 53, 3223.

g of 1,4-bis(diphenylphosphino)butane (dppb). Then 1.00 mL of toluene and 0.0606 g of phenylsilane were sequentially added. Purification by MPLC (20:80 – 50:50 EtOAc:hexanes) afforded **12j** as a yellow solid (0.0270 g, 59%). The spectral data of **12j** matched that reported by Deng, Huang and co-workers:¹⁷ mp = 149–150 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.37 (d, J = 4.8 Hz, 2H), 7.78 (s, 1H), 7.48 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 6.64 (t, J = 4.8 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 160.8 (C), 158.1 (CH), 155.8 (CH), 132.4 (C), 122.4 (C), 114.3 (CH), 111.9 (CH), 55.6 (CH₃); IR (thin film): 3345, 2960, 2830, 1679,1650, 1525, 1263, 764 cm⁻¹.

III. Mechanistic Experiments

A 10 mL Schlenk tube was charged with 0.0606 g of 2-bromonitrobenzene and 0.0684 g of 4-methoxyphenylboronic acid under nitrogen. To this mixture was added a solution of 0.0027 g of $Cu(OAc)_2$ and 0.0129 g of 1,4bis(diphenylphosphino)butane (dppb) in 1.5 mL of MeCN was then added. The mixture was diluted with 0.5 mL of toluene, and 0.0909 g of phenyl silane and 0.33 mL of 2,3-dimethyl-1,3-butadiene were sequentially added. The resulting reaction mixture was heated to 100 °C. After 30 hours, the mixture was cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo* and was purified by MPLC (hexanes) to remove the phenyl silane oligomeric by-product and the aryl boronic acid to obtain a 90:7:3 mixture of 2-bromonitrobenzene, diarylamine **3k** and oxazine **13**. Oxazine **13** was previously reported by Shigeki.²⁰ Visible peaks for oxazine **13**: ¹H NMR (CDCl₃, 500 MHz) δ 4.38 (s, 2H), 3.61 (s, 2H), 1.25 (s, 3H).

A 10 mL Schlenk tube was charged with 0.0181 g of methyl 4-nitrobenzoate and 0.0228 g of 4-methoxyphenylboronic acid under nitrogen. To this mixture was added a solution of 0.0009 g of $Cu(OAc)_2$ and 0.0043 g of 1,4bis(diphenylphosphino)butane (dppb) in 0.5 mL of MeCN was then added. The mixture was diluted with 0.5 mL of toluene, and 0.0303 g of phenyl silane and 0.11 mL of 2,3-dimethyl-1,3-butadiene were sequentially added. The resulting reaction mixture was heated to 60 °C. After 12 hours, the mixture was cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and analysis of the residue using ¹H NMR spectroscopy with CH₂Br₂ as the internal standard revealed that the reaction had gone to ~80% conversion. The coupling product was not observed, but aniline and oxazine **s1** were both present. Several peaks were also observed in the ¹H NMR spectrum in between 3.6 and 4.0 ppm. Oxazine **s1** was previously reported by Ragaini and co-workers.²¹ While we were not able to purify the oxazine

^{20.} Shigeki, K. J. Chem. Soc. Jpn. 1956, 59, 951.

^{21.} El-Atawy, M. A.; Formenti, D.; Ferretti, F.; Ragaini, F. ChemCatChem 2018, 10, 4707.

from the reaction mixture, its peaks at 4.35 and 3.76 ppm matched that in the 2018 Ragaini *ChemCatChem* paper. Visible peaks for oxazine **s1**: ¹H NMR (CDCl₃, 500 MHz) δ 4.35 (s, 2H), 3.76 (s, 2H).

A 10 mL Schlenk was charged with 0.0090 g of methyl 4-nitrobenzoate, 0.0081 g of 4-trifluoromethylaniline and 0.0228 g of 4-methoxyphenylboronic acid. To this mixture was added 0.0009 g $Cu(OAc)_2$ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb) in 0.5 mL of MeCN. The mixture was diluted with 0.5 mL of toluene, and 0.0303 g of phenyl silane was added. The reaction mixture was heated to 60 °C. After 30 hours, the mixture was cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and analysis of the residue using ¹H NMR spectroscopy with CH_2Br_2 as the internal standard revealed formation of diarylamine **3a** as the only product.

A 10 mL Schlenk tube was charged with 0.0179 g of ethyl 4-nitrosobenzoate and 0.0228 g of 4-methoxyphenylboronic acid under nitrogen. To this mixture was added a solution of 0.0009 g $Cu(OAc)_2$ and 0.0043 g of 1,4bis(diphenylphosphino)butane (dppb) in 0.5 mL of MeCN. The mixture was diluted with 0.5 mL of toluene and 0.0151 g of phenyl silane was added. The resulting reaction mixture was heated to 60 °C. After 12 hours, the reaction mixture was cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and analysis of the residue using ¹H NMR spectroscopy with CH_2Br_2 as the internal standard revealed the formation of the diarylamine **3p** in 56% and ethyl 4-aminobenzoate in 28%.

A 10 mL Schlenk tube was charged with 0.0181 g of methyl 4-nitrobenzoate and 0.0351 g of 4-methoxyphenylboronic acid pinacolate ester under nitrogen. To this mixture was added 0.0009 g $Cu(OAc)_2$ and 0.0043 g of 1,4-bis(diphenylphosphino)butane (dppb) in 0.5 mL of MeCN. The mixture was diluted with 0.5 mL of toluene and 0.0303 g of phenyl silane was added. The reaction mixture was heated to 60 °C. After 30 hours, the reaction mixture was cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and analysis of the residue using ¹H NMR spectroscopy with CH_2Br_2 as the internal standard revealed formation of methyl 4-aminobenzoate as the only product.

A 10 mL Schlenk tube was charged with 0.0181 g of methyl 4-nitrobenzoate and 0.0321 g of potassium 4methoxyphenyltrifluoroborate under nitrogen. To this mixture was added 0.0009 g Cu(OAc)₂ and 0.0043 g of 1,4bis(diphenylphosphino)butane (dppb) in 0.5 mL of MeCN. The mixture was diluted with 0.5 mL of toluene, and 0.0303 g of phenyl silane was added. The reaction mixture was heated to 60 °C. After 30 hours, the reaction mixture was cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and analysis of the residue using ¹H NMR spectroscopy with CH₂Br₂ as the internal standard revealed formation of methyl 4-aminobenzoate as the only product.

To a 10 mL reaction tube under nitrogen, 0.0287 g of *N*-(4-methoxyphenyl)-*N*-phenylhydroxylamine and 0.5 mL of a solution of 0.0003 g Cu(OAc)₂ and 0.0016 g 1,4-bis(diphenylphosphino)butane in MeCN were added. The resulting mixture was diluted with 0.50 mL of toluene, and 0.0151 g of phenylsilane was added in one portion. The reaction tube was sealed and heated to 60 °C. After 12 h, the mixture was cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*. Analysis of the resulting residue using ¹H NMR spectroscopy in CDCl₃ using CH₂Br₂ as the internal standard showed that diarylamine **3c** was formed in 59%. Repeating the reaction in the absence of Cu(OAc)₂ resulted in no reaction.

IV. Spectral Data

A.	Spectral data for diarylamines 3	.s-1	.7
B.	Spectral data for diarylamines 12	.s-4	15
C.	Spectral data for mechanistic experiments	.s-6	53

C6.80 C6.78 C6.61 C6.61

