
SLEAP: A deep learning system for multi-
animal pose tracking

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s41592-022-01426-1



SLEAP: A deep learning system for multi-animal pose tracking - Supplementary Information

Supplementary Tables

Name Videos Image size Resolution* Parts Labels Split Instances Animals ID

fly32 59 192 x 192 x 1 35 32 1500 1200/150/150 1500 1 ✗
flies13 30 1024 x 1024 x 1 30.3 13 2000 1600/200/200 4000 2 ✓
flies17 44 1024 x 1024 x 1 30.3 17 428 385/43/0 851 2 ✗
bees 18 1536 x 2048 x 1 14 21 804 642/81/81 1604 1-2 ✗
mice_hc 40 1024 x 1280 x 1 1.9 5 1474 1178/148/148 2948 2 ✗
mice_of 20 1280 x 1024 x 1 1.97 11 1000 800/100/100 2950 1-5 ✗
gerbils 23 1024 x 1280 x 3 1.5 14 425 340/43/42 1588 2-4 ✓

Supplementary Table 1: Summary of all datasets used. See Supplementary Table 4 for full metadata. * Resolution
values in units of pixels per mm.

Dataset Approach mAP mAR 95% (px) 95% (mm) ID (%) Parameters (M) GFLOPS

fly32 Single animal 0.927 0.937 3.61 0.10 nan 7.811 12.98
flies13 Top-down 0.825 0.879 3.18 0.11 99.8 1.686 1.90
bees Bottom-up 0.679 0.709 16.78 1.20 nan 6.790 313.72
mice_hc Bottom-up 0.513 0.570 16.20 8.52 nan 2.937 124.35
mice_of Top-down 0.774 0.839 6.46 3.28 nan 2.936 11.76
gerbils Bottom-up (ID) 0.316 0.430 19.50 13.00 92.4 6.786 131.98
Supplementary Table 2: Summary of best model for each dataset. See Supplementary Table 5 for full metadata.

Supplementary Protocol

The SLEAP interface supports a standardized and reproducible workflow for generating labeled data for training models
on new datasets. Here we outline the protocol we asked labelers to follow (Supplementary Video 2):

1. Add videos of multiple sessions to your project. These should span the diversity of your data (days, animals,
setups, experimental conditions, etc.). You can add more videos to the project later, and you also don’t need to
add every video that you’ll be predicting on. A typical labeling dataset will have 10 to 30 sessions.

2. Create a skeleton. Edges can be changed later if needed for bottom-up models, so initially just connect the
nodes however you prefer for ease of visualization.

3. Generate suggestions to build a labeling queue of frames that are representative of the diversity of image
features in the data.

4. Do the first labeling round. Label 10 to 20 frames across suggestion groups and videos. Start with easy
examples where the body parts are most visible and animals are in typical poses.

5. Run the first round of training. Model selection is highly data dependent, but the default top-down model
configuration will work well for most cases. If training locally, predictions on unlabeled suggested frames
will be automatically generated and merged into the project. If training remotely (e.g., on Colab or a compute
cluster), download the resulting predictions (also stored in a .slp labels files) and merge them into the base
project.

6. Save the labels as a new file to ensure that you have checkpoints that you can go back as you progress through
the labeling process. In the GUI, selecting File, then Save as... will automatically increment the version
number of your labels file for convenient checkpointing.

7. Sort the predicted suggestions by score to identify frames that the model has a hard time with or to find easy
frames that increase the diversity of the labels. On frames with predictions, double click on each predicted
instance to create a labeled instance that you can correct by adjusting nodes that are misplaced or missing
altogether.

8. After labeling an additional 20 to 40 frames, retrain and import the new predictions, which should be
considerably improved relative to the previous iteration. You will do this for multiple rounds until you begin to
see negligible improvements with further labeling.

1



SLEAP: A deep learning system for multi-animal pose tracking - Supplementary Information

9. Once at 100 to 200 labeled frames, you can try to tweak the model configuration and explore different
approaches, such as bottom-up versus top-down or different network architectures, and see what works best
for your data or achieves acceptable accuracy with increased speed.

10. The final result of the labeling workflow is one or more trained models that achieve the desired level of
accuracy on your data. You can use these to track the entire dataset, or entirely new videos. This can be done
separately from the labeling project and predictions will be generated on a per-video basis. These predictions
can be opened in the SLEAP GUI for inspection and tracking proofreading.

11. In the proofreading stage, the goal is to identify identity switches which propagate to subsequent frames. This
can be done by visual inspection, or guided by a number of metrics that SLEAP can calculate for each frame
such as average prediction score, maximum velocity and more.

12. After proofreading, the final results can be exported to a format convenient for analysis. SLEAP saves the
tracking data (poses and identities) in an HDF5 format where predictions are stored in a contiguous array of
shape frames× nodes× xy × animals containing the image coordinates of each body part for all animals
and frames of a video. This can be read in without any additional dependencies in any language that supports
HDF5 such as MATLAB, R or Python.

Supplementary Note

Dataset selection

fly32

This dataset was employed for comparison with existing pose estimation frameworks and to disentangle the improve-
ments contained in SLEAP associated with its generalization to the multi-animal domain.

flies13

We use this dataset as our “gold standard” for social behavioral data as it was recorded at high resolution with optimal
illumination, large frame size and high FPS. This permitted the exploration of a wide range of model configurations that
must be fast despite the large image size (1024 x 1024) without sacrificing accuracy. This is particularly challenging
as the resolution cannot be reduced without losing information about the thinnest body parts (leg tips), thereby
precluding trivial solutions such as image downsampling. This dataset is also ideal for evaluating distinct approaches to
identification as the animals are both subtly different in appearance and have many highly visible body parts that have
low displacement and motion blur across frames due to the low exposure time, therefore making it compatible with
either appearance- or temporal-based models.

bees

Similar to the fly dataset, this resolution is close to the minimum required in order to reliably capture the finer features
of the bees such as their tarsi tips and antennae, both of which are frequently employed in social interactions [1]. This
presented a distinct challenge as the large body size of the bees (200 to 400 pixels) together with the finest feature sizes
(2 to 4 pixels) required models to simultaneously capture features across a wide range of length scales.

mice_hc

This dataset is representative of a naturalistic rodent social behavior paradigm as mice were allowed to interact freely
within a familiar home cage environment. This setting presents challenging imaging conditions due to low contrast as a
result of low-power IR illumination and white fur color of the animals against the bedding material. Additionally, the
few body parts labeled and low FPS present a distinct challenge for identity tracking. Temporal association methods
must be capable of simultaneously handling large displacements across frames, while also remaining robust to unreliable
landmarks due to heavy occlusion due to social interactions, frequently resulting in as few as 1 to 3 body parts detected
per animal within a frame.

mice_of

Unlike the home cage dataset, this dataset is imaged from below with high contrast, affording greater visibility of
the paws during locomotion. This is representative of ideal imaging conditions, but comes at the cost of not being
compatible with the use of bedding to promote a more ethologically relevant natural setting. The difference in the
number of animals and the occasional use of head mounts make this dataset ideal for studying in-domain generalization

2



SLEAP: A deep learning system for multi-animal pose tracking - Supplementary Information

performance since it requires models to generalize across different experimental conditions, but not imaging conditions
as they are all recorded in the same open field arena.

gerbils

This dataset presented a constellation of unique challenges that test the limits of multi-animal pose tracking methods.
The imaging conditions suffer from heavy lens distortion, sub-optimal focus, low FPS with long exposure times resulting
in considerable motion blur, highly variable illumination due to the light-dark cycle and the use of white light for
illumination without filtering. The experimental conditions are challenging due to several factors: gerbils frequently
engage in huddling behaviors resulting in heavy occlusion and making it difficult to identify individual animals or
assign body parts to the correct one; the monitoring is done in a home cage environment with shifting bedding that has
low contrast with the animals’ fur, as well as enrichment objects which can occlude the animals from the camera during
interactions; large variability in animal size due to the range of ages, requiring exceptional robustness to multi-scale
image features; and most challenging of all: the videos are recorded continuously over the span of multiple days. Unlike
the other datasets we used, which consist of sessions on the order of tens of minutes, this dataset makes it intractable to
use temporal association-based models as even rare identity switching would make proofreading extremely laborious
as errors would be difficult to identify and correct, in addition to propagating over millions of frames. This is further
compounded by having 4 animals which considerably increases the number of possible incorrect combinations of
identity assignments. This makes this dataset ideally suited for appearance-based ID models which can leverage the
variability in body morphology and fur patterning across animals as distinguishing features, and which do not rely
on temporal dependencies across frames thereby guaranteeing that ID errors will not be propagated over time which
effectively eliminates the need for proofreading.

Tracking algorithm

Algorithm 1: Tracking algorithm
Result: Tracked instances
D ← {} // Tracked instance deque
for t ∈ {1, ..., T} do

Ic ← Generate candidate instances from D
It ← Grouped instances in frame t
C ← Cost(Ic, It) // Pairwise costs
M ← Find optimal matching
for (i, j) ∈M do

AppendToTrack(Track(Ic[i]), It[j])
end
for k /∈M do

SpawnNewTrack(It[k])
end
AppendToDeque(It)

end

To adapt our tracking algorithm to the task of pose tracking specifically, we first employ flow shift for candidate
generation. Inspired by previous work on multi-human pose tracking [2], the flow shift generator takes instances from
previous frames and applies Farneback optical flow [3] to predict the displacement of the image between pairs of past
frames and the current frame. We apply the displacements to the coordinates of past poses to generate a set of “shifted”
instances with locations predicted by the image motion. This considerably improves the similarity between instances in
the past and present ones, especially during bouts of fast social behaviors with large displacements across frames (e.g.,
chasing) during which the past location of one instance may more closely overlap with the current location of another.
To compute the matching cost between instances, we use an unnormalized instance similarity score defined as

exp
(
−∥Ic − Ij∥22

)
/vc, (1)

where vc is the number of visible landmarks in the candidate instance.

We note that this system can be extended to arbitrary candidate generation and matching score functions, such as
learnable affinity matching or autoregressive motion models.

3



SLEAP: A deep learning system for multi-animal pose tracking - Supplementary Information

Bottom-up instance assembly

In this section we describe how animal instances are assembled in a bottom-up fashion from body-part confidence maps
and their affinity scores. Let’s start with definitions:

• Skeleton is a collection of n nodes (body parts) and m edges (connections between pairs of body parts). For
the reasons described below, we impose a constraint on the underlying graph of nodes and edges to form a
tree, which implies m = n− 1.

• Peak is a point in the image detected to match a specific node i from the skeleton. In a multi-instance setting
each skeleton node is expected to have multiple peaks, denoted by pi1, . . . , p

i
K for every node i ∈ {1, . . . , n}.

Here K denotes the number of animal instances, and in this section we also assume that the peaks pi1, . . . , p
i
K

for each node i were detected correctly by the neural network1.
• Affinity scores are assigned to pairs of peaks along with a corresponding edge e from the skeleton. Specifically,

for every edge e = i → j from the skeleton and every pair pix, p
j
y of peaks, the PAF [4] model outputs a

corresponding affinity score si,jx,y, where higher affinity score is interpreted as higher likelihood of the peaks
pix, p

j
y belonging to the same instance2.

Problem statement

With these definitions, the problem of assembling instances from detected peaks and affinity scores can be stated as
follows:

• Input: Number of instances K, skeleton tree with n nodes and m = n− 1 edges, nK peaks, mK2 affinity
scores.

• Output: Partition the nK peaks into K disjoint sets I1, . . . , IK of size n each, so that for every group Ik and
node i in the skeleton, there is exactly one peak pi∗ in Ik.

• Objective: Maximize the total sum of affinity scores for pairs of peaks contained within the same set in the
partition I1, . . . , IK .

Algorithm

As initially proposed in [4] we start by matching peaks along skeleton edges into disjoint pairs. Specifically, for every
skeleton edge e = i → j we find K pairwise disjoint pairs of peaks (pi1, p

j
1), . . . , (p

i
K , pjK) so that the sum of the

corresponding affinity scores is maximized. Finding the maximum-weight matching in the underlying weighted bipartite
graph can be done efficiently using e.g. the Hungarian Maximum Matching Algorithm (time complexity O(K3)).

Then we proceed to grouping the selected pairs of peaks into K instances. This is done by assembling connected
components from nK nodes and mK edges (selected pairs of peaks from previous step) as follows:

1. partition the peaks into nK singleton sets;
2. for each edge corresponding to selected pair of peaks p, p′, merge the sets to which p and p′ belong into one.

Correctness

In every iteration from step 2, p and p′ belong to different sets. This is because we selected the pairs of peaks according
to the skeleton edges, and the skeleton is a tree (has no cycles). Hence, in every iteration the number of sets decreases
by one.

Since we start with nK sets and perform mK = (n−1)K iterations, the final number of sets is exactly K. Furthermore,
by construction, each set contains exactly one peak for every node of the skeleton, as required.

Regarding the objective to maximize affinity scores contained within the partition sets, note that for all edges of the
skeleton, the corresponding pairs of peaks are matched to maximize the sum of scores independently of other skeleton
edges (here too using the fact that the underlying skeleton graph is a tree) . Therefore the total sum of affinity scores
contained within the partition sets is maximized.

1Without such assumption, assembling detected peaks into instances correctly – the problem addressed in this section – would be
impossible.

2In practice, pairs of peaks with affinity score lower than a certain threshold can be dismissed during the instance assembly phase
for tractability.

4



SLEAP: A deep learning system for multi-animal pose tracking - Supplementary Information

Time complexity

Finding the maximum-weight matching for every edge in the skeleton takes O(mK3) = O(nK3) time. In the grouping
phase what we do is essentially finding connected components in an undirected graph of size O(mK) = O(nK). This
takes linear time, and so the total time complexity governed by the first phase, and it remains O(nK3).

Note on solving the general case

Finding the partition with the maximum total sum of affinity scores in the general case, when the skeleton is not
constrained to be a tree, is an NP-hard problem (and so, unlikely to have a computationally efficient solution for inputs
of non-trivial size). This is because the problem of finding such a partition is a generalization of the well-known
3-dimensional matching problem that is known to be NP-hard3.

SLEAP Experimentation Framework

One of the main advantages of SLEAP’s modular design is that it enables running large scale experiments and hyper-
parameter tuning without having to alter its source code. Our setup for measuring and tuning the performance of
SLEAP on large collections of data (or large variety of configurations) is depicted in Supplementary Note Figure 1.
This is a distributed experimentation framework that scales well and handles hardware or network failures reliably. The

Figure 1: SLEAP Experimentation Framework

workflow follows these steps:

• User uploads the SLEAP packages (labels, raw-data and configuration files) to a shared bucket that the worker
machines have access to.

• User posts a sequence of messages on a PUB/SUB system, each message consists of: experiment name,
dataset location, configuration with preprocessing, training and inference params, and git SHA of the source of
SLEAP to be used. With this information, each message corresponds to an idempotent unit of work that can be
executed on any worker machine independently4.

• User spins up N virtual machines from a pre-baked image, containing environments and scripts for processing
messages, pulling and updating the version of SLEAP, fetching the relevant data and configuration files
from the shared bucket, running SLEAP training, inference and tracking, and writing results to the specified
experiment output location (for instance, cloud storage bucket).

• Each one of these VMs starts polling and processing messages as soon as it comes online. Once all the
messages have been consumed and processed, the user shuts down the worker machines (if applicable) and
downloads the generated output data for further analysis.

References

[1] Goulson, D. Bumblebees: Behaviour, Ecology, and Conservation (OUP Oxford, 2010).
3In fact, 3-dimensional matching problem is one of the original list of 21 problems from Karp’s seminal work that started the

study of computational complexity [5].
4The popular PUB/SUB services (e.g. on GCP or AWS) provide failure handling features, such as re-delivering un-acknowledged

messages to a new worker after a configurable time period. This reduces the overhead of monitoring worker machines and recovering
from failures significantly.

5



SLEAP: A deep learning system for multi-animal pose tracking - Supplementary Information

[2] Xiao, B., Wu, H. & Wei, Y. Simple baselines for human pose estimation and tracking. In Proceedings of the
European conference on computer vision (ECCV), 466–481 (2018).

[3] Farnebäck, G. Two-Frame motion estimation based on polynomial expansion. In Image Analysis, 363–370
(Springer Berlin Heidelberg, 2003).

[4] Cao, Z., Simon, T., Wei, S.-E. & Sheikh, Y. Realtime Multi-Person 2D pose estimation using part affinity fields. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 7291–7299 (2017).

[5] Karp, R. M. Reducibility among Combinatorial Problems (Springer, Boston, MA, 1972).

6




