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1 Introduction and notes

This document provides mathematical details on the derivation of the system of equa-
tions from the paper ’Model misspecification in stepped wedge trials: Random effects
for time or treatment’. To improve readability of long equations, some simplifications
have been made to notation presented in the paper. For example, subscripts indicating
sequence-specific values are mostly suppressed. To smooth ’translation’ between nota-
tions, we will re-present the models and cases of interest. Throughout, diag(a, . . . , b)
represents a diagonal matrix with a, . . . , b on the diagonal and zeros elsewhere. 1a and 0a
represent matrices with a rows and one column, filled with ones and zeros, respectively.
Ia represents an identity matrix of dimension a.

2 The General Model

We are considering a stepped wedge trial that has a total of J time periods and K
individual observations per cluster per time period (cross-sectional design). We assume
that every cluster is observed at each time period, and that once a cluster crosses over to
treatment it remains on treatment for the duration of the trial. We also assume there are
an equal number of clusters in each sequence. These assumptions allow for a wide variety
of classical and non-classical designs, as long as each sequence consists of some number of
time points on control followed by some number of time points on treatment; one notable
design element which breaks this assumption is transition periods, where outcomes are
not observed for one or more time points after crossover. See supplemental R code for
more examples of acceptable non-classical designs. The results in this document (i.e.
the system of equations and its roots) are valid for any reasonable set of fixed effects,
including different methods of modeling time (e.g. linear categorical, splines).

For a specific sequence, T (suppressing index) is the total number of time periods
on treatment. For example, if a sequence crossed over after the second time point in a
study with five time points, T = 3 since it spent the first two periods on control and the
last three periods on treatment.

Generally, we will be considering a mixed model of the following form, where out-
comes for cluster i are represented by:

Yi = Xiθ + Ziai + εi

where Xiθ represents the fixed effects, Ziai represents the random effects, and εi
represents the residual error. The vector of coefficients for the fixed effects θ should
include at least an intercept, treatment effect, and some way to model time. For example,
[µ, β, θ]T was used in the main paper (note that θ represented the treatment effect in the
main paper, but now we are using it to represent the whole vector of fixed effects). The
corresponding design matrix Xi has JK rows and an appropriate number of columns.
Additionally,
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Yi = [Yi11, Yi12, . . . , YiJK ]T , dim(JK, 1)

εi = [εi11, . . . , εiJK ]T , dim(JK, 1)

3 Time-fitted random treatment case

In this case, we are fitting a model with random time and intercept effects, but in truth
the data comes from a model with random treatment and intercept effects.

3.1 Misspecified model

The misspecified model with random time effects is presented below. The fixed effects
remain correctly specified (see Section 2).

Yi = Xiθ + Ziai + εi

Zi = [1JK ,
1K

0JK−K
, . . . ,

0JK−K
1K

], dim(JK, J + 1)

ai = [ui, wi1, . . . , wiJ ]T ∼MVN(0, G), dim(J + 1, 1)

G = diag(τ2, γ2, . . . , γ2), dim(J + 1, J + 1)

εi ∼MVN(0, σ2IJK), dim(JK, 1)

3.2 True model

The correctly specified model with random treatment effects is presented below. Note
the ’t’ subscript, indicating that the matrix or parameter comes from the true model.

Yi = Xiθ + Zitait + εit

Zit = [1JK ,
0K(J−Ti)

1KTi
], dim(JK, 2)

ait = [uit, vit]
T ∼MVN(0, Gt), dim(2, 1)

Gt = diag(τ2t , η
2
t ), dim(2, 2)

εit ∼MVN(0, σ2t IJK), dim(JK, 1)
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3.3 Marginal misspecified likelihood

Recall that the equation we are trying to find roots for (Equation 3 in the main paper) is
a sum over sequences, since the marginal likelihood is the same for every cluster within a
sequence. For the next several sections, we’ll be doing computations for a single sequence
- that is, a single cluster within a sequence. To improve readability, the i subscripts in
the notation presented above will be repressed.

Since Y |a,X,Z ∼ MVN(Xθ + Za, σ2I) under the mis-specified model, the condi-
tional mis-specified likelihood is:

Pr(Y |a,X,Z) = (2π)−JK/2|σ2I|−1/2exp{−1

2
(Y − (Xθ + Za))T (σ2I)−1(Y − (Xθ + Za))}

= (2πσ2)−JK/2exp{− 1

2σ2
(Y − (Xθ + Za))T (Y − (Xθ + Za))}

Next, we integrate over the random effects to get the marginal mis-specified likeli-
hood.

Pr(Y |X,Z) =

∫
Pr(Y |a,X,Z)f(a|X,Z)da (1)

=

∫
(2πσ2)−JK/2exp{− 1

2σ2
((Y −Xθ)− Za)T ((Y −Xθ)− Za)}

(2π)−(J+1)/2|G|−1/2exp{−1

2
aTG−1a}da

= (2πσ2)−JK/2(2π)−(J+1)/2(τ2γ2J)−1/2exp{− 1

2σ2
(Y −Xθ)T (Y −Xθ)}∫

exp{−1

2
(

1

σ2
(−aTZT (Y −Xθ)− (Y −Xθ)TZa) + aT (ZTZ

1

σ2
+G−1)a)}da

We wish to solve the integral by completing the square and obtaining a MVN( 1
σ2 (ZTZ 1

σ2 +
G−1)−1(ZTY −ZTXθ),(ZTZ 1

σ2 +G−1)−1) pdf for a. Below are some useful facts about
this covariance matrix.

ZTZ
1

σ2
+G−1 =

1

σ2

[
JK K1TJ
K1J KIJ

]
+

[ 1
τ2

0TJ
0J

1
γ2
IJ

]
=

[
JK
σ2 + 1

τ2
K
σ2 1TJ

K
σ2 1J (K

σ2 + 1
γ2

)IJ

]

Since the determinant of the inverse is the inverse of the determinant, we can skip
inverting for now (note that this matrix is invertible and symmetric). Since the matrix
has a 2x2 block structure, we can find the determinant in the following way:
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|ZTZ 1

σ2
+G−1| = |(K

σ2
+

1

γ2
)IJ |(

JK

σ2
+

1

τ2
− K

σ2
1TJ ((

K

σ2
+

1

γ2
)IJ)−1K

σ2
1J)

= (
K

σ2
+

1

γ2
)J(

JK

σ2
+

1

τ2
)− J(

K

σ2
)2(

K

σ2
+

1

γ2
)J−1

So, multiplying and dividing Equation 1 by the term below

|(ZTZ 1

σ2
+G−1)−1|−1/2exp{−1

2
(

1

σ2
(ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ))T (ZTZ

1

σ2
+G−1)

(
1

σ2
(ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ))}

we get:

Pr(Y |X,Z) = (2πσ2)−JK/2(τ2γ2J)−1/2exp{− 1

2σ2
(Y −Xθ)T (Y −Xθ)}

((
K

σ2
+

1

γ2
)J(

JK

σ2
+

1

τ2
)− J(

K

σ2
)2(

K

σ2
+

1

γ2
)J−1)−1/2

exp{1

2
(

1

σ2
)2((ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ))T (ZTY − ZTXθ)}

= (2πσ2)−JK/2(τ2γ2J)−1/2((
K

σ2
+

1

γ2
)J(

JK

σ2
+

1

τ2
)− J(

K

σ2
)2(

K

σ2
+

1

γ2
)J−1)−1/2

exp{− 1

2σ2
(Y −Xθ)T (Y −Xθ)

+
1

2
(

1

σ2
)2(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)}

So the log marginal likelihood is:

log(Pr(Y |X,Z)) = −JK
2
log(2πσ2)− 1

2
log(τ2γ2J) (2)

− 1

2
log((

K

σ2
+

1

γ2
)(
JK

σ2
+

1

τ2
)− J(

K

σ2
)2)

− J − 1

2
log(

K

σ2
+

1

γ2
)− 1

2σ2
(Y −Xθ)T (Y −Xθ)

+
1

2
(

1

σ2
)2(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)

3.4 Score equations

Fixed effects
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Note that we are still keeping all the fixed effects in the vector θ, so this score equation
is a vector also.

∂

∂θ
log(Pr(Y |X,Z)) = − 1

σ2
(−XTY +XTXθ)− (

1

σ2
)2XTZ(ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)

Residual variance

∂

∂σ2
log(Pr(Y |X,Z)) = −JK

2

1

σ2
+

1

2
((
K

σ2
+

1

γ2
)(
JK

σ2
+

1

τ2
)− J(

K

σ2
)2)−1(

K

(σ2)2
)(
J

γ2
+

1

τ2
)

+
J − 1

2
(
K

σ2
+

1

γ2
)−1 K

(σ2)2
+

1

2(σ2)2
(Y −Xθ)T (Y −Xθ)

− (
1

σ2
)3(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)

+
1

2
(

1

σ2
)2(ZTY − ZTXθ)T [

∂

σ2
(ZTZ

1

σ2
+G−1)−1](ZTY − ZTXθ)

Note that ∂
∂xM(x)−1 = −M(x)−1[ ∂∂xM(x)]M(x)−1 and ∂

σ2 (ZTZ 1
σ2 +G−1) = ZTZ −1

(σ2)2
,

so

∂

∂σ2
log(Pr(Y |X,Z)) = −JK

2

1

σ2
+

1

2
((
K

σ2
+

1

γ2
)(
JK

σ2
+

1

τ2
)− J(

K

σ2
)2)−1(

K

(σ2)2
)(
J

γ2
+

1

τ2
)

+
J − 1

2
(
K

σ2
+

1

γ2
)−1 K

(σ2)2
+

1

2(σ2)2
(Y −Xθ)T (Y −Xθ)

− (
1

σ2
)3(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)

+
1

2
(

1

σ2
)2(ZTY − ZTXθ)T [(ZTZ

1

σ2
+G−1)−1ZTZ

1

(σ2)2
(ZTZ

1

σ2
+G−1)−1](ZTY − ZTXθ)

Random effect variances
Similarly, because ∂

τ2
(ZTZ 1

σ2 +G−1) = diag{ −1
(τ2)2

, 0, . . . , 0} and ∂
γ2

(ZTZ 1
σ2 +G−1) =

diag{0, −1
(γ2)2

, . . . , −1
(γ2)2
},
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∂

∂τ2
log(Pr(Y |X,Z)) = −1

2

1

τ2
+

1

2
((
K

σ2
+

1

γ2
)(
JK

σ2
+

1

τ2
)− J(

K

σ2
)2)−1(

1

(τ2)2
)(
K

σ2
+

1

γ2
)

+
1

2
(

1

σ2
)2(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1diag{ 1

(τ2)2
, 0, . . . , 0}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)

∂

∂γ2
log(Pr(Y |X,Z)) = −J

2

1

γ2
+

1

2
((
K

σ2
+

1

γ2
)(
JK

σ2
+

1

τ2
)− J(

K

σ2
)2)−1(

1

(γ2)2
)(
JK

σ2
+

1

τ2
)

+
J − 1

2
(
K

σ2
+

1

γ2
)−1(

1

(γ2)2
) +

1

2
(

1

σ2
)2(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1diag{0, 1

(γ2)2
, . . . ,

1

(γ2)2
}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)

3.5 Expectations

Next, we take expectations of the score equations, with respect to the true distribution of
Y (that is, the correctly specified model). In this case (Normal outcomes, identity link),
we know that θ is unbiased, so E(Y |X,Zt) = E(E(Y |X,Zt, at)) = E(Xθ + Ztat) = Xθ.
We will also make frequent use of the rule E(xTAx) = tr(Acov(x)) + E(x)TAE(x).

Because it occurs so frequently, we will use ξ = (K
σ2 + 1

γ2
)(JK

σ2 + 1
τ2

) − J(K
σ2 )2 as

shorthand.
Many of these expectations involve finding the trace of products of matrices. All

the matrices involved have a convenient block structure, either 2-by-2 blocks or 3-by-3
blocks. Most of the matrix multiplication work is straightforward but lengthy, so is not
described explicitly. However, to aid understanding some useful facts which are used
many times in the calculations are presented below.

(ZTZ
1

σ2
+G−1)−1 =

[
JK
σ2 + 1

τ2
K
σ2 1TJ

K
σ2 1J (K

σ2 + 1
γ2

)IJ

]−1

=

[
(K
σ2 + 1

γ2
)1ξ − K

σ2ξ
1TJ

− K
σ2ξ

1J (K
σ2 + 1

γ2
)−1IJ + (K

σ2 )2((K
σ2 + 1

γ2
)ξ)−11J1TJ

]

(ZTZ
1

σ2
+G−1)−1ZTZ =

[
(K
σ2 + 1

γ2
)1ξ − K

σ2ξ
1TJ

− K
σ2ξ

1J (K
σ2 + 1

γ2
)−1IJ + (K

σ2 )2((K
σ2 + 1

γ2
)ξ)−11J1TJ

] [
JK K1TJ
K1J KIJ

]

=

[
1
γ2

1
ξJK

1
γ2

1
ξK1TJ

1
τ2

1
ξK1J (K

σ2 + 1
γ2

)−1KIJ −K K
σ2

1
γ2

((K
σ2 + 1

γ2
)ξ)−11J1TJ

]
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ZTZtGtZ
T
t Z =

 JK TK
K1J−T 0J−T
K1T K1T

[τ2t 0
0 η2t

] JK TK
K1J−T 0J−T
K1T K1T

T

=

 J2K2τ2t + T 2K2η2t JK2τ2t 1TJ−T (JK2τ2t + TK2η2t )1
T
T

JK2τ2t 1J−T K2τ2t 1J−T1TJ−T K2τ2t 1J−T1TT
(JK2τ2t + TK2η2t )1T K2τ2t 1T1TJ−T K2(τ2t + η2t )1T1TT



Fixed effects

E[
∂

∂θ
log(Pr(Y |X,Z)] = − 1

σ2
(−XTE[Y ] +XTXθ)− (

1

σ2
)2XTZ(ZTZ

1

σ2
+G−1)−1(ZTE[Y ]− ZTXθ)

= − 1

σ2
(−XTXθ +XTXθ)− (

1

σ2
)2XTZ(ZTZ

1

σ2
+G−1)−1(ZTXθ − ZTXθ)

= 0

Residual variance

E[
∂

∂σ2
log(Pr(Y |X,Z))] = −JK

2

1

σ2
(3)

+
1

2
((
K

σ2
+

1

γ2
)(
JK

σ2
+

1

τ2
)− J(

K

σ2
)2)−1(

K

(σ2)2
)(
J

γ2
+

1

τ2
)

+
J − 1

2
(
K

σ2
+

1

γ2
)−1 K

(σ2)2
+

1

2(σ2)2
E[(Y −Xθ)T (Y −Xθ)]

− (
1

σ2
)3E[(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)]

+
1

2
(

1

σ2
)4E[(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1ZTZ(ZTZ

1

σ2
+G−1)−1](ZTY − ZTXθ)]

To solve the first expectation in Equation 3, note that

E[(Y −Xθ)T (Y −Xθ)] = tr{cov(Y )} = tr{ZtGtZTt + σ2t IJK}
= (J − T )Kτ2t + TK(τ2t + η2t ) + JKσ2t

= JKτ2t + TKη2t + JKσ2t

To solve the second expectation in Equation 3, note that
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E[(ZTY − ZTXθ)T (ZTZ
1

σ2
+G−1)−1(ZTY − ZTXθ)] = tr{(ZTZ 1

σ2
+G−1)−1cov(ZTY )}

= tr{(ZTZ 1

σ2
+G−1)−1ZT (ZtGtZ

T
t + σ2t IJK)Z}

= tr{(ZTZ 1

σ2
+G−1)−1ZTZtGtZ

T
t Z}

+ σ2t tr{(ZTZ
1

σ2
+G−1)−1ZTZ}

=
1

γ2
1

ξ
(J2K2τ2t + T 2K2η2t ) + (J − T )K2τ2t

1

τ2ξ

+ T
−K
σ2

1

γ2
((
K

σ2
+

1

γ2
)ξ)−1(JK2τ2t + TK2η2t ) + T (

K

σ2
+

1

γ2
)−1K2(τ2t + η2t )

+ σ2t [JKσ
2(γ2ξ − K

σ2
)(ξ(γ2K + σ2))−1 +

JK

γ2ξ
]

To solve the third expectation in Equation 3, note that

E[(ZTY − ZTXθ)T [(ZTZ
1

σ2
+G−1)−1ZTZ(ZTZ

1

σ2
+G−1)−1](ZTY − ZTXθ)]

= tr{(ZTZ 1

σ2
+G−1)−1ZTZ(ZTZ

1

σ2
+G−1)−1ZTZtGtZ

T
t Z}

+ σ2t tr{(ZTZ
1

σ2
+G−1)−1ZTZ(ZTZ

1

σ2
+G−1)−1ZTZ}

= [Jτ2t + Tη2t ][K
3(
K

σ2
+

1

γ2
)−2]

+ [J2K2τ2t + T 2K2η2t ][
1

τ2
1

ξ2
K(

1

γ2
)2(

K

σ2
+

1

γ2
)−1 − K

σ2
1

ξ
(
K

σ2
+

1

γ2
)−2(

1

γ2
)K

+ (
1

γ2
1

ξ
)2JK +

K

γ2τ2ξ2
] + σ2t [(

1

γ2
1

ξ
)2J2K2 +

JK2

γ2τ2ξ2
+ J((

K

σ2
+

1

γ2
)−2K2

+
1

τ2
1

ξ2
K2(

1

γ2
)− K

σ2
1

ξ
(
K

σ2
+

1

γ2
)−1K2 + JK2(

K

σ2
)2

1

γ2
((
K

σ2
+

1

γ2
)ξ2)−1

+K2(
K

σ2
)2((

K

σ2
+

1

γ2
)2ξ)−1 −K2K

σ2
1

γ2
(
JK

σ2
+

1

τ2
)((

K

σ2
+

1

γ2
)ξ2)−1)]

Random effect variances
We begin with the score equation for the random intercept effect.
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E[
∂

∂τ2
log(Pr(Y |X,Z))] = −1

2

1

τ2
+

1

2
((
K

σ2
+

1

γ2
)(
JK

σ2
+

1

τ2
)− J(

K

σ2
)2)−1(

1

(τ2)2
)(
K

σ2
+

1

γ2
)

+
1

2
(

1

σ2
)2(

1

(τ2)2
)E[(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1diag{1, 0, . . . , 0}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)]

Note that the one expectation in this equation is:

E[(ZTY − ZTXθ)T [(ZTZ
1

σ2
+G−1)−1diag{1, 0, . . . , 0}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)]

= tr{[(ZTZ 1

σ2
+G−1)−1diag{1, 0, . . . , 0}(ZTZ 1

σ2
+G−1)−1]ZTZtGtZ

T
t Z}

+ σ2t tr{[(ZTZ
1

σ2
+G−1)−1diag{1, 0, . . . , 0}(ZTZ 1

σ2
+G−1)−1]ZTZ}

= (
1

γ2
)2

1

ξ2
(J2K2τ2t + T 2K2η2t ) + σ2t JK

1

ξ2
(

1

γ2
)2

The score equation for the random time effect has a similar form.

E[
∂

∂γ2
log(Pr(Y |X,Z))] = −J

2

1

γ2
+

1

2
((
K

σ2
+

1

γ2
)(
JK

σ2
+

1

τ2
)− J(

K

σ2
)2)−1(

1

(γ2)2
)(
JK

σ2
+

1

τ2
)

+
J − 1

2
(
K

σ2
+

1

γ2
)−1(

1

(γ2)2
) +

1

2
(

1

σ2
)2

1

(γ2)2
E[(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1diag{0, 1, . . . , 1}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)]

Note that the one expectation in this equation is:
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E[(ZTY − ZTXθ)T [(ZTZ
1

σ2
+G−1)−1diag{0, 1, . . . , 1}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)]

= tr{[(ZTZ 1

σ2
+G−1)−1diag{0, 1, . . . , 1}(ZTZ 1

σ2
+G−1)−1]ZTZtGtZ

T
t Z}

+ σ2t tr{[(ZTZ
1

σ2
+G−1)−1diag{0, 1, . . . , 1}(ZTZ 1

σ2
+G−1)−1]ZTZ}

= [−K
σ2

1

ξ2
1

τ2
− K

σ2
1

ξ2
(
JK

σ2
+

1

τ2
) + 2(

K

σ2
)2((

K

σ2
+

1

γ2
)2ξ)−1

+ J(
K

σ2
)4((

K

σ2
+

1

γ2
)2ξ2)−1](J2K2τ2t + T 2K2η2t )

+ (
K

σ2
+

1

γ2
)−2K2(Jτ2t + Tη2t )

+ σ2t [−
K

σ2
1

ξ2
1

τ2
JK + JK(

K

σ2
+

1

γ2
)−2 − K

σ2
1

ξ2
(
JK

σ2
+

1

τ2
)JK

+ 2JK(
K

σ2
)2((

K

σ2
+

1

γ2
)2ξ)−1 + J2K(

K

σ2
)4((

K

σ2
+

1

γ2
)2ξ2)−1]

3.6 Final system

Recall that the equation we are trying to solve is Eαt [
∑M

m=1
∂
∂α log pα(Ym|Xm)

∣∣∣
α∗

] = ~0,

and we have just found Eαt
∂
∂α log pα(Ym|Xm) for a general cluster from sequence m

(using notation from the main paper). Using the notation from the derivation above,
the system is:

M∑
m=1

E[
∂

∂σ2
log(Pr(Ym|Xm, Zm))] = 0

M∑
m=1

E[
∂

∂τ2
log(Pr(Ym|Xm, Zm))] = 0

M∑
m=1

E[
∂

∂γ2
log(Pr(Ym|Xm, Zm))] = 0

The only piece of these equations that depends on the sequence is T; from here on,
we’ll stop suppressing the index and call it Tm. Note that each of these equations can be
written as a linear combination of Tm and/or T 2

m. So if we sum each equation over the
sequences and divide by the number of sequences (M), we just need to replace Tm with
1
M

∑M
m=1 Tm and T 2

m with 1
M

∑M
m=1 T

2
m . In other words, the full system of equations is:
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E[
∂

∂σ2
log(Pr(Y |X,Z))]

∣∣∣
T= 1

M

∑M
m=1 Tm,T

2= 1
M

∑M
m=1 T

2
m

= 0

E[
∂

∂τ2
log(Pr(Y |X,Z))]

∣∣∣
T= 1

M

∑M
m=1 Tm,T

2= 1
M

∑M
m=1 T

2
m

= 0

E[
∂

∂γ2
log(Pr(Y |X,Z))]

∣∣∣
T= 1

M

∑M
m=1 Tm,T

2= 1
M

∑M
m=1 T

2
m

= 0

In this case, roots for this equation can be found directly using Mathematica; see
supplemental Mathematica file for demonstration.

4 Treatment-fitted random time case

In this case, we are fitting a model with random treatment and intercept effects, but in
truth the data comes from a model with random time and intercept effects.

4.1 Misspecified model

The misspecified model with random treatment effects is presented below. The fixed
effects remain correctly specified (see Section 2).

Yi = Xiθ + Ziai + εi

Zi = [1JK ,
0K(J−Ti)

1KTi
], dim(JK, 2)

ai = [ui, vi]
T ∼MVN(0, G), dim(2, 1)

G = diag(τ2, η2), dim(2, 2)

εi ∼MVN(0, σ2IJK), dim(JK, 1)

4.2 True model

The correctly specified model with random time effects is presented below. Note the ’t’
subscript, indicating that the matrix or parameter comes from the true model.

Yi = Xiθ + Zitait + εit

12



Zit = [1JK ,
1K

0JK−K
, . . . ,

0JK−K
1K

], dim(JK, J + 1)

ait = [uit, wi1t, . . . , wiJt]
T ∼MVN(0, Gt), dim(J + 1, 1)

Gt = diag(τ2t , γ
2
t , . . . , γ

2
t ), dim(J + 1, J + 1)

εit ∼MVN(0, σ2t IJK), dim(JK, 1)

4.3 Marginal misspecified likelihood

Recall that the equation we are trying to find roots for (Equation 3 in the main paper) is
a sum over sequences, since the marginal likelihood is the same for every cluster within a
sequence. For the next several sections, we’ll be doing computations for a single sequence
- that is, a single cluster within a sequence. To improve readability, the i subscripts in
the notation presented above will be repressed.

Since Y |a,X,Z ∼ MVN(Xθ + Za, σ2I) under the mis-specified model, the condi-
tional mis-specified likelihood is:

Pr(Y |a,X,Z) = (2π)−JK/2|σ2I|−1/2exp{−1

2
(Y − (Xθ + Za))T (σ2I)−1(Y − (Xθ + Za))}

= (2πσ2)−JK/2exp{− 1

2σ2
(Y − (Xθ + Za))T (Y − (Xθ + Za))}

Next, we integrate over the random effects to get the marginal mis-specified likeli-
hood.

Pr(Y |X,Z) =

∫
Pr(Y |a,X,Z)f(a|X,Z)da (4)

=

∫
(2πσ2)−JK/2exp{− 1

2σ2
((Y −Xθ)− Za)T ((Y −Xθ)− Za)}

(2π)−1|G|−1/2exp{−1

2
aTG−1a}da

= (2πσ2)−JK/2(2π)−1(τ2η2)−1/2exp{− 1

2σ2
(Y −Xθ)T (Y −Xθ)}∫

exp{−1

2
(

1

σ2
(−aTZT (Y −Xθ)− (Y −Xθ)TZa) + aT (ZTZ

1

σ2
+G−1)a)}da

We wish to solve the integral by completing the square and obtaining a MVN( 1
σ2 (ZTZ 1

σ2 +
G−1)−1(ZTY −ZTXθ),(ZTZ 1

σ2 +G−1)−1) pdf for a. Below are some useful facts about
this covariance matrix.
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ZTZ
1

σ2
+G−1 =

1

σ2

[
JK TK
TK TK

]
+

[ 1
τ2

0
0 1

η2

]
=

[
JK
σ2 + 1

τ2
TK
σ2

TK
σ2

TK
σ2 + 1

η2

]

Since the determinant of the inverse is the inverse of the determinant, we can skip
inverting for now (note that this matrix is invertible and symmetric). The determinant
is:

|ZTZ 1

σ2
+G−1| = (

JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2

So, multiplying and dividing Equation 4 by the term below

|(ZTZ 1

σ2
+G−1)−1|−1/2exp{−1

2
(

1

σ2
(ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ))T (ZTZ

1

σ2
+G−1)

(
1

σ2
(ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ))}

we get:

Pr(Y |X,Z) = (2πσ2)−JK/2(τ2η2)−1/2exp{− 1

2σ2
(Y −Xθ)T (Y −Xθ)}

((
JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)−1/2

exp{1

2
(

1

σ2
)2((ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ))T (ZTY − ZTXθ)}

= (2πσ2)−JK/2(τ2η2)−1/2((
JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)−1/2

exp{− 1

2σ2
(Y −Xθ)T (Y −Xθ)

+
1

2
(

1

σ2
)2(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)}

So the log marginal likelihood is:
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log(Pr(Y |X,Z)) = −JK
2
log(2πσ2)− 1

2
log(τ2η2) (5)

− 1

2
log((

JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)

− 1

2σ2
(Y −Xθ)T (Y −Xθ)

+
1

2
(

1

σ2
)2(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)

4.4 Score equations

Fixed effects
Note that we are still keeping all the fixed effects in the vector θ, so this score equation

is a vector also.

∂

∂θ
log(Pr(Y |X,Z)) = − 1

σ2
(−XTY +XTXθ)− (

1

σ2
)2XTZ(ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)

Residual variance

∂

∂σ2
log(Pr(Y |X,Z)) = −JK

2

1

σ2
− 1

2
((
JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)−1

(
−2JTK2

(σ2)3
− JK

(σ2)2η2
− KT

(σ2)2τ2
+

2K2T 2

(σ2)3
)

+
1

2(σ2)2
(Y −Xθ)T (Y −Xθ)

− (
1

σ2
)3(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)

+
1

2
(

1

σ2
)2(ZTY − ZTXθ)T [

∂

σ2
(ZTZ

1

σ2
+G−1)−1](ZTY − ZTXθ)

Note that ∂
∂xM(x)−1 = −M(x)−1[ ∂∂xM(x)]M(x)−1 and ∂

σ2 (ZTZ 1
σ2 +G−1) = ZTZ −1

(σ2)2
,

so
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∂

∂σ2
log(Pr(Y |X,Z)) = −JK

2

1

σ2
− 1

2
((
JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)−1

(
−2JTK2

(σ2)3
− JK

(σ2)2η2
− KT

(σ2)2τ2
+

2K2T 2

(σ2)3
)

+
1

2(σ2)2
(Y −Xθ)T (Y −Xθ)

− (
1

σ2
)3(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)

+
1

2
(

1

σ2
)2(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1ZTZ

1

(σ2)2
(ZTZ

1

σ2
+G−1)−1](ZTY − ZTXθ)

Random effect variances
Similarly, because ∂

τ2
(ZTZ 1

σ2 + G−1) = diag{ −1
(τ2)2

, 0} and ∂
η2

(ZTZ 1
σ2 + G−1) =

diag{0, −1
(η2)2
},

∂

∂τ2
log(Pr(Y |X,Z)) = −1

2

1

τ2
+

1

2
((
JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)−1(

1

τ2
)2(

KT

σ2
+

1

η2
)

+
1

2
(

1

σ2
)2(

1

τ2
)2(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1diag{1, 0}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)

∂

∂η2
log(Pr(Y |X,Z)) = −1

2

1

η2
+

1

2
((
JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)−1(

1

η2
)2(

JK

σ2
+

1

τ2
)

+
1

2
(

1

σ2
)2(

1

η2
)2(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1diag{0, 1}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)

4.5 Expectations

Next, we take expectations of the score equations, with respect to the true distribution of
Y (that is, the correctly specified model). In this case (Normal outcomes, identity link),
we know that θ is unbiased, so E(Y |X,Zt) = E(E(Y |X,Zt, at)) = E(Xθ + Ztat) = Xθ.
We will also make frequent use of the rule E(xTAx) = tr(Acov(x)) + E(x)TAE(x).

Because it occurs so frequently, we will use ξ = (KT
σ2 + 1

η2
)(JK

σ2 + 1
τ2

) − (KT
σ2 )2 as

shorthand; note that this is not the same definition of ξ used in the derivation of the
time-fitted random treatment case.

Many of these expectations involve finding the trace of products of matrices. All
the matrices involved have a convenient block structure, either 2-by-2 blocks or 3-by-3
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blocks. Most of the matrix multiplication work is straightforward but lengthy, so is not
described explicitly. However, to aid understanding some useful facts which are used
many times in the calculations are presented below.

(ZTZ
1

σ2
+G−1)−1 =

[
JK
σ2 + 1

τ2
TK
σ2

TK
σ2

TK
σ2 + 1

η2

]−1

=
1

ξ

[
TK
σ2 + 1

η2
−TK
σ2

−TK
σ2

JK
σ2 + 1

τ2

]

(ZTZ
1

σ2
+G−1)−1ZTZ =

1

ξ

[
TK
σ2 + 1

η2
−TK
σ2

−TK
σ2

JK
σ2 + 1

τ2

][
JK TK
TK TK

]

=
1

ξ

[
(J − T )K TK

σ2 + JK 1
η2

TK 1
η2

TK 1
τ2

(J − T )K TK
σ2 + TK 1

τ2

]

ZTZtGtZ
T
t Z =

 JK TK
K1J−T 0J−T
K1T K1T

T [τ2t 0TJ
0J γ2t IJ

] JK TK
K1J−T 0J−T
K1T K1T


=

[
J2K2τ2t + JK2γ2t JTK2τ2t + TK2γ2t
JTK2τ2t + TK2γ2t T 2K2τ2t + TK2γ2t

]

Fixed effects

E[
∂

∂θ
log(Pr(Y |X,Z)] = − 1

σ2
(−XTE[Y ] +XTXθ)− (

1

σ2
)2XTZ(ZTZ

1

σ2
+G−1)−1(ZTE[Y ]− ZTXθ)

= − 1

σ2
(−XTXθ +XTXθ)− (

1

σ2
)2XTZ(ZTZ

1

σ2
+G−1)−1(ZTXθ − ZTXθ)

= 0

Residual variance
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E[
∂

∂σ2
log(Pr(Y |X,Z))] = −JK

2

1

σ2
− 1

2
((
JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)−1 (6)

(
−2JTK2

(σ2)3
− JK

(σ2)2η2
− KT

(σ2)2τ2
+

2K2T 2

(σ2)3
)

+
1

2(σ2)2
E[(Y −Xθ)T (Y −Xθ)]

− (
1

σ2
)3E[(ZTY − ZTXθ)T (ZTZ

1

σ2
+G−1)−1(ZTY − ZTXθ)]

+
1

2
(

1

σ2
)4E[(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1ZTZ(ZTZ

1

σ2
+G−1)−1](ZTY − ZTXθ)]

To solve the first expectation in Equation 6, note that

E[(Y −Xθ)T (Y −Xθ)] = tr{cov(Y )} = tr{ZtGtZTt + σ2t IJK}
= JK(τ2t + γ2t ) + JKσ2t

= JK(τ2t + γ2t + σ2t )

To solve the second expectation in Equation 6, note that

E[(ZTY − ZTXθ)T (ZTZ
1

σ2
+G−1)−1(ZTY − ZTXθ)] = tr{(ZTZ 1

σ2
+G−1)−1cov(ZTY )}

= tr{(ZTZ 1

σ2
+G−1)−1ZT (ZtGtZ

T
t + σ2t IJK)Z}

= tr{(ZTZ 1

σ2
+G−1)−1ZTZtGtZ

T
t Z}

+ σ2t tr{(ZTZ
1

σ2
+G−1)−1ZTZ}

=
1

ξ
((
TK

σ2
+

1

η2
)(J2K2τ2t + JK2γ2t ) + 2(

−TK
σ2

)(JTK2τ2t + TK2γ2t )

+ (
JK

σ2
+

1

τ2
)(T 2K2τ2t + TK2γ2t ))

+ σ2t
1

ξ
(2(J − T )K

TK

σ2
+ JK

1

η2
+ TK

1

τ2
)

To solve the third expectation in Equation 6, note that
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E[(ZTY − ZTXθ)T [(ZTZ
1

σ2
+G−1)−1ZTZ(ZTZ

1

σ2
+G−1)−1](ZTY − ZTXθ)]

= tr{(ZTZ 1

σ2
+G−1)−1ZTZ(ZTZ

1

σ2
+G−1)−1ZTZtGtZ

T
t Z}

+ σ2t tr{(ZTZ
1

σ2
+G−1)−1ZTZ(ZTZ

1

σ2
+G−1)−1ZTZ}

=
1

ξ2
(((J − T )

T 2K3

(σ2)2
+ 2(J − T )K

TK

σ2
1

η2
+ JK

1

(η2)2
)(J2K2τ2t + JK2γ2t )

+ 2(TK
1

τ2
1

η2
− (J − T )

T 2K3

(σ2)2
)(JTK2τ2t + TK2γ2t )

+ ((J − T )
JTK3

(σ2)2
+ 2(J − T )K

TK

σ2
1

τ2
+ TK

1

(τ2)2
)(T 2K2τ2t + TK2γ2t ))

+ σ2t
1

ξ2
(2(J − T )2

T 2K4

(σ2)2
+ 2(J − T )JK2TK

σ2
1

η2
+ J2K2 1

(η2)2

+ 2T 2K2 1

τ2
1

η2
+ 2(J − T )K

T 2K2

σ2
1

τ2
+ T 2K2 1

(τ2)2
)

Random effect variances
We begin with the score equation for the random intercept effect.

E[
∂

∂τ2
log(Pr(Y |X,Z))] = −1

2

1

τ2
+

1

2
((
JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)−1(

1

τ2
)2(

KT

σ2
+

1

η2
)

+
1

2
(

1

σ2
)2(

1

τ2
)2E[(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1diag{1, 0}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)]

Note that the one expectation in this equation is:
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E[(ZTY − ZTXθ)T [(ZTZ
1

σ2
+G−1)−1diag{1, 0}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)]

= tr{[(ZTZ 1

σ2
+G−1)−1diag{1, 0}(ZTZ 1

σ2
+G−1)−1]ZTZtGtZ

T
t Z}

+ σ2t tr{[(ZTZ
1

σ2
+G−1)−1diag{1, 0}(ZTZ 1

σ2
+G−1)−1]ZTZ}

=
1

ξ2
((
TK

σ2
+

1

η2
)2(J2K2τ2t + JK2γ2t )

− 2(
TK

σ2
+

1

η2
)
TK

σ2
(JTK2τ2t + TK2γ2t ) + (

TK

σ2
)2(T 2K2τ2t + TK2γ2t ))

+ σ2t
1

ξ2
(JK(

TK

σ2
+

1

η2
)2 − (

TK

σ2
+

2

η2
)
T 2K2

σ2
)

The score equation for the random treatment effect has a similar form.

E[
∂

∂η2
log(Pr(Y |X,Z))] = −1

2

1

η2
+

1

2
((
JK

σ2
+

1

τ2
)(
TK

σ2
+

1

η2
)− (

TK

σ2
)2)−1(

1

η2
)2(

JK

σ2
+

1

τ2
)

+
1

2
(

1

σ2
)2(

1

η2
)2E[(ZTY − ZTXθ)T

[(ZTZ
1

σ2
+G−1)−1diag{0, 1}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)]

Note that the one expectation in this equation is:

E[(ZTY − ZTXθ)T [(ZTZ
1

σ2
+G−1)−1diag{0, 1}(ZTZ 1

σ2
+G−1)−1](ZTY − ZTXθ)]

= tr{[(ZTZ 1

σ2
+G−1)−1diag{0, 1}(ZTZ 1

σ2
+G−1)−1]ZTZtGtZ

T
t Z}

+ σ2t tr{[(ZTZ
1

σ2
+G−1)−1diag{0, 1}(ZTZ 1

σ2
+G−1)−1]ZTZ}

=
1

ξ2
((
TK

σ2
)2(J2K2τ2t + JK2γ2t )− 2

TK

σ2
(
JK

σ2
+

1

τ2
)(JTK2τ2t + TK2γ2t )

+ (
JK

σ2
+

1

τ2
)2(T 2K2τ2t + TK2γ2t )

+ σ2t (
−T 2K2

σ2
(
JK

σ2
+

2

τ2
) + TK(

JK

σ2
+

1

τ2
)2))

4.6 Final system

Recall that the equation we are trying to solve is Eαt [
∑M

m=1
∂
∂α log pα(Ym|Xm)

∣∣∣
α∗

] = ~0,

and we have just found Eαt
∂
∂α log pα(Ym|Xm) for a general cluster from sequence m
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(using notation from the main paper). Using the notation from the derivation above,
the system is:

M∑
m=1

E[
∂

∂σ2
log(Pr(Ym|Xm, Zm))] = 0

M∑
m=1

E[
∂

∂τ2
log(Pr(Ym|Xm, Zm))] = 0

M∑
m=1

E[
∂

∂γ2
log(Pr(Ym|Xm, Zm))] = 0

The only piece of these equations that depends on the sequence is T; from here on,
we’ll stop suppressing the index and call it Tm. Unfortunately, it is not straightforward
to write this system as a simple function of Tm’s as we did in the time-fitted random
treatment case. But since Tm is the only term that varies between sequences, the full
system of equations can be written as:

M∑
m=1

E[
∂

∂σ2
log(Pr(Y |X,Z))]

∣∣∣
T=Tm

= 0

M∑
m=1

E[
∂

∂τ2
log(Pr(Y |X,Z))]

∣∣∣
T=Tm

= 0

M∑
m=1

E[
∂

∂γ2
log(Pr(Y |X,Z))]

∣∣∣
T=Tm

= 0

Two roots exist which are not functions of Tm but cause each sequence-specific piece
to be zero. Any other roots can be found numerically. See supplemental Mathematica
file for closed-form roots and supplemental R file for numerical solutions.
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