Supplementary Material for "Two-step hypothesis testing to detect gene-environment interactions in a genome-wide scan with a survival endpoint"

Eric S. Kawaguchi, Gang Li, Juan Pablo Lewinger, W. James Gauderman

Proof of Theorem 1

Let $\hat{\boldsymbol{\omega}} = (\hat{\omega}_G, \hat{\omega}_E)$ and $\hat{\boldsymbol{\gamma}} = (\hat{\gamma}_G, \hat{\gamma}_E, \hat{\gamma}_{G \times E}) = (\hat{\boldsymbol{\gamma}}_1, \hat{\gamma}_{G \times E})$. Under the null hypothesis $H_0 : \gamma_{G \times E} = 0$, $\boldsymbol{\gamma}_0 = (\gamma_G, \gamma_E, 0) = (\boldsymbol{\gamma}_1, 0)$, where $\boldsymbol{\gamma}_1 = (\gamma_G, \gamma_E)^T$. Suppose the regularity conditions in Andersen and Gill (1982) hold. Then we have

$$\sqrt{n}(\hat{\boldsymbol{\omega}} - \boldsymbol{\gamma}_1) = I_{11}^{-1} \mathbf{U}_1 + o_p(1),$$

where \mathbf{U}_1 is the vector of derivatives of the log-partial likelihood of (3) with respect to ω and $I_{11} = E(\mathbf{U}_1\mathbf{U}_1^T)$. Furthermore,

$$\sqrt{n}(\hat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}_0) = \sqrt{n} \begin{pmatrix} \hat{\boldsymbol{\gamma}}_1 - \boldsymbol{\gamma}_1 \\ \hat{\boldsymbol{\gamma}}_{G \times E} - 0 \end{pmatrix} = \begin{bmatrix} I_{11} & I_{21} \\ I_{21} & I_{22} \end{bmatrix}^{-1} \begin{pmatrix} \mathbf{U}_1 \\ \mathbf{U}_2 \end{pmatrix} + o_p(1)$$

where $I_{jk} = E(U_j U_k^T)$ for j, k = 1, 2 and where \mathbf{U}_1 and \mathbf{U}_2 are the vector of derivatives of the log-partial likelihood of (1) with respect to γ_1 and $\gamma_{G \times E}$, respectively. Using the properties of symmetric block matrices,

$$\sqrt{n} \begin{pmatrix} \hat{\gamma}_1 - \gamma_1 \\ \hat{\gamma}_{G \times E} - 0 \end{pmatrix} = \begin{bmatrix} (I_{11} - I_{12}I_{22}^{-1}I_{21})^{-1} & -(I_{11} - I_{12}I_{22}^{-1}I_{21})^{-1}I_{12}I_{22}^{-1} \\ -(I_{22} - I_{21}I_{11}^{-1}I_{12})^{-1}I_{21}I_{11}^{-1} & (I_{22} - I_{21}I_{11}^{-1}I_{12})^{-1} \end{bmatrix} \begin{pmatrix} \mathbf{U}_1 \\ \mathbf{U}_2 \end{pmatrix} + o_p(1)$$

Now

$$Cov\{\sqrt{n}(\hat{\omega} - \gamma_{1}), \sqrt{n}(\hat{\gamma}_{G \times E} - 0)\} = Cov\{I_{11}^{-1}\mathbf{U}_{1}, -(I_{22} - I_{21}I_{11}^{-1}I_{12})^{-1}I_{21}I_{11}^{-1}\mathbf{U}_{1} \\ + (I_{22} - I_{21}I_{11}^{-1}I_{12})^{-1}\mathbf{U}_{2}\} + o_{p}(1) \\ = -I_{11}^{-1}E(\mathbf{U}_{1}\mathbf{U}_{1}^{T})\{(I_{22} - I_{21}I_{11}^{-1}I_{12})^{-1}I_{21}I_{11}^{-1}\}^{T} \\ + I_{11}^{-1}E(\mathbf{U}_{1}\mathbf{U}_{2}^{T})\{(I_{22} - I_{21}I_{11}^{-1}I_{12})^{-1}\}^{T} + o_{p}(1) \\ \xrightarrow{p} - I_{11}^{-1}I_{12}\{(I_{22} - I_{21}I_{11}^{-1}I_{12})^{-1}\}^{T} \\ + I_{11}^{-1}I_{12}\{(I_{22} - I_{21}I_{11}^{-1}I_{12})^{-1}\}^{T} \\ = \mathbf{0}.$$

Therefore $\hat{\boldsymbol{\omega}}$ and $\hat{\gamma}_{G \times E}$ are asymptotically independent and the proof is complete.

If one is interested in including subject-level adjustment covariates, V, to the analysis, then the results of our theorem will also hold as long as V is included in both (3) and (1).

S1 Additional Tables and Figures

Table S1: Estimated Type I error rates for tests of $G \times E$ interaction across several parameter settings under model misspecification. Each estimate of Type I error is based on the proportion of 10,000 replicate datasets for which the indicated procedure identified at least one statistically significant result (at the FWER = 0.05) among the M = 10,000 biomarkers. For the subset screening step, a filtering statistic of $\alpha_1 = 0.05$ was used. For the weighted Bonferroni test, an initial bin size of B = 5 was used. The data were generated based on the following model: $h(t|G, E, V) = h_0(t) \exp\{G \times \gamma_G + E \times \gamma_E + V \times \gamma_V + (G \times E)\gamma_{G \times E}\}$, where $\gamma_G = 0, \gamma_E = \log(0.6)$, and $\gamma_{G \times E} = 0$. Categorical: $V \in \{0, 1, 2, 3\}$ with equal probability; Continuous: $V \sim N(0, 1)$; Uniform: $V \sim U(0, 1)$. See Section 3.2 in the main text for details on the simulation settings.

		Standard	Two-Step Methods			
			mG	$ G \times E $	cG	$G \times E$
V	γ_V	GWIS	Subset	Weighted	Subset	Weighted
Continuous	$\log(1.4)$	0.053	0.078	0.093	0.050	0.050
	$\log(1.2)$	0.054	0.089	0.107	0.053	0.050
	$\log(0.8)$	0.051	0.081	0.095	0.052	0.048
	$\log(0.6)$	0.053	0.070	0.076	0.052	0.051
	$\log(0.4)$	0.052	0.059	0.064	0.053	0.050
Uniform	$\log(1.4)$	0.054	0.088	0.108	0.052	0.049
	$\log(1.2)$	0.054	0.087	0.110	0.051	0.050
	$\log(0.8)$	0.050	0.085	0.098	0.052	0.047
	$\log(0.6)$	0.052	0.079	0.093	0.051	0.049
	$\log(0.4)$	0.053	0.071	0.079	0.050	0.048
Categorical	$\log(1.4)$	0.051	0.081	0.103	0.054	0.054
	$\log(1.2)$	0.052	0.089	0.103	0.056	0.051
	$\log(0.8)$	0.052	0.073	0.084	0.049	0.048
	$\log(0.6)$	0.048	0.058	0.060	0.050	0.051
	$\log(0.4)$	0.051	0.050	0.052	0.049	0.050

Table S2: Descriptive statistics of the taxane-anthracycline study. Data collected from the Taxane + Anthracycline and Anthracycline only study were obtained from GSE25066 and GSE16446, respectively. Age and tumor grade were the only two characteristics that overlapped and were comparable between both studies.

	Taxane + Anthracycline	Anthracycline only
Ν	507	107
5-year DFS	$0.73\ (0.68,\ 0.78)$	$0.75 \ (0.65, \ 0.85)$
Age (> 50)	41 (38%)	231~(46%)
Tumor Grade		
1	2(2%)	32~(6%)
2	19 (18%)	179(35%)
3	81 (75%)	259~(52%)
NA	5 (5%)	37~(7%)
HER2 Status		
Positive	6(1%)	29~(27%)
Negative	485 (95%)	53~(49%)
Unknown	17 (4%)	25(24%)
ErbB2		
Positive	29~(6%)	27~(25%)
Negative	479 (95%)	80 (75%)

Figure S1: Power comparison between the standard GWIS approach and the $cG|G \times E$ two-step GWIS when $\gamma = (\log(1.2), \log(0.6), \gamma_{G \times E})$ with $\gamma_{G \times E} \in (\log(0.45), \log(0.60))$. See Section 3.2 in the main text for details of the simulation setup (Standard GWIS - Solid Red Line; $cG|G \times E$ with weighted screening - Dashed Green Line; $mG|G \times E$ with weighted screening - Dashed Blue Line).

Figure S2: Kaplan-Meier curves comparing RNASE4-treatment effects on distant relapse-free survival. RNASE4 gene expression levels were divided into tertiles; A) AKAP9 levels ≤ -0.56 ; B) AKAP9 levels (-0.567, 0.290); C) AKAP9 levels ≥ 0.290 . P-values are calculated using an unweighted log-rank test.

Figure S3: Hierarchically clustered correlation plot of the 70 gene expression levels that were included in Bins 1-4 using the weighted hypothesis testing approach.