# Nuclear translocation of p85β promotes tumorigenesis of *PIK3CA* helical domain mutant cancer



#### Figure S1. p85β disassociates from p110α helical domain mutated PI3K complex

(a) Quantification of Western blots shown in Fig 1b by Image J.

(b) Quantification of Western blot shown in Fig 1c by Image J.

(c) Quantification of Western blot shown in Fig 1d by Image J.

(d & d) *PIK3CA* helical domain mutant cells have more p110-free p85 $\beta$ . (d) Cell lysates were immunoprecipitated with both anti-p110 $\alpha$  and anti-p110 $\beta$  antibodies and blotted with indicated antibodies. Pre-IP indicates cell lysates before immunoprecipitation; Post-IP indicates cell lysates after immunoprecipitation; Wash indicates buffers after washing beads; IP: p110 $\alpha$ +p110 $\beta$  indicates immune complexes on the beads after immunoprecipitation. (e) Indicated cell lysates were fractionated with a Sepharose 6B column. The indicated elution fractions were blotted with the indicated antibodies, and the intensities of each protein at the indicated fractions were quantified with the Image J software.

(f) Quantification of Western blot shown in Fig 1f by Image J.

(g) Quantification of Western blot shown in Fig 1g by Image J.

(h) Quantification of Western blot shown in Fig 1h by Image J.

(i) p85 $\beta$  disassociates from PI3K complexes in *PIK3CA* helical domain mutant cells. Cell lysates from indicated cell lines were immunoprecipitated with an anti-p110 $\alpha$  antibody and blotted with indicated antibodies.

The student's *t*-test (two-tailed) was used for statistical analyses. Data are presented as mean  $\pm$  SEM of three independent experiments. Source data are provided as a Source Data file.



| PIK3CA | E545K | E545K | E545K | E542K     | WT   | H1047R | H1047R | WT    |
|--------|-------|-------|-------|-----------|------|--------|--------|-------|
| PTEN   | WT    | NA    | WT    | NA        | WT   | WT     | WT     | WT    |
| K-Ras  | G13D  | WT    | Q61H  | Q61L      | G13D | WT     | WT     | G12V  |
| BRAF   | WT    | WT    | WT    | NA        | WT   | WT     | V600E  | WT    |
| TP53   | WT    | NA    | WT    | T118Qfs*5 | WT   | L194F  | WT     | R273H |
| CTNNB1 | WT    | NA    | WT    | NA        | WT   | WT     | K312K  | NA    |

# Figure S2. Depletion of p85β specifically impairs the growth of cancer cells with a *PIK3CA* helical domain mutation.

(a) *PIK3R2* expression levels are higher in tumors compared to corresponding non-tumor tissue (NT). The RNA-seq data of tumors and matched non-tumor tissue were downloaded from the TCGA website. COAD: colon adenocarcinoma; BLCA: bladder carcinoma; UCEC: endometrial carcinoma; BRCA: breast cancer; FPKM: fragments per kilobase of exon per million reads mapped.

(**b-g**) Knockdown of p85 $\beta$  impair the growth of cancer cells a *PIK3CA* a helical domain mutation (E545K, or E542K), but not cells with a *PIK3CA* H1047R mutation or wild-type *PIK3CA*. p85 $\beta$  was knocked down with siRNA in the indicated cell lines, and the cells were assayed for: Western blot analyses of p85 $\beta$  protein (a, e); cell proliferation (c, f); colony formation (d, g).

(h) Mutation status of the indicated genes in cell lines used in this study. The data were obtained from COSMIC. NA: the indicated information is not available.

The student's *t*-test (two-tailed) was used for statistical analyses. Data are presented as mean  $\pm$  SEM of three independent experiments. Source data are provided as a Source Data file.







#### Figure S3. *PIK3CA* E545K mutation promotes the nuclear translocation of p85β.

(a & b) Knockout or overexpression of p85 $\beta$  have no impact on p110 stability and AKT signaling. The parental and p85 $\beta$  KO cells were grown in 6-well plates. After serum starvation (16 hours), cells were treated with insulin (1µg/ml for 15 minutes) or EGF (200 ng/ml for 15 minutes). Cell lysates were blotted with the indicated antibodies (a). Overexpression of p85 $\alpha$ , but not p85 $\beta$ , stabilizes p110 $\alpha$  protein and increases phosphorylation of AKT. DLD1 *PIK3CA* E545K-only cells were transfected with HA-tagged p85 $\beta$  or p85 $\alpha$ . Three days after transfection, lysates from indicated cell lines were harvested and blotted with indicated antibodies (b).

(c) p85 $\beta$  is localized in the nucleus in *PIK3CA* E545K mutant cells, but not in *PIK3CA* WT cells. Cells of the indicated genotypes were stained with antibodies against p85 $\beta$  and lamin B and DAPI. Scale bar = 10 $\mu$ m.

(d & e) Knockout of BRD7 abolishes nuclear translocation of p85 $\alpha$  but not p85 $\beta$ . BRD7 gene was knocked out in DLD cells using the CRISPR/Cas9 system. DLD1 cells and BRD7 KO cells were fractionated and blotted with indicated antibodies (d). Quantification of Western blots is shown in Figure S3C by Image J (e).

(f) SW480 was transfected with FLAG-tagged wild-type *PIK3CA*, *PIK3CA* H1047R, or E545K mutant construct. Three days post-transfection, cell lysates were fractionated and blotted with indicated antibodies.

(g) Immunohistochemistry images of p85 $\beta$  staining in colorectal tumors with *PIK3CA* E545K mutation, wild-type *PIK3CA*, or *PIK3CA* H1047R mutation. Scale bar = 20  $\mu$ m.

(h) Ectopically expressed p85 $\beta$  is localized in the nucleus when it is co-expressed with *PIK3CA*/p110 $\alpha$  E545K, but not co-expressed with WT *PIK3CA*/p110 $\alpha$  or *PIK3CA*/p110 $\alpha$  H1047R. A construct expressing p85 $\beta$ -mCherry fusion protein was co-expressed with p110 $\alpha$  E545K-GFP, WT p110 $\alpha$ -GFP, or p110 $\alpha$  H1047R-GFP in SW480 cells, which harbor WT *PIK3CA*. Cells were imaged at the indicated time points. Scale bars = 10 µm.

The student's *t*-test (two-tailed) was used for statistical analyses. Data are presented as mean  $\pm$  SEM of three independent experiments. Source data are provided as a Source Data file.



#### Figure S4. Nuclear localization signal (NLS) is critical for nuclear translocation of p85β.

(a) The p85 $\beta$  NLS drives nuclear localization of GFP. The WT p85 $\beta$  NLS or p85 $\beta$  NLS mutant were fused with GFP, expressed in SW480 cells, and visualized under a fluorescent microscope. Scale bar = 10 $\mu$ m.

(b) The p85 $\beta$  NLS mutant does not impact its interaction with p110 $\alpha$  and p110 $\beta$ . The DLD1 *PIK3CA* E545K-only p85 $\beta$  KO cells were transfected with either HA-tagged p85 $\beta$  or HA-tagged p85 $\beta$ <sup>KR-AA</sup>. Stable expression clones were selected. Cell lysates were immunoprecipitated with anti-HA agarose and blotted with the indicated antibodies.

(c & d) NLS of p85 $\beta$  is critical for its nuclear translocation. The indicated cells were fractionated and blotted with indicated antibodies (c). The p85 $\beta$  subcellular localization in the indicated cell lines was evaluated by immunofluorescent staining (d). Scale bar = 10 $\mu$ m.

(e & f) Reconstitution of wild-type p85 $\beta$ , but not the p85 $\beta^{KR-AA}$  mutant, rescues growth defects caused by p85 $\beta$  depletion in DLD1 *PIK3CA* E545K cells. The growth curve (d) and colony formation (e) of indicated cell lines are shown.

(g) KR-AA mutation has no impact on  $p85\beta$ -p110 $\alpha$  interaction: the indicated FLAG-tagged p110 $\alpha$  and HA-tagged p85 $\beta$  constructions were co-transfected into 293T cells. Cell lysates were immunoprecipitated with anti-HA agarose and then blotted with indicated antibodies.

Statistical analyses, two-way ANOVA was used for e, and student's *t*-test (two-tailed) was used for f. Data are presented as mean  $\pm$  SEM of three independent experiments. Source data are provided as a Source Data file.



**Figure S5. Nuclear p85β stabilizes EZH1/EZH2 to enhance H3K27me3 to regulate gene expression**. (a) Pathway analysis of the RNA-seq data is shown in Figure 5a. (b) List of known tumor-suppressor genes that are up-regulated and known oncogenes that are down-regulated in the p85β NLS mutant cells. (c) Reconstitution of WT p85β, but not the NLS mutant, restores EZH1, EZH2, and H3K27me3 in p85β knockout cells. DLD1 *PIK3CA* E545K-only p85β knockout cells were transfected with the indicated constructs. Cell lysates were blotted with the indicated antibodies. (d) Knockout of p85β has no effect on mRNA levels of EZH1 and EZH2. Expression of EZH1 and EZH2 in DLD1 *PIK3CA* E545K-only and DLD1 *PIK3CA* E545K-only p85β knockout E545K-only cells. DLD1 E545K-only and its p85β knockout derivative cells were treated with cycloheximide (CHX) for the indicated times. Cell lysates were blotted with the indicated antibodies. Western blots are shown in the upper panel (e), and quantification of EZH1 and EZH2 protein levels by imageJ are shown in the lower panel (f). Similar results have been repeated twice. (g) ChIP-PCR of H3K27me3 in the promoter region of the DLG2 gene in parental DLD1 and p85β NLS mutant KI cells. (h) ChIP-PCR of H3K27me3 in heterochromatin regions in parental DLD1 and p85β NLS mutant KI cells. (A) ChIP-PCR of H3K27me3 in heterochromatin regions in parental DLD1 and p85β NLS mutant KI cells. (h) ChIP-PCR of H3K27me3 in heterochromatin regions in parental DLD1 and p85β NLS mutant KI cells. (h) ChIP-PCR of H3K27me3 in heterochromatin regions in parental DLD1 and p85β NLS mutant KI cells. (h) ChIP-PCR of H3K27me3 in heterochromatin regions in parental DLD1 and p85β NLS mutant KI cells. (h) ChIP-PCR of H3K27me3 in heterochromatin regions in parental DLD1 and p85β NLS mutant KI cells. (h) ChIP-PCR of H3K27me3 in heterochromatin regions in parental DLD1 and p85β NLS mutant KI cells. (h) ChIP-PCR of H3K27me3 in heterochromatin regions in parental DLD1 and p85β NLS mutant KI cells. (h) ChIP-PCR of H3K27me3 in heteroc

10; Alu chr19: Alu sequences on chromosome 19; chr7q: the telomeric TTAGGC repeats at the chromosome 7q; TSH2B: the promoter region of testis-specific histone 2B variant; GAPDH: the promoter region of GAPDH (negative control). The student's *t*-test (two-tailed for d&g, one-tailed for h) was used for statistical analyses. Data are presented as mean  $\pm$  SEM of three (d&g) or two (h) independent experiments. Source data are provided as a Source Data file.



#### Figure S6. Nuclear p85β increases tri-methylation of H3K27 by stabilizing EZH1/2 proteins.

(a) Nuclear p85β interacts with USP7, EZH1, and EZH2. DLD1 cells were lysed and immunoprecipitated (IP) with either an anti-EZH1 or an anti-EZH2 antibody, then blotted with indicated antibodies.

**(b)** Nuclear p85β interacts with USP7, EZH1, and EZH2 only in cells with a *PIK3CA* helical domain mutation (H460), but not in cells with either WT *PIK3CA* (SW480), or a *PIK3CA* H1047R mutation (T47D and RKO).



**Figure S7**. (**a** to **g**) Body weights of mice treated were maintained during the course of treatment shown in Figure 7. (**h**) Synergistic analyses of the drug combination on various CRC models shown in Figure 7. Source data are provided as a Source Data file.

| 100     Fg.1b     Fg.1b     Fg.1b     Fg.1b     Fg.1b     Fg.1b     Fg.1c     Fg.1c <t< th=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100 -     Fg ff     100 -     100 -     100 -     100 -     100 -     100 -     100 -     100 -     100 -     100 -     100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 190     Fig2b       140     Fig2b       140     Fig2b       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100       100     100        100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100       Fg.35       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FQ.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HEB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 100     100     100     FB 50     100 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $140 - \mathbf{F}_0 4c$ $140 - \mathbf{F}$ |
| 100     Fig.4c     100     Fig.4c       70     70     70       60     AXT       40     Pair Mark       100     Fig.9c and 56c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |





Figure S8. Original Western Blot images.

| Gene symbol | Gene name                                                |
|-------------|----------------------------------------------------------|
| DLG2        | discs large MAGUK scaffold protein 2                     |
| SLC6A15     | solute carrier family 6 member 15                        |
| RAB3C       | RAB3C, member RAS oncogene family                        |
| GFRA1       | GDNF family receptor alpha 1                             |
| CPNE4       | copine 4                                                 |
| NPTX1       | neuronal pentraxin 1                                     |
| FLT4        | fms related tyrosine kinase 4                            |
| ZDBF2       | zinc finger DBF-type containing 2                        |
| PCK1        | phosphoenolpyruvate carboxykinase 1                      |
| SATB1       | SATB homeobox 1                                          |
| PRICKLE1    | prickle planar cell polarity protein 1                   |
| SLC44A1     | solute carrier family 44 member 1                        |
| JAM3        | junctional adhesion molecule 3                           |
| LRRC58      | leucine rich repeat containing 58                        |
| MAST4       | microtubule associated Ser/Thr kinase family member 4    |
| AUTS2       | activator of transcription and developmental regulator   |
| ISM2        | isthmin 2                                                |
| TAB2        | TGF-beta activated kinase 1 (MAP3K7) binding protein 2   |
| HELB        | DNA helicase B                                           |
| VCAN        | versican                                                 |
| CLDN12      | claudin 12                                               |
| VSNL1       | visinin like 1                                           |
| TRIM36      | tripartite motif containing 36                           |
| TCF4        | transcription factor 4                                   |
| SCN8A       | sodium voltage-gated channel alpha subunit 8             |
| PIP5K1B     | phosphatidylinositol-4-phosphate 5-kinase type 1 beta    |
| PTPN3       | protein tyrosine phosphatase, non-receptor type 3        |
| ENPP1       | ectonucleotide pyrophosphatase/phosphodiesterase 1       |
| TMTC1       | transmembrane and tetratricopeptide repeat containing 1  |
| RHOBTB1     | Rho related BTB domain containing 1                      |
| SMARCA2     | SWI/SNF related, matrix associated, member 2             |
| PLEKHG1     | pleckstrin homology and RhoGEF domain containing G1      |
| RABGAP1L    | RAB GTPase activating protein 1 like                     |
| PLAGL1      | PLAG1 like zinc finger 1                                 |
| NDRG4       | NDRG family member 4                                     |
| RUNX2       | runt related transcription factor 2                      |
| MYO10       | myosin X                                                 |
| LTBP1       | latent transforming growth factor beta binding protein 1 |

## Table S1. Intersection of differentially expressed genes (DEGs) list from ChIP-seq and RNA-seq profiles

## Table S2. List of reagents

| Antibodies and Reagents                                | Source                    | Identifier                                               |
|--------------------------------------------------------|---------------------------|----------------------------------------------------------|
| Antibodies                                             |                           |                                                          |
| Mouse monoclonal antibody anti-FLAG                    | Sigma-Aldrich             | Cat# F1804, RRID:AB_262044                               |
| Mouse monoclonal antibody anti-Myc                     | Santa Cruz                | Cat# sc-40, RRID:AB_627268                               |
| Mouse polyclonal antibody anti-HA                      | Santa Cruz                | Cat# sc-805, RRID:AB_631618                              |
| Rabbit monoclonal antibody anti-p110 alpha             | Cell Signaling Technology | Cat# 4249, RRID:AB_2165248                               |
| Rabbit monoclonal antibody anti-p110 beta              | Cell Signaling Technology | Cat# 3011, RRID:AB_2165246                               |
| Rabbit monoclonal antibody anti-p85 alpha              | Abcam                     | Cat# ab191606                                            |
| Rabbit monoclonal antibody anti-p85 alpha<br>pY607     | Abcam                     | Cat# ab182651, RRID:AB_2756407                           |
| Rabbit monoclonal antibody anti-p85 beta               | Abcam                     | Cat# ab180967                                            |
| Rabbit monoclonal antibody anti-p85 beta               | Abcam                     | Cat# ab138364                                            |
| Rabbit polyclonal antibody anti-IRS1                   | Proteintech               | Cat# 17509-1-AP. RRID:AB 10596914                        |
| Rabbit polyclonal antibody anti-BRD7                   | Proteintech               | Cat# 51009-2-AP. RRID:AB 2259226                         |
| Rabbit polyclonal antibody anti-β-tubulin              | Bioss                     | Cat# bs-4511R, RRID:AB 11114300                          |
| Rabbit monoclonal antibody anti-Lamin B                | Bioss                     | Cat# bsm-33010M                                          |
| Rabbit monoclonal antibody anti-AKT                    | Cell Signaling Technology | Cat# 13038, RRID:AB 2629447                              |
| pT308                                                  |                           |                                                          |
| Rabbit monoclonal antibody anti-AKT pS473              | Cell Signaling Technology | Cat# 4060, RRID:AB_2315049                               |
| Rabbit monoclonal antibody anti-AKT                    | Cell Signaling Technology | Cat# 9272, RRID:AB_329827                                |
| Rabbit polyclonal antibody anti-GSK-3β pS9             | Cell Signaling Technology | Cat# 9336, RRID:AB_331405                                |
| Rabbit monoclonal antibody anti-GSK-3β                 | Cell Signaling Technology | Cat# 9315, RRID:AB_490890                                |
| Rabbit monoclonal antibody anti-FoxO1<br>pT24          | Cell Signaling Technology | Cat# 9464, RRID:AB_329842                                |
| Mouse monoclonal antibody anti-FoxO1                   | Millipore                 | Cat# 3012276                                             |
| Rabbit monoclonal antibody anti-mTOR<br>pS2448         | Cell Signaling Technology | Cat# 5536, RRID:AB_10691552                              |
| Rabbit monoclonal antibody anti-mTOR                   | Cell Signaling Technology | Cat# 2983, RRID:AB 2105622                               |
| Rabbit monoclonal antibody anti-p70 S6<br>kinase pS371 | Cell Signaling Technology | Cat# 9208, RRID:AB_330990                                |
| Rabbit monoclonal antibody anti-anti-p70 S6            | Cell Signaling Technology | Cat# 2708, RRID:AB_390722                                |
| Rabbit monoclonal antibody anti-Erk1/2                 | Cell Signaling Technology | Cat# 4370, RRID:AB_2315112                               |
| Rabbit monoclonal antibody anti-Erk1/2                 | Cell Signaling Technology | Cat# 4695. RRID:AB 390779                                |
| Rabbit monoclonal antibody anti-H3K4me3                | Cell Signaling Technology | Cat# 9783. Tri-Methyl Histone H3                         |
|                                                        |                           | Antibody Sampler Kit                                     |
| Rabbit monoclonal antibody anti-H3K9me3                | Cell Signaling Technology | Cat# 9783, Tri-Methyl Histone H3<br>Antibody Sampler Kit |
| Rabbit monoclonal antibody anti-H3K27me3               | Cell Signaling Technology | Cat# 9783. Tri-Methyl Histone H3                         |
|                                                        |                           | Antibody Sampler Kit                                     |
| Rabbit monoclonal antibody anti-H3K36me3               | Cell Signaling Technology | Cat# 9783, Tri-Methyl Histone H3                         |
|                                                        |                           | Antibody Sampler Kit                                     |
| Rabbit monoclonal antibody anti-H3K/9me3               | Cell Signaling Technology | Antibody Sampler Kit                                     |
| Rabbit monoclonal antibody anti-H3                     | Cell Signaling Technology | Cat# 9783, Tri-Methyl Histone H3<br>Antibody Sampler Kit |
| Rabbit monoclonal antibody anti-EZH1                   | Cell Signaling Technology | Cat# 62083. PRC2 Antibody Sampler Kit                    |
| Rabbit monoclonal antibody anti-EZH2                   | Cell Signaling Technology | Cat# 62083, PRC2 Antibody Sampler Kit                    |
| Rabbit monoclonal antibody anti-SUZ12                  | Cell Signaling Technology | Cat# 62083, PRC2 Antibody Sampler Kit                    |
| Rabbit monoclonal antibody anti-EED                    | Cell Signaling Technology | Cat# 62083, PRC2 Antibody Sampler Kit                    |
| Rabbit monoclonal antibody anti-JARID2                 | Cell Signaling Technology | Cat# 62083, PRC2 Antibody Sampler Kit                    |
| Rabbit monoclonal antibody anti-AEBP2                  | Cell Signaling Technology | Cat# 62083, PRC2 Antibody Sampler Kit                    |
| Rabbit polyclonal antibody anti-IgG                    | Cell Signaling Technology | Cat# 2729, RRID:AB 1031062                               |
| Chemicals and reagents                                 |                           | • • •                                                    |
| Anti-Flag Affinity Gel                                 | Bimake                    | Cat# B23101                                              |

| Anti-Myc tag Mouse mAb conjugated | Engibody Biotechnology | Cat# AT0080    |
|-----------------------------------|------------------------|----------------|
| Agarose Beads                     |                        | Cat# A10080    |
| Anti-HA tag Mouse mAb conjugated  | Engibody Biotechnology | Cat# AT0070    |
| Agarose Beads                     |                        | Cat# A10079    |
| EGF                               | Sigma-Aldrich          | Cat# E5036     |
| Insulin                           | Sigma-Aldrich          | Cat# I2643     |
| Alpelisib                         | Selleck Chemicals      | Cat# S2814     |
| GSK126                            | Selleck Chemicals      | Cat# S7061     |
| Tazemetostat                      | Selleck Chemicals      | Cat# S7128     |
| MG132                             | Selleck Chemicals      | Cat# S2619     |
| DAPI                              | Sigma-Aldrich          | Cat# D9542     |
| Critical Commercial Assay Kits    |                        |                |
| USER cloning system               | NEB                    | Cat# #M5505L   |
| Site-Directed Mutagenesis Kit     | Agilent                | Cat# 200523    |
| EnVision-HRP kit                  | Dako                   | Cat# K4001     |
| PrimeScript RT Reagent Kit        | TAKARA                 | Cat# RR037A    |
| Mycoplasma Detection Kit          | Yeasen                 | Cat# 40601ES20 |

| Primer name     | Primer sequences (5'      | to 3')                                |
|-----------------|---------------------------|---------------------------------------|
| Primers for qR  | <b>T-PCR and ChIP-PCR</b> |                                       |
|                 | Forward                   | AAAGGCGGGAACAATAAGCTG                 |
| PIK3R2          | Reverse                   | CAACGGAGCAGAAGGTGAGTG                 |
|                 | Forward                   | ATGCGACTTCGACAACTTAAACG               |
| EZH1            | Reverse                   | GGCTTCATTGACTGAACAGGTT                |
|                 | Forward                   |                                       |
| EZH2            | Poverse                   | COTGTATCOTTCGCTGTTTCC                 |
|                 | Econycond                 |                                       |
| DLG2 -1000      | Forward                   | GOIGACTAGTIGAGIGGCCI                  |
|                 | Reverse                   | GGGAAAACAGACACCCAGGATT                |
| DLG2 -750       | Forward                   | GIGGAAGGIGGAGGAIIICAA                 |
|                 | Reverse                   | ATCTGCTGTCTTGGCAGACG                  |
| DI G2-500       | Forward                   | GGTGTCAGGGAGAGGGAAAAG                 |
| DL02-300        | Reverse                   | CTCATTTGCTGAATGAGCGGT                 |
| 4qHox           | Forward                   | CGAGGACGGCGACGGAGAC                   |
| -               | Reverse                   | ACCCTGTCCCGGGTGCCTG                   |
| Satellite chr1  | Forward                   | CATCGAATGGAAATGAAAGGAGTC              |
|                 | Reverse                   | ACCATTGGATGATTGCAGTCAA                |
| Satellite chr4  | Forward                   | CTGCACTACCTGAAGAGGAC                  |
| Saterine em (   | Reverse                   | GATGGTTCAACACTCTTACA                  |
| Alu chr10       | Forward                   | GATTETEAACAGEAGAAATTEEATGEE           |
|                 | Dovorso                   | CATCITICACA ATCTCT ACTICT AC          |
| 41 1 10         | Reverse                   |                                       |
| Alu chr19       | Forward                   |                                       |
|                 | Reverse                   | GTTAGGAGCTAGAAGGAGCCTG                |
| Chr7q           | Forward                   | CCTCGCTTTGACACGACTCGG                 |
|                 | Reverse                   | GCACAGGATTCAGACGGGCTTT                |
| TSH2B           | Forward                   | GCAGCACTGCCTGAATGTTA                  |
|                 | Reverse                   | TGTATTTGGCGGCAGTGTTA                  |
| GAPDH           | Forward                   | TCTGCCCTCCTACCAGAAGA                  |
|                 | Reverse                   | TATTGAGGGCAGGGTGAGTC                  |
|                 | Forward                   | GGCCAAGGGTCACTACACG                   |
| β-tubulin       | Reverse                   | GCAGTCGCAGTTTTCACACTC                 |
| Primers for sal | RNAs and siRNAs           |                                       |
| PIK3R2          | Forward                   |                                       |
| 1 IK JK 2       | Polyaraa<br>Bayaraa       |                                       |
| SgrinA-1        | E e mere a d              |                                       |
| PIKSK2          | rorward                   |                                       |
| sgRNA-2         | Reverse                   | AAACCGACIIGCCCGAGCAGIICIC             |
| PIK3R2          | Forward                   | CACCGCCCACTGATCCACGTCGCTC             |
| sgRNA-3         | Reverse                   | AAACGAGCGACGTGGATCAGTGGGC             |
| BRD7            | Forward                   | CACCGTCGGACAAACACCTCTACG              |
| sgRNA-1         | Reverse                   | AAACCGTAGAGGTGTTTGTCCGAC              |
| 0007            | <b>F</b> 1                |                                       |
| BKD/            | Forward                   | CACCGAAGTCACCGAACTCTCCAC              |
| sgRNA-3         | Reverse                   | AAACGTGGAGAGTTCGGTGACTTC              |
|                 | Earwar <sup>1</sup>       |                                       |
| BKD/            | rorward                   |                                       |
| sgRNA-3         | Reverse                   | AAACGTGAGATTAGACTTGCCTCC              |
| n85ß            | Forward                   | GGCUGGACAGCGAAUCUCAATAT               |
| POOP            | Devenue                   |                                       |
| SIKINA-I        | Keverse                   |                                       |
| рвор            | Forward                   |                                       |
| sikna-2         | Keverse                   | UUGAUCAGCUUAUUGUUCCdTdT               |
| Subcloning pri  | mers                      |                                       |
| FLAG-p110α      | Forward                   | GGTCCCA/ideoxyU/TGCCTCCACGACCATCATCAG |
| WT              | Reverse                   | GGCATAG/ideoxyU/TCAGTTCAATGCATGCTGTT  |
| FLAG-p110α      | Forward                   | GATGAAACAAGACAACTTTGTGACCTTCGG        |
| R88Q            | Reverse                   | CCGAAGGTCACAAAGTTGTCTTGTTTCATC        |
| FLAG-p110α      | Forward                   | CAACCGTGAAGAAAACATCCTCAATCGAGA        |
| K111N           | Reverse                   | TCTCGATTGAGGATGTTTTCTTCACGGTTG        |

| FLAG-p110α     | Forward                       | GCAACCTACGTGAAAGTAAATATTCGAGAC       |
|----------------|-------------------------------|--------------------------------------|
| N345K          | Reverse                       | GTCTCGAATATTTACTTTCACGTAGGTTGC       |
| FLAG-p110α     | Forward                       | GCTAAAGAGGAACACCGTCCATTGGCATGG       |
| C420R          | Reverse                       | CCATGCCAATGGACGGTGTTCCTCTTTAGC       |
| FLAG-p110α     | Forward                       | CGAGATCCTCTCTCTAAAATCACTGAGCAG       |
| E542K          | Reverse                       | CTGCTCAGTGATTTTAGAGAGAGGATCTCG       |
| FLAG-p110α     | Forward                       | CTCTCTGAAATCACTGCGCAGGAGAAAGAT       |
| E545K          | Reverse                       | ATCTTTCTCCTGCGCAGTGATTTCAGAGAG       |
| FLAG-p110α     | Forward                       | CTGAAATCACTGAGAAGGAGAAAGATTTTC       |
| Q546K          | Reverse                       | GAAAATCTTTCTCCTTCTCAGTGATTTCAG       |
| FLAG-p110α     | Forward                       | CATGAAACAAATTAATGATGCACATCATGG       |
| M1043I         | Reverse                       | CCATGATGTGCATCATTAATTTGTTTCATG       |
| FLAG-p110α     | Forward                       | CAAATGAATGATGCACTTCATGGTGGCTGG       |
| H1047Ĺ         | Reverse                       | CCAGCCACCATGAAGTGCATCATTCATTTG       |
| FLAG-p110α     | Forward                       | GAATGATGCACATCATCGTGGCTGGACAAC       |
| G1049R         | Reverse                       | GTTGTCCAGCCACGATGATGTGCATCATTC       |
| TTA 05         | Forward                       | CCGGAATTCATGAGTGCTGAGGGGTACCAG       |
| НА-р85а        | Reverse                       | ACGCGTCGACTCATCGCCTCTGCTGTGCATA      |
| 114 070        | Forward                       | CCGGAATTCATGGCGGGCCCTGAGGGCTTC       |
| на-резр        | Reverse                       | CCGCTCGAGTCAGCGGGCGGCAGGCGGCG        |
| 0.50 311 0     | Forward                       | CGCGGATCCCAGGACAAGAGCCGCGAGTATG      |
| poop NLS       | Reverse                       | CCGGAATTCCTGCTCTTCAAAGATCTTGATAG     |
| 01             | Forward                       | CCGCTCGAGATGGTGAGCAAGGGCGAGGAGGA     |
| mCherry        | Reverse                       | CCGGGGCCCCTTGTACAGCTCGTCCATGCCGC     |
| CED            | Forward                       | CGCGGATCCATGGTGAGCAAGGGCGAGGAG       |
| GFP            | Reverse                       | CGCGGATCCCTTGTACAGCTCGTCCATGCC       |
|                | Forward                       | CTCCCAGGAGCTGCAGATGGCGGCTACTGCAATTG  |
| HA-p85β        |                               | AGGCCTTC                             |
| KR477,478AA    | Reverse                       | GAAGGCCTCAATTGCAGTAGCCGCCATCTGCAGCTC |
| ,              |                               | CTGGGAG                              |
|                | Left Arm forward              | GGGAAAG/ideoxyU/CACAATGGCTCAAGCCTGTA |
|                | Left Arm reverse              | GGAGACA/ideoxyU/CCTGGGACTCCCCAAAAGGC |
|                | Right Arm forward             | GGTCCCA/ideoxyU/AGGTGCTGAGCTGCGCC    |
|                | Right Arm reverse             | GGCATAG/ideoxyU/CTCTCATGGATCTCGGCAAT |
|                | KR477 478AA of                | GCGCCCACTCCTCCAGGAGCTGCAGATGGCGGCTA  |
|                | n85h for genomic              | CTGCAATT                             |
|                | DNA and PAM                   | eroenari                             |
|                | mutation for $\alpha RNA$     |                                      |
|                | forward                       |                                      |
|                |                               |                                      |
|                | KR477 478AA of                | AATTGCAGTAGCCGCCATCTGCAGCTCCTGGAGGA  |
|                | n85h for genomic              | GTGGGCGC                             |
|                | DNA and PAM                   | 01000000                             |
| n858 KR477     | mutation for gRNA             |                                      |
| 478 A A        | reverse                       |                                      |
| Knockin vector | 1010100                       |                                      |
|                | P1 for A AV and n85h          | TTTTGTCACTCAAGGACTGTGC               |
|                | screening forward             |                                      |
|                | servening, forward            |                                      |
|                | P2 for AAV and p85b           | TATGGAGCCGCCACTTACAC                 |
|                | screening, reverse            |                                      |
|                | , ie , ei be                  |                                      |
|                | gRNA for p85b                 | CACCGTCATCTGCAGCTCCTGGAGG            |
|                | genomic DNA                   |                                      |
|                | forward                       |                                      |
|                |                               |                                      |
|                |                               |                                      |
|                | gRNA for p85b                 | AAACCCTCCAGGAGCTGCAGATGAC            |
|                | gRNA for p85b<br>genomic DNA, | AAACCCTCCAGGAGCTGCAGATGAC            |