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Results 

Biological age does not outperform chronological age as a 

survival predictor 

We predicted survival from biological age (Concordance Index=60.7+-24.5%) and found that it 

did not perform significantly differently from chronological age as a survival predictor 

(Concordance Index difference=0.6+-15.6%);, however, this result is based on a small number of 

deceased participants (n=21). 

 

Quality control and power of genome-wide association studies 

We observed that lambda GC increased as a function of minor allele frequency and INFO 

scores (Supplementary Figure 4). This trend is to be expected for a complex trait. We also 

observed that the lambdaGC are non-substantial at lower allele frequencies and INFO scores 

(Supplementary Figure 4). The lambda value (lambdaGC) for the GWASs were acceptable and 

were 1.04, 1.04, and 1.03 for the Abdomen (AbdAge), Liver, and Pancreas accelerated age 

phenotypes respectively. 

 

We estimated power by using the GCTA-GREML power calculator from Visscher and 

colleagues 1. For an approximate sample size of 30,000 and heritability of 0.3, we estimate 

greater than 80% power (99%) for detection of common SNPs at genome-wide level of 

significance (p < 5e-8). We set that the variance of the off-diagonal components of the genetic 

relationship matrix to be 2e-5.  

https://paperpile.com/c/A2YzTw/hqzt2
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Discussion 

Analysis of the bias in the residuals 

We observed a bias in the residuals for all models. Participants on the younger end of the cohort’s 

chronological age distribution tend to be predicted older than they are, whereas participants on 

the older end of the distribution tend to be predicted younger than they are. This can be observed 

in other publications, as well2–4. It could be tempting to interpret this bias as a sign that young 

people tend to be accelerated agers and that old people tend to be decelerated agers. We 

however concluded that this observation is solely a statistical artifact after making the following 

four observations. (1) The bias is relative. If a model is trained on participants aged 20 to 50, the 

participants aged 50 years will tend to be predicted younger than they are. If we train a second 

model on participants aged 50 to 80, the same participants aged 50 years will tend to be predicted 

older than they are. No age group is intrinsically accelerated aging or decelerated aging, the bias 

for an age group depends on the position of the age group relative to the cohort on which the 

model was trained. This can for example be observed in the models trained on different age 

groups by Sagers et al.3. (2) A similar pattern is observed for all aging dimensions. (3) The bias 

gets smaller as the model’s accuracy increases. (4) We predicted other quantitative variables 

such as serum cholesterol and blood pressure, and we found a similar bias pattern. Aycheh et al. 

also interpreted the bias as a statistical artefact and hypothesized that it was the result of a sample 

size imbalance between the different age groups5. We refuted this hypothesis by training models 

on datasets with different chronological age distributions (e.g. uniform, Gaussian), as the bias 

was largely unaffected by these preprocessing steps. We therefore formulate a hypothesis that is 

coherent with the five aforementioned observations. The default behavior of a model to minimize 

the loss function (mean squared error) if it is not provided with informative predictors with respect 

https://paperpile.com/c/A2YzTw/eKULf+TURB6+8Rw7o
https://paperpile.com/c/A2YzTw/TURB6
https://paperpile.com/c/A2YzTw/4YYvv
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to the target is to predict the mean of the target variable for every sample. Therefore, every 

participant that is younger than the mean cohort age will be predicted to be older than they are, 

and inversely for the older participants. The bias will also be proportional to the difference between 

the age of the participant and the mean age, which is what we observe in our models. As the 

model starts extracting relevant knowledge from the predictors, it must balance the potential 

improvement for the new prediction with the safety of its initial default guess, which behaves like 

a Bayesian prior, “pulling” every sample’s prediction towards the mean target value on the 

dataset. Therefore, the bias remains approximately proportional to the difference between the 

participant’s chronological age and the cohort’s mean age, while progressively decreasing in 

amplitude as the R2 increases. 

 

Some other researchers who built biological age predictors by training models to predict 

chronological age reported this bias5–7, but, to the best of our knowledge, most did not, although 

it can be observed in the scatter plot when one is present in the publication2–4,8–17. In some 

publications the bias does not seem to be present18–22, one explanation being that, as the R2 value 

of the model increases, it becomes harder to discern it. The bias is may also influence 

associations of the biological age predictor with mortality and diseases when not corrected and 

we recommend that researchers report it when they observe it in the future. 

 

One key point we would like to highlight here is that it is crucial to correct for the bias in the 

residuals when defining accelerated aging before performing the association with survival, 

diseases, biomarkers or other phenotypes. If that is not done, older participants' biological age 

will tend to be lower than their chronological age, making them decelerated agers. In contrast, 

younger participants will tend to be accelerated agers. Because older participants are at a higher 

risk for death than younger participants, not accounting for the bias will likely lead to spurious and 

counterintuitive findings, such as decelerated aging being associated with increased mortality. 

https://paperpile.com/c/A2YzTw/d37Q3+4YYvv+r8CcZ
https://paperpile.com/c/A2YzTw/TURB6+8Rw7o+S5vXc+QHeY0+b2RhP+pveMN+5WfT5+l5zQP+eKULf+ZiHSA+bLLNl+vzbAG+QAfm7
https://paperpile.com/c/A2YzTw/2SRsi+6a5LR+y2rue+FbuEZ+keH0Q
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Biological age does not outperform chronological age as a survival 

predictor 

Biological age did not perform significantly differently from chronological age as a survival 

predictor (Concordance Index difference=-0.6+-15.6%), which can in part be explained by the 

small number of UKB participants deceased at the time of our study. Specifically, out of the 34,445 

participants who had MRIs collected from both their liver and their pancreas, only 21 were 

deceased. We emphasize, however, that one key argument is aging is not only about higher risk 

for death, but accruing age-related perturbations as one grows older that predisposes one to 

death. Concretely, for example, as a human liver or pancreas accrues exposures and diseases 

between 20 and 45 years in a person's life is likely not connected to the risk for death at those 

ages, which is already quite low. For example, in meta-analyses across 23 studies and ~42K 

participants, the association between epigenetic methylation-based biological age and mortality 

has been deemed “inconclusive” 23.   

https://paperpile.com/c/A2YzTw/0MOGJ
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Methods 

Hardware 

We performed the computation for this project on Harvard Medical School’s compute cluster, with 

access to both central processing units [CPUs] and general processing units [GPUs] (Tesla-M40, 

Tesla-K80, Tesla-V100) via a Simple Linux Utility for Resource Management [SLURM] scheduler.  

Software Versions 

We coded the deep learning in Python 24 (version 3.6) and used the following libraries: NumPy 

25,26, Pandas 27, Matplotlib 28, Plotly 29, Python Imaging Library 30, SciPy 31–33, Scikit-learn 34, 

LightGBM 35, XGBoost 36, Hyperopt 37, TensorFlow 2 38, Keras 39, Keras-vis 40, iNNvestigate 41. 

We used Dash 42 to code the website on which we shared the results. We set the seed for the os 

library, the numpy library, the random library and the tensorflow library to zero. The software 

versions for the deep learning pipeline are listed here: 

https://github.com/alanlegoallec/Multidimensionality_of_Aging/blob/main/Core_and_Images_pip

eline/requirements.txt and here: 

Python version 3.6. 
beautifulsoup4==4.8.2 
bioinfokit==0.8.8 
bs4==0.0.1 
efficientnet==1.1.0 
gpuinfo==1.0.0a6 
GPUtil==1.4.0 
graphviz==0.13.2 
hyperopt==0.1.2 
imageio==2.5.0 
innvestigate==1.0.8 
ipdb==0.13.2 
keract==4.0.0 
Keras==2.3.1 
Keras-Applications==1.0.8 
Keras-Preprocessing==1.1.0 
keras-vis==0.4.1 
kerasplotlib==0.1.4 
lifelines==0.25.6 

https://paperpile.com/c/A2YzTw/Mku7m
https://paperpile.com/c/A2YzTw/9wPOA+CGyfG
https://paperpile.com/c/A2YzTw/5OnKo
https://paperpile.com/c/A2YzTw/Qomdf
https://paperpile.com/c/A2YzTw/sNoNk
https://paperpile.com/c/A2YzTw/29dwP
https://paperpile.com/c/A2YzTw/EYUab+kqtnd+cjdCp
https://paperpile.com/c/A2YzTw/uZI5m
https://paperpile.com/c/A2YzTw/Prifp
https://paperpile.com/c/A2YzTw/nR49V
https://paperpile.com/c/A2YzTw/tUirV
https://paperpile.com/c/A2YzTw/CQOwt
https://paperpile.com/c/A2YzTw/wn0CA
https://paperpile.com/c/A2YzTw/aBHnb
https://paperpile.com/c/A2YzTw/2XwSC
https://paperpile.com/c/A2YzTw/a464W
https://github.com/alanlegoallec/Multidimensionality_of_Aging/blob/main/Core_and_Images_pipeline/requirements.txt
https://github.com/alanlegoallec/Multidimensionality_of_Aging/blob/main/Core_and_Images_pipeline/requirements.txt
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lightgbm==2.3.1 
matplotlib==3.3.3 
matplotlib-venn==0.11.5 
more-itertools==7.2.0 
multiprocess==0.70.11.1 
numpy==1.18.5 
nvgpu==0.7.0 
nvidia-ml-py==375.53.1 
opencv-python==4.1.1.26 
opt-einsum==3.2.1 
pandas==0.25.3 
pickleshare==0.7.5 
Pillow==8.0.1 
pydicom==1.3.0 
scikit-image==0.14.2 
scikit-learn==0.23.0 
scipy==1.4.1 
seaborn==0.9.0 
six==1.12.0 
sklearn==0.0 
tensorflow-addons==0.10.0 
tensorflow-estimator==2.2.0 
tensorflow-gpu==2.2.0 
tf-estimator-nightly==1.14.0.dev2019030115 
tf-keras-vis==0.3.1 
threadpoolctl==2.0.0 
utils==1.0.1 
virtualenv==15.1.0 
xgboost==0.82 

Our code can be found on github: https://github.com/Deep-Learning-and-Aging. The versions of 

the libraries are in the Supplement and in the repository. For the genetics analysis, we used the 

BOLT-LMM (v. 2.3.2) and BOLT-REML (v. 2.3.2) and FUMA (v1.3.7) software. We coded the 

parallel submission of the jobs in Bash. 

Training, tuning and predictions 

Hyperparameters tuning upstream of the cross-validation 

The hyperparameters we tuned were the number of added fully connected dense layers, the 

number of nodes in these layers, their activation function, the optimizer, the initial learning rate, 

the weight decay, the dropout rate, the data augmentation amplitude and the batch size. 

Repeatedly tuning the values of the hyperparameters for different deep neural networks 

architectures and on the different cross-validation folds would have been prohibitively time and 

https://github.com/Deep-Learning-and-Aging
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resource consuming. Instead, we sequentially explored how each hyperparameter was affecting 

the training and validation performances for a single architecture (InceptionV3) on a single cross 

validation fold (fold #0, see Methods - Training, tuning and predictions - Images - Cross-validation 

for the detailed description of the cross-validation). We then extrapolated the hyperparameter 

values to the other architectures, datasets and cross-validation folds. The hyperparameters 

combinations tested during the tuning can be found in Supplementary Data Table S22. 

 

First, we maximized the batch size for each architecture. The maximum number of images per 

batch depends on the memory of the GPU and the size of the architecture, which itself depends 

on the dimensions of the image. We used a batch size of 32 for InceptionV3 and 8 for 

InceptionResNetV2. 

 

Then, we tested the learning rates, including 1e-6, 1e-5, 1e-4, 1e-3, 1e-2 and 1e-1. We observed 

that learning rates larger than 1e-4 prevented the model from converging for some runs. Second, 

we did not observe significant differences between the results obtained with learning rates smaller 

than 1e-4. We therefore set the initial learning rate to be 1e-4 for all models to shorten the time to 

convergence while ensuring that the learning rate was small enough to allow convergence and 

the finding of a local minima for the loss function. 

 

Then we tested three different optimizers to perform the gradient descent: Adam 43, Adadelta 44 

and RMSprop 45. We did not observe any significant differences between the optimizers, so we 

set the optimizer to be Adam. 

 

We then added different numbers of fully connected layers between the base CNN and side 

CNN’s concatenated outputs and the final activation layer. We set the number of nodes to be 

1,024 in the first added layer and then decreased the number of nodes by a factor of two for each 

https://paperpile.com/c/A2YzTw/HPF4W
https://paperpile.com/c/A2YzTw/P0UOX
https://paperpile.com/c/A2YzTw/Bi4RP
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successive layer. For example, if we added three fully connected layers, the number of nodes 

was 1024, 512 and 256. We added zero, one and five layers. We did not observe significant 

differences in the performance of the different architectures, so we set the number of fully 

connected layers to one. 

 

We then tested powers of two from 16 to 2,048 as the number of nodes in this single layer. We 

did not observe significant differences between these architectures, so we set the number of 

nodes to be 1,024 to keep the number close to the initial number of nodes in the imported CNN 

architectures, as these were initially used to perform classification between 1,000 categories. 

 

We tested two different activation functions for the activation functions of the fully connected 

layers we added in the side neural network and before the final linear layer. We did not observe 

any significant differences between the rectified linear units [ReLU] 46 and the scaled exponential 

linear units [SELU] 47 as activation functions, so we used the more common ReLU. 

 

We then tested different levels of data augmentation. We introduced a hyperparameter that we 

called “data augmentation factor”. The data augmentation factor modulates the amount of 

variation introduced by the data augmentation, while preserving the ratio between the different 

transformations. For example, a data augmentation factor of one is equivalent to the default data 

augmentation (see Preprocessing - Data augmentation - Images), but a data augmentation factor 

of two will double the ranges of the possible values sampled and the expected values for the 

vertical shift, the horizontal shift, the rotation and the zoom on the original images. We tested the 

following values for the data augmentation factor: 0, 0.1, 0.5, 1, 1.5 and 2. We found that different 

values for the data augmentation factor hyperparameter yielded similar results, as long as the 

data augmentation factor was not zero. We therefore set the data augmentation factor to be one 

when training the final models. 

https://paperpile.com/c/A2YzTw/cVp2v
https://paperpile.com/c/A2YzTw/Je6tx
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We then tuned the dropout rate for the fully connected layers we added. We tested the following 

values: 0, 0.1, 0.25, 0.3, 0.5, 0.75, 0.9 and 0.95. We observed that a dropout rate of 0.95 led to 

underfitting and that smaller values reduced overfitting on the training set but without improving 

the validation performance. As a consequence, we used a dropout rate of 0.5. 

 

Finally, we tuned the weight decay. We tested the following values: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5, 

10 and 100. For the larger datasets, we found that weight decay values as low as 0.4 could lead 

to underfitting. We found that lower weight decay values reduced overfitting on the training set 

without significantly improving the validation performance. We set the weight decay to 0.1. 

Altogether, we found that hyperparameter tuning had little effect on the validation performance as 

long as extreme hyperparameters values were not selected. 

Cross-validation 

Training deep convolutional neural networks on images and videos is too time and resource 

consuming to perform a nested cross-validation. Therefore, we tuned the hyperparameters during 

the preliminary analysis, as described above. After hyperparameters tuning, we performed a 

simple outer cross-validation to obtain a testing prediction for each sample of the datasets, but 

we replaced the inner cross-validation with a simple split between the training fold and the 

validation fold (Supplementary Data Table S23). Although the hyperparameters were already 

tuned, a validation set was still required for two reasons: (1) to perform early stopping 48, a form 

of regularization. (2) to generate a set of validation predictions that are necessary for efficient 

ensemble building (see Methods - Models ensembling) and model selection. During the cross-

validation, we scaled and centered the target variable (chronological age) as well as the side 

predictors (sex and ethnicity) around zero with a standard deviation of one, using the training 

https://paperpile.com/c/A2YzTw/InbCd
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summary statistics. Scaling the target and the input helps prevent the issues of exploding and 

vanishing gradients 49,50.  

Cross-validation example 

For the sake of clarity, let us walk through an example. Let us say that we want to generate 

unbiased predictions for every sample in a dataset using a CNN. First, we select the data fold #0 

as the validation set, the data fold #1 as the testing set, and the remaining data folds (#2-9) as 

the training set. Then we scale and center the target (age), and the side predictors (sex and 

ethnicity) using the training mean and standard deviation: for each of the variables, we subtract 

the training mean to the variable on both the training, the validation and the testing set, and we 

divide it by the training standard deviation. We then train the model on the training set until 

convergence and select the architecture’s parameters (also known as “weights”) associated with 

the epoch that yielded the lowest validation RMSE. We then use the optimal weights to generate 

validation predictions for the data fold #0 and testing predictions on the data fold #1. Finally, we 

unscale the validation and testing predictions by multiplying them by the initial age training 

standard deviation before adding the initial age training mean to them. This completes the first 

cross-validation fold. 

 

We then reiterate the process, this time using the data fold #1 as the validation set, the data fold 

#2 as the testing set, and the remaining data folds (#0 and #3-9) as the training set. We use the 

optimized weights to generate the validation predictions on the data fold #2, and the testing 

predictions on the data fold #3. We unscale the validation and testing predictions. This completes 

the second cross-validation fold. We reiterate the process eight more times to complete the cross-

validation. We then concatenate the validation predictions from the ten data folds to obtain the 

final validation predictions, and the testing predictions from the ten data folds to obtain the final 

testing predictions. 

https://paperpile.com/c/A2YzTw/UuQYW+UOMIu
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Generating average predictions for each participant 

We generated an average prediction for each individual, reported to UKB’s instance 0. We walk 

through an example. Let us assume a participant had liver MRI samples collected from them in 

instances 2 and 3, respectively at age 70 and 80. Let us assume that the age predictions were 

respectively 64 and 78, so the residuals are respectively -6 years and -2 years, for an average of 

-4 years. However, we still need to take into account the bias in the residuals, defined as the 

difference between the participant’s chronological age and the prediction. As explained in more 

details under Methods - Biological age definition, we observed a bias in the residuals as a function 

of chronological age. Participants on the younger end of the chronological age distribution tend 

to be predicted older than they actually are, whereas participants on the older end of the 

distribution tend to be predicted younger than they actually are. We need to properly account for 

this bias when translating a prediction from a more recent instance to an older instance. Let us 

assume that the average bias in the residuals for participants who are 70 and 80 years old is 

respectively -2 years and -4 years. After correcting for this bias, the predictions are now 

respectively 64-(-2)=66 and 78-(-4) = 82. Therefore, the corrected residuals for this participant 

are respectively -4 years and +2 years, for an average of -1 years. Finally, let us assume that the 

participant was 60 years old in instance 0. We will assign a single prediction of 60-1=59 years to 

the participant, but we still need to un-correct for the bias in residuals. Let us assume that the 

average bias for the residuals at age 60 is +5 years. We will assign a final prediction for the 

participant of 59+5=64 years. This new set of predictions reported on the instance 0 is more likely 

to have a non-zero sample size overlap with other predictors based on datasets collected on 

instance 0 (e.g. blood biochemistry) and can therefore be leveraged by the XWAS analysis. 

 

A key point we would like to highlight here is that we did not actually correct for the bias in the 

residuals at this step of the pipeline. Instead, we corrected then un-corrected the predictions that 
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we translated from different instances to the instance 0. The actual correction for the residual 

biases takes place when defining the biological age phenotypes (see Methods - Biological age 

definition). 

 

To distinguish between raw predictions on the instance 0, and the average predictions reported 

to the instance 0, we created a new instance which we named instance “*”. We refer to these 

predictions as “participants predictions”, as opposed to “samples predictions”. 

Interpretability of the predictions 

To interpret the CNNs built on images, we first used saliency maps 51, which we coded using the 

keract python library. For each input sample, a saliency map uses the gradient of the final 

prediction with respect to each individual input pixel to estimate whether changing the value of 

this pixel would affect the prediction. Pixels for which the gradient is close to zero are not 

important, whereas pixels with a large gradient are estimated to be important. 

 

We then built a second attention map using a custom version of the Gradient-weighted Class 

Activation Mapping [Grad-CAM] algorithm 52 adapted to regression rather than multi-class 

classification: Gradient-weighted Regression Activation Mapping [Grad-RAM]. The intuition 

behind Grad-CAM maps is that they are similar to saliency maps 52, but instead of computing the 

gradient with respect to the input image, they compute it with respect to the activation of the last 

convolutional layer. As convolutional layers maintain the spatial organization of the input image, 

Grad-CAM can still identify which region of the image is driving the predictions. Because Grad-

CAM does not have to backpropagate the gradient all the way back to the input image, it is 

considered a less noisy alternative to the saliency maps. In the same way that saliency maps 

need to combine the attention maps generated in the different input channels (e.g. RGB) into a 

https://paperpile.com/c/A2YzTw/xVhhY
https://paperpile.com/c/A2YzTw/1gDHQ
https://paperpile.com/c/A2YzTw/1gDHQ
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single activation map, Grad-CAM must combine the attention maps generated on the different 

filters of the last convolutional layer. For example, the last convolutional layer for 

InceptionResNetV2 has 1,792 filters. Grad-CAM combines these 1,792 attention maps into a 

single attention map using a linear combination. In the initial Class Activation Mapping [CAM] 

algorithm 53, generating CAM activation maps required to retrain the model after modifying the 

architecture and replacing all the fully connected layers after the final convolutional layer with a 

global max pooling operation, which converted each filter into a scalar feature. The intuition 

behind this substitution was that each filter could be interpreted as detecting a specific feature, 

and global max pooling yielded a scalar that could be interpreted as the presence (high value) or 

absence (low value) of the feature anywhere on the image. The scalar values were then linearly 

combined and activated using the softmax function to yield the probabilities of belonging to 

different classes. To obtain the activation map for a specific class, the filters of the last convolution 

layer were linearly combined using the weights connecting the scalar features obtained after the 

max pooling operation to the final prediction score for that class. CAM was later improved to 

become Grad-CAM 52. Grad-CAM saves the need for modifying the architecture of the model and 

retraining it by approximating the linear regression weight for each final convolutional filter by the 

mean activation gradient over the pixels of the filter. The intuition behind this approximation is that 

a filter’s pixel is important if changing its value affects the final prediction, so a high average 

gradient over the pixels of the filter justifies that this filter should be given a higher weight when 

merging all the filters into a single attention map. To adapt Grad-CAM to our regression task we 

(1) computed the derivatives of the chronological age prediction rather than a class’ prediction 

and (2) removed the ReLU activation applied to the weighted sum of the last convolutional filters, 

which we replaced by an absolute value. The rationale is that for (Grad-)CAM maps, we only want 

to highlight the regions of the picture which are associated with a high probability for the class. In 

contrast, for (Grad-)RAM we care as much about the regions of the input image that can strongly 

increase the chronological age prediction as about the regions that can strongly decrease it. 

https://paperpile.com/c/A2YzTw/Dqlsw
https://paperpile.com/c/A2YzTw/1gDHQ
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Because the filters in the last convolutional layer are the result of the processing of the input image 

by several convolutional layers with possibly negative weights, the sign of the last convolutional 

layer’s pixels and regression weights cannot be linked to either accelerated aging or decelerated 

aging, only to the magnitude of the shift that would affect the prediction if each region of the input 

image was modified. Regression Activation Mapping (RAM) was mentioned as a possible 

extension of CAM in the original CAM publication 53 and has been used to interpret models CNNs 

built on retinal images 54 and cortical surfaces 55, but we are to our knowledge the first to describe 

the generalization of Grad-CAM to a regression task. One notable difference between our 

implementation and Wang and Yang’s implementation 54 is that we are taking the absolute value 

of the final attention map, as mentioned above. We found that not taking the absolute value led 

to misleading attention maps for participants with high chronological age predictions. The 

attention map highlights important areas with negative values, which are therefore depicted in 

blue, a color otherwise associated with unimportant regions in traditional CAMs. Inversely, regions 

on the input image for which the attention map has a slight positive value are spuriously 

considered to be the most important and are highlighted in red. We therefore advise that RAM or 

Grad-RAM be implemented using an absolute value. We coded Grad-RAM using the 

get_activations and get_gradients_of_activations functions of the keract python library.  

 

It is important to understand that unlike the feature importances described under “Scalar data-

based predictors”, which describe the model itself, attention maps are sample specific. In other 

words, they can be used to explain which features drove the predictions for a specific inputted 

sample but cannot provide an explanation for the way the model is performing predictions in 

general. 

 

For each aging subdimension, we generated the attention maps for the best performing CNN 

architecture. We selected representative samples for which we computed the different attention 

https://paperpile.com/c/A2YzTw/Dqlsw
https://paperpile.com/c/A2YzTw/pMz32
https://paperpile.com/c/A2YzTw/Nt7cS
https://paperpile.com/c/A2YzTw/pMz32
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maps. We computed attention maps for the two sexes (female and male), for three age ranges 

(ten youngest ages, ten middle ages and ten oldest ages of the chronological age distribution) 

and for three aging rates (accelerated agers, normal agers, decelerated agers). For each 

intersection of the three categories listed above, we selected the ten most representative samples 

(e.g. the ten most accelerated agers among young males). The figures in this paper only present 

the first, most representative of these ten samples. The complete set of samples can be found on 

the website. 

Genome-wide association study (GWAS) of accelerated aging 

As in the main Methods, we used the bias-corrected accelerated age (chronological minus 

predicted age) as the phenotype in the GWASs. We used the Functional Mapping and 

Annotation (FUMA, v 1.3.7) software on the genome wide association from each Abdomen-

related aging phenotype (AbdAge, Pancreas and Liver Age) 56 to identify (1) the loci associated 

with each of the traits, and the (2) nearest protein coding genes. We have also provided public 

links to the FUMA analyses, located here: AbdAge:  https://fuma.ctglab.nl/browse/400, Liver 

Age: https://fuma.ctglab.nl/browse/401, and Pancreas Age: https://fuma.ctglab.nl/browse/402. 

Briefly, to identify the significant locus, SNPs are filtered that have a GWAS-level of significance 

(in our study, p < 5e-8). SNPs that are GWA-significant and have a r2 greater than 0.6 are 

candidate SNPs for a locus; other SNPs are considered independent. The SNP with the lowest 

p-value and independent of other SNPs at a r2 less than 0.1 is the “lead SNP”.  We report the 

lead SNP and the number of other SNPs in linkage with the lead SNP.  Next, to identify closest 

protein coding genes, FUMA uses ANNOVAR57, to positionally map SNPs.  

 

We conducted a few steps for GWAS quality control (QC), guided by the steps taken by Dr. Ben 

Neale (http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-

https://paperpile.com/c/A2YzTw/V9cjc
https://fuma.ctglab.nl/browse/400
https://fuma.ctglab.nl/browse/401
https://fuma.ctglab.nl/browse/402
https://paperpile.com/c/A2YzTw/L1xcY
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gwas). First, we restricted the GWAS to have INFO scores greater than 0.3 and minor allele 

frequency of 0.001. The INFO score measures the certainty of the imputation and ranges from 0 

(zero certainty) to 1. Imputation was performed by UK Biobank. Second, we estimated the 

lambda GC in different bins of the INFO and minor allele frequency spectrum.  

Non-genetic correlates of accelerated aging 

Unlike DNA, biomarkers, phenotypes, diseases, family history, environmental variables and 

socioeconomics can change over life. As a consequence, we compared each biomarker, 

phenotype and environmental variable with the accelerated aging of the participant at the time 

the exposure was measured and we used the “Samples predictions”, as opposed to the 

“Participants predictions” that we used for the identification of genetic correlates (see Methods - 

Models ensembling - Generating average predictions for each participant). 

Imputation of the non-genetic X-variables 

Most X-variables were not collected on all four instances. Additionally, no X-variables were 

collected at the same time as the accelerometer data was collected. To identify the non-genetic 

correlates of accelerated aging, we had to impute the values of the X-variables for the ages of the 

participants for which they were not available. We considered two imputation methods, which we 

refer to as the “cross-sectional” and the “longitudinal” imputations. 

 

For the cross-sectional imputation, we computed a linear regression for each X variable as a 

function of age, adjusting for sex. We then used the slope of the linear regression to extrapolate 

the value of the XWAS variable at different ages. 
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For the longitudinal imputation, we first selected, for each X variable, all the participants that had 

at least two measures taken for this X variable. We then performed a linear regression for each 

participant. We then averaged the slope of the linear regressions over all the participants of the 

same sex. Finally, we used this slope to extrapolate the value of the XWAS variable at different 

ages for all participants depending on their sex, in the same way we did it for the cross-sectional 

imputation. 

 

It is important to notice that for both the cross-sectional imputation and the longitudinal imputation, 

data can only be imputed when the XWAS variable has been measured at least once for the 

participant. This raw measure is then used to extrapolate which value the X variable was likely 

taking a couple years earlier and/or later. 

 

The advantage of the cross-sectional imputation is larger sample sizes. The advantage of the 

longitudinal method is that it corrects for generational effects. For example, old people have 

shorter legs than young people on average 58. This is not because human legs shrink as we grow 

older. Instead, people who are old today already had shorter legs when they were young. If the 

cross-sectional regression is used to impute the length of the participants on instances where it 

was not measured, it will spuriously assign smaller values to the older samples. In contrast, the 

longitudinal regression learns the regression coefficient by comparing each participant to 

themselves as they age and will therefore not capture the generational effect. When used to 

predict the participants legs’ length, it will impute constant values over time. To evaluate which of 

the two imputation methods should be preferred, we used them to predict X-variables for which 

we knew the actual values and computed the R-Squared values associated with the predictions. 

We found that, even with sample sizes as small as 200 samples, longitudinal imputation 

outperformed cross-sectional imputation. We therefore used longitudinal imputation. 

https://paperpile.com/c/A2YzTw/NeBfM
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X-Wide Association Studies 

First, we tested for associations in an univariate context by computing the partial correlation 

between each X-variable and abdominal aging dimensions. To compute the partial correlation 

between an X-variable and an aging, we followed a three steps process. (1) We ran a linear 

regression on each of the two variables, using age, sex and ethnicity as predictors. (2) We 

computed the residuals for the two variables. (3) We computed the correlation between the two 

residuals and the associated p-value if their intersection had a sample size of at least ten samples. 

We used a threshold for significance of 0.05 and corrected the p-values for multiple testing using 

the Bonferroni correction. We plotted the results using a volcano plot. We refer to this pipeline as 

an X-Wide Association study [XWAS]. 

 

In the supplementary tables and the results, we rank the X-variables subcategories by decreasing 

percentage of variables associated with accelerated aging (note that the ranking is therefore 

biased towards categories with fewer variables). For each subcategory, we list the three most 

associated variables, based on the absolute value of the correlation coefficient. For the exhaustive 

list, please refer to https://www.multidimensionality-of-aging.net/xwas/univariate_associations. 

Prediction of accelerated abdominal aging 

We predicted accelerated aging for the different abdominal aging dimensions as a function of the 

biomarkers, clinical phenotypes, diseases, family history, environmental and socioeconomic 

variables. We leveraged the same pipeline to identify which features were driving the predictions. 

We built a model for each X-variables subcategory (Supplementary Data Table S2, 

Supplementary Data Table S5, Supplementary Data Table S8, Supplementary Data Table S11, 

Supplementary Data Table S14, Supplementary Data Table S17). 

https://www.multidimensionality-of-aging.net/xwas/univariate_associations
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Algorithms 

We used three different algorithms. Elastic Nets [EN] (a regularized linear regression that 

represents a compromise between ridge regularization and LASSO regularization), Gradient 

Boosted Machines [GBM] (LightGBM implementation 35), and Neural Networks [NN]. The choice 

of these three algorithms represents a compromise between interpretability and performance. 

Linear regressions and their regularized forms (LASSO 59, ridge 60, elastic net 61) are highly 

interpretable using the regression coefficients but are poorly suited to leverage non-linear 

relationships or interactions between the features and therefore tend to underperform compared 

to the other algorithms. In contrast, neural networks 62,63 are complex models, which are designed 

to capture non-linear relationships and interactions between the variables. However, tools to 

interpret them are limited 64 so they are closer to a “black box”. Tree-based methods such as 

random forests 65, gradient boosted machines 66 or XGBoost 36 represent a compromise between 

linear regressions and neural networks in terms of interpretability. They tend to perform similarly 

to neural networks when limited data is available, and the feature importances can still be used 

to identify which predictors played an important role in generating the predictions. However, unlike 

linear regression, feature importances are always non-negative values, so one cannot interpret 

whether a predictor is associated with older or younger age. We also performed preliminary 

analyses with other tree-based algorithms, such as random forests 65, vanilla gradient boosted 

machines 66 and XGBoost 36. We found that they performed similarly to LightGBM, so we only 

used this last algorithm as a representative for tree-based algorithms in our final calculations. 

Training and tuning of the models 

Nested cross-validation 

Cross-validation is a method to tune the regularization of models and prevent overfitting 67. For 

the models inputting scalar data (Figure 1A in green), we tuned the hyperparameters and 

https://paperpile.com/c/A2YzTw/Prifp
https://paperpile.com/c/A2YzTw/PAhr7
https://paperpile.com/c/A2YzTw/PAop5
https://paperpile.com/c/A2YzTw/93I2D
https://paperpile.com/c/A2YzTw/JnQhD+6X129
https://paperpile.com/c/A2YzTw/5NRpe
https://paperpile.com/c/A2YzTw/dXVj8
https://paperpile.com/c/A2YzTw/HslSF
https://paperpile.com/c/A2YzTw/nR49V
https://paperpile.com/c/A2YzTw/dXVj8
https://paperpile.com/c/A2YzTw/HslSF
https://paperpile.com/c/A2YzTw/nR49V
https://paperpile.com/c/A2YzTw/Xqd9L
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generated a testing prediction for each sample using a nested 10x9-folds cross-validation. We 

refer to the two nested cross-validations as the “outer” and the “inner” cross-validations. The 

outer-cross validation is used to generate an unbiased testing prediction for each sample, as 

opposed to a simple split of the data into a “training+validation” set on one hand, and a testing 

set on the other hand, which would only generate a testing prediction for one tenth of the dataset. 

The inner cross-validation is used to tune the hyperparameters more precisely, leveraging the full 

inner cross-validation dataset as a validation set, as opposed to a simple data split of the 

“training+validation” dataset into a training and a validation sets, which would only use one data 

fold as the validation set to estimate the performance associated with a specific combination of 

hyperparameters. The nested cross-validation is illustrated in Supplementary Data Table S25. 

Bayesian hyperparameters optimization 

To tune the hyperparameters, we used the Tree-structured Parzen Estimator Approach 68 [TPE] 

of the hyperopt python package 69. TPE is a sequential Bayesian hyperparameters optimization 

method that iteratively suggests the next most promising hyperparameters combination as a 

function of the hyperparameters combinations that have already been tested, by building a 

probabilistic representation of the objective function. We set the number of iterations to 30. For 

each model, 30 different hyperparameter combinations are iteratively tested before selecting the 

best performing one. The hyperparameters names and their ranges defining the hyperparameters 

space can be found in Supplementary Data Table S24. It might be of interest to other researchers 

that we initially tuned the hyperparameters using a random search 70 with the same number of 

iterations, and we did not observe a significant improvement in the model’s performance after 

implementing the Bayesian hyperparameters optimization. 

https://paperpile.com/c/A2YzTw/kCCVX
https://paperpile.com/c/A2YzTw/cy6aG
https://paperpile.com/c/A2YzTw/qxT1K
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Example 

For the sake of clarity, let us walk through a concrete example, which is illustrated in 

Supplementary Data Table S25. Suppose we want to generate unbiased predictions for every 

sample in a dataset using an elastic net. First, let us generate the testing prediction for the data 

fold F9, which is performed by the first fold of the outer cross-validation (outer cross-validation 

fold 0). We select the data fold F9 out of the ten data folds as the testing fold, and we select the 

remaining nine data folds as “training+validation” folds for the inner cross-validation. We scale 

and center the target (age) and the predictors using the mean and standard deviation values of 

the variables on the “training+validation” dataset. We then enter the first inner-cross validation.  

 

For the first inner cross-validation fold, we select the data fold F8 as the validation set, and the 

remaining eight “training+validation” data folds as the training set. We re-scale and center age 

and the predictors in the training and the validation sets using the mean and standard deviation 

values of the training set. We train the model on the eight training data folds with the first 

hyperparameters combination sampled by the TPE algorithm (one value for alpha and one value 

for l1_ratio) and generate validation predictions on the validation fold (data fold F8), which we 

unscale. This completes the first of the nine-inner cross-validation folds (Inner CV fold 0). We then 

permute the nine inner data folds. We scale the age and the predictors using the mean and 

standard deviation computed on the new training set. Then we train the model with the same first 

combination of hyperparameters on eight data folds, leaving aside the data fold F9 (still being 

used as the testing set for the outer cross-validation) and the data fold F7 (now being used as the 

validation set for the inner cross-validation). We then use the new trained model to generate 

validation predictions on the data fold F7, which we unscale. This completes the second of the 

nine inner-cross validation folds (Inner CV fold 1). We then reiterate these inner permutation and 

training processes seven more times, until every data fold in the nine “training+validation” data 
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folds is used as the validation set once. At this point, we concatenate the validation predictions 

from these nine validation folds to obtain the overall validation predictions associated with the first 

hyperparameters combination, and compute the associated performance metric (e.g. RMSE). 

This completes the inner-cross validation for the first hyperparameters combination. 

 

We then perform the same 9-folds inner cross-validation, this time with the second 

hyperparameters combination suggested by the TPE algorithm. We iterate this process 28 more 

times, until 30 different hyperparameters combinations have iteratively been tested. Next, we 

select the hyperparameter combination that yielded the best validation performance (e.g. 

minimum RMSE), and we retrain a model on the whole nine “training+validation” data folds (all 

data folds except for data fold #1), using this best performing hyperparameters combination. This 

completes the first inner cross-validation.  

 

We then use the model to generate unbiased predictions on the unseen testing set (data fold F9) 

and record these predictions. By anticipation for the ensembling algorithm (see Methods - Models 

ensembling) we also need to compute validation predictions on the data fold F8. We do this by 

training a model on all the data folds aside from the validation fold (data fold F8) and the testing 

fold (data fold F9), with the selected hyperparameters combination. We then use this trained 

model to compute predictions on the validation fold (data fold F8) and record these predictions, 

after unscaling them. This completes the first of the ten outer cross-validation folds (outer cross-

validation 0). 

We then complete the second outer cross-validation fold (outer cross-validation 1), this time using 

the data fold F8 as the testing dataset, to obtain unbiased testing predictions on this data fold, as 

well as validation predictions on the data fold F7. We reiterate the process eight more times to 

obtain the testing and validation predictions on the remaining data folds. We then concatenate 

the testing predictions from the ten data folds to obtain our final testing predictions for the model. 
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Similarly, we concatenate the validation predictions from the ten data folds to obtain our final 

testing predictions for the model, which will later be used during ensemble models building and 

model selection (see Methods - Models ensembling). 

 

The final validation and testing predictions for each data fold are therefore not necessarily 

associated with the same hyperparameters combination. It is also important to notice that we 

performed a single outer cross-validation, but that we performed a separate inner-cross validation 

for each outer cross-validation fold (hence the word “nested”), for a total of ten inner cross-

validations per outer cross-validation fold. 

Interpretability of the models 

For elastic nets, we interpreted the models using the values of the regression coefficients. Large 

absolute values for these coefficients means they played an important role when generating the 

predictions. For gradient boosted machines we used the feature importances, which are based 

on the number of times a tree selected each of the variables. Variables with high feature 

importances were selected more often and are therefore likely to play a key role in predicting 

chronological age. For neural networks, we estimated the importance of each feature by 

permuting it randomly between samples before computing the performance of the model. The 

score of each feature is the difference between the R-Squared value before and after the random 

permutations. Features whose random permutation leads to a large decrease in the model’s 

performance are estimated to be important predictors of chronological age. 

 

We estimated the concordance between the three different algorithms by computing the Pearson 

and the Spearman correlations between their feature importances. 
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X-Correlations between the abdominal aging dimensions 

X-Correlations based on the XWAS results 

For the sake of clarity, let us walk through an example. We want to compute the environmental 

correlation between accelerated liver MRI-based and pancreas MRI-based aging. The XWAS 

generates a vector whose components are the partial correlations between the accelerated aging 

phenotype and each environmental variable, for both accelerated liver MRI-based and pancreas 

MRI-based aging. We compute three different Pearson correlations between these two partial 

correlation vectors. (1) The “All” correlation, using all the components of the two vectors; this 

correlation tends to be inflated by the large number of X-variables whose correlation with both 

accelerated aging dimensions is close to zero. (2) The “Intersection” correlation, using only the 

environmental variables that were significantly associated with both of the accelerated aging 

dimensions;because the cardinality of the intersection can be small, a small number of X-variables 

can yield very high or very low correlations. (3) The “Union” correlation, using only the 

environmental variables that were significantly associated with at least one of the two accelerated 

aging dimensions; the “Union” correlation represents a compromise between the “All” and the 

“Intersection” correlations. The figures in this paper were generated using the “Union” correlation, 

but all three correlations can be explored on the website. 

X-Correlations based on the feature importances 

We then computed the correlations between the feature importances for different accelerated 

aging dimensions to estimate the X-correlation between the different dimensions. We used the 

same method as described above under “X-Correlations based on the XWAS results”, replacing 

the coefficient obtained for each X-variable in a univariate context (using partial correlation with 

accelerated aging) with the coefficient obtained in a multivariate context (as an accelerated 

aging predictor in a multivariate model). 
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Survival prediction 

UKB collects mortality data from its 502,492 participants, 30,263 of which (6%) are already dead. 

We highlight the fact that these death events are surprisingly unevenly distributed between data 

modalities. For example, out of the 207,932 participants for whom pulse wave analysis data was 

recorded, only 6,000 are dead, half less than the 12,500 death events we would have observed 

if the death events were evenly distributed between the different datasets. 

 

We leveraged the mortality data to compute the Concordance Index [CI] associated with each 

biological age definition. The CI measures whether the predictor successfully predicts which 

participants will die first by computing the percentage of participant pairs for which the participant 

with the higher biological age dies before the participant with a lower biological age. Accordingly, 

CI values are usually between 0.5 (useless survival predictor) and 1.0 (perfect survival predictor, 

at least in terms of ranking the death events). Chronological age is an effective survival predictor, 

so for each biological age dimension we computed the difference between the CI obtained using 

biological and the CI obtained using chronological age to estimate the added value contributed 

by the biomarkers used to define the biological age dimension. 

 

We computed the standard deviations for the CI values using the same protocol as the one 

described under “Methods - Evaluating the performance of the models”. We computed an 

associated two-tailed p-value for each CI difference between the biological age dimension and 

chronological age assuming a Gaussian distribution and using the associated z-value.  
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Supplementary Figures 

 

Supplementary Figure S1: Age Distribution of the UK Biobank cohort 
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Supplementary Figure S2: Distribution of Accelerated Abdominal Age, Liver Age, and 

Pancreas Age. 
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Supplementary Figure S3. GWAS quantile-quantile plots of association test statistics for A) 

AbdAge Acceleration, B) Liver Age Acceleration and C) Pancreas Age Acceleration. All p-values 

are two sided and not corrected for multiple comparisons. 
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Supplementary Figure S4. A) log10(minor allele frequency) or B) INFO score vs lambda 

Genomic Control (lambdaGC). 
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Supplementary Figure S5. Locuszoom plots for significant loci for AbdAge. r2 denotes SNP 

linkage disequilibrium (r2 of 1 denotes SNPs that are in full linkage). All p-values are two sided 

and not corrected for multiple comparisons. 



 

34 

 
Supplementary Figure S6. Partial correlations between biomarkers of Anthropometry, 

Biochemistry, and Blood Count and General AbdAge, Liver Accelerated Age, and Pancreas 

Accelerated Age. Labeled partial correlations are shown (blue positive, red are negative) for 

those correlations that are greater than 0.03 and p value of correlation less than 1e-5. All p-

values are two sided and not corrected for multiple comparisons. 
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Supplementary Figure S7: Correlation between AbdAge Accelerated Age and other dimensions 

of accelerated age. Error bars are +/- 2 SD of the bootstrapped estimate. Sample sizes are in 

parenthesis. 
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Supplementary Tables 

Supplementary Table S1: GWASs summary - Heritability and number of GWA-significant 

loci associated with accelerated aging in each abdominal dimension 

Abdominal 

dimension 

Sample 

size 
Loci 

Heritability 

(%± SE) 

R-Squared for age 

prediction (%±SE) 

Abdomen 32,475 3 26.3±1.9 76.3±0.2 

Liver 40,760 11 22.3±1.5 71.5±0.2 

Pancreas 32,548 2 22.1±1.9 70.3±0.3 

 

  



 

37 

Supplementary References 

 

1. Visscher, P. M. et al. Statistical power to detect genetic (co)variance of complex traits using 

SNP data in unrelated samples. PLoS Genet. 10, e1004269 (2014). 

2. Attia, Z. I. et al. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead 

ECGs. Circ. Arrhythm. Electrophysiol. 12, e007284 (2019). 

3. Sagers, L., Melas-Kyriazi, L., Patel, C. J. & Manrai, A. K. Prediction of chronological and 

biological age from laboratory data. Aging  12, 7626–7638 (2020). 

4. Putin, E. et al. Deep biomarkers of human aging: Application of deep neural networks to 

biomarker development. Aging  8, 1021–1033 (2016). 

5. Aycheh, H. M. et al. Biological Brain Age Prediction Using Cortical Thickness Data: A Large 

Scale Cohort Study. Front. Aging Neurosci. 10, 252 (2018). 

6. Langner, T., Wikstrom, J., Bjerner, T., Ahlstrom, H. & Kullberg, J. Identifying Morphological 

Indicators of Aging With Neural Networks on Large-Scale Whole-Body MRI. IEEE Trans. 

Med. Imaging 39, 1430–1437 (2020). 

7. Pardoe, H. R. & Kuzniecky, R. NAPR: a Cloud-Based Framework for Neuroanatomical Age 

Prediction. Neuroinformatics 16, 43–49 (2018). 

8. Liem, F. et al. Predicting brain-age from multimodal imaging data captures cognitive 

impairment. Neuroimage 148, 179–188 (2017). 

9. Zoubi, O. A. et al. Predicting Age From Brain EEG Signals—A Machine Learning Approach. 

Frontiers in Aging Neuroscience vol. 10 (2018). 

10. Cole, J. H. et al. Predicting brain age with deep learning from raw imaging data results in a 

reliable and heritable biomarker. Neuroimage 163, 115–124 (2017). 

11. Varatharajah, Y. et al. Predicting Brain Age Using Structural Neuroimaging and Deep 

http://paperpile.com/b/A2YzTw/hqzt2
http://paperpile.com/b/A2YzTw/hqzt2
http://paperpile.com/b/A2YzTw/hqzt2
http://paperpile.com/b/A2YzTw/hqzt2
http://paperpile.com/b/A2YzTw/hqzt2
http://paperpile.com/b/A2YzTw/hqzt2
http://paperpile.com/b/A2YzTw/hqzt2
http://paperpile.com/b/A2YzTw/hqzt2
http://paperpile.com/b/A2YzTw/eKULf
http://paperpile.com/b/A2YzTw/eKULf
http://paperpile.com/b/A2YzTw/eKULf
http://paperpile.com/b/A2YzTw/eKULf
http://paperpile.com/b/A2YzTw/eKULf
http://paperpile.com/b/A2YzTw/eKULf
http://paperpile.com/b/A2YzTw/eKULf
http://paperpile.com/b/A2YzTw/eKULf
http://paperpile.com/b/A2YzTw/TURB6
http://paperpile.com/b/A2YzTw/TURB6
http://paperpile.com/b/A2YzTw/TURB6
http://paperpile.com/b/A2YzTw/TURB6
http://paperpile.com/b/A2YzTw/TURB6
http://paperpile.com/b/A2YzTw/TURB6
http://paperpile.com/b/A2YzTw/8Rw7o
http://paperpile.com/b/A2YzTw/8Rw7o
http://paperpile.com/b/A2YzTw/8Rw7o
http://paperpile.com/b/A2YzTw/8Rw7o
http://paperpile.com/b/A2YzTw/8Rw7o
http://paperpile.com/b/A2YzTw/8Rw7o
http://paperpile.com/b/A2YzTw/8Rw7o
http://paperpile.com/b/A2YzTw/8Rw7o
http://paperpile.com/b/A2YzTw/4YYvv
http://paperpile.com/b/A2YzTw/4YYvv
http://paperpile.com/b/A2YzTw/4YYvv
http://paperpile.com/b/A2YzTw/4YYvv
http://paperpile.com/b/A2YzTw/4YYvv
http://paperpile.com/b/A2YzTw/4YYvv
http://paperpile.com/b/A2YzTw/4YYvv
http://paperpile.com/b/A2YzTw/4YYvv
http://paperpile.com/b/A2YzTw/d37Q3
http://paperpile.com/b/A2YzTw/d37Q3
http://paperpile.com/b/A2YzTw/d37Q3
http://paperpile.com/b/A2YzTw/d37Q3
http://paperpile.com/b/A2YzTw/d37Q3
http://paperpile.com/b/A2YzTw/d37Q3
http://paperpile.com/b/A2YzTw/d37Q3
http://paperpile.com/b/A2YzTw/r8CcZ
http://paperpile.com/b/A2YzTw/r8CcZ
http://paperpile.com/b/A2YzTw/r8CcZ
http://paperpile.com/b/A2YzTw/r8CcZ
http://paperpile.com/b/A2YzTw/r8CcZ
http://paperpile.com/b/A2YzTw/r8CcZ
http://paperpile.com/b/A2YzTw/S5vXc
http://paperpile.com/b/A2YzTw/S5vXc
http://paperpile.com/b/A2YzTw/S5vXc
http://paperpile.com/b/A2YzTw/S5vXc
http://paperpile.com/b/A2YzTw/S5vXc
http://paperpile.com/b/A2YzTw/S5vXc
http://paperpile.com/b/A2YzTw/S5vXc
http://paperpile.com/b/A2YzTw/S5vXc
http://paperpile.com/b/A2YzTw/QHeY0
http://paperpile.com/b/A2YzTw/QHeY0
http://paperpile.com/b/A2YzTw/QHeY0
http://paperpile.com/b/A2YzTw/QHeY0
http://paperpile.com/b/A2YzTw/QHeY0
http://paperpile.com/b/A2YzTw/QHeY0
http://paperpile.com/b/A2YzTw/b2RhP
http://paperpile.com/b/A2YzTw/b2RhP
http://paperpile.com/b/A2YzTw/b2RhP
http://paperpile.com/b/A2YzTw/b2RhP
http://paperpile.com/b/A2YzTw/b2RhP
http://paperpile.com/b/A2YzTw/b2RhP
http://paperpile.com/b/A2YzTw/b2RhP
http://paperpile.com/b/A2YzTw/b2RhP
http://paperpile.com/b/A2YzTw/pveMN
http://paperpile.com/b/A2YzTw/pveMN
http://paperpile.com/b/A2YzTw/pveMN


 

38 

Learning. doi:10.1101/497925. 

12. Madan, C. & Kensinger, E. A. Predicting age from cortical structure across the lifespan. 

doi:10.1101/248518. 

13. Poplin, R. et al. Predicting Cardiovascular Risk Factors from Retinal Fundus Photographs 

using Deep Learning. 

14. Hoffmann, R., Lauterbach, C., Conradt, J. & Steinhage, A. Estimating a person’s age from 

walking over a sensor floor. Comput. Biol. Med. 95, 271–276 (2018). 

15. Rahman, S. A. & Adjeroh, D. A. Deep Learning using Convolutional LSTM estimates 

Biological Age from Physical Activity. Sci. Rep. 9, 11425 (2019). 

16. Lehallier, B., Shokhirev, M. N., Wyss-Coray, T. & Johnson, A. A. Data mining of human 

plasma proteins generates a multitude of highly predictive aging clocks that reflect different 

aspects of aging. Aging Cell e13256 (2020). 

17. Fleischer, J. G. et al. Predicting age from the transcriptome of human dermal fibroblasts. 

Genome Biol. 19, 221 (2018). 

18. Zhai, J. & Li, K. Predicting Brain Age Based on Spatial and Temporal Features of Human 

Brain Functional Networks. Front. Hum. Neurosci. 13, 62 (2019). 

19. Galkin, F. et al. Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and 

Deep Learning. iScience 23, 101199 (2020). 

20. Pyrkov, T. V. et al. Extracting biological age from biomedical data via deep learning: too 

much of a good thing? Sci. Rep. 8, 5210 (2018). 

21. Enroth, S., Enroth, S. B., Johansson, Å. & Gyllensten, U. Protein profiling reveals 

consequences of lifestyle choices on predicted biological aging. Sci. Rep. 5, 17282 (2015). 

22. Mamoshina, P. et al. Machine Learning on Human Muscle Transcriptomic Data for 

Biomarker Discovery and Tissue-Specific Drug Target Identification. Frontiers in Genetics 

vol. 9 (2018). 

23. Fransquet, P. D., Wrigglesworth, J., Woods, R. L., Ernst, M. E. & Ryan, J. The epigenetic 

http://paperpile.com/b/A2YzTw/pveMN
http://dx.doi.org/10.1101/497925
http://paperpile.com/b/A2YzTw/pveMN
http://paperpile.com/b/A2YzTw/5WfT5
http://paperpile.com/b/A2YzTw/5WfT5
http://dx.doi.org/10.1101/248518
http://paperpile.com/b/A2YzTw/5WfT5
http://paperpile.com/b/A2YzTw/l5zQP
http://paperpile.com/b/A2YzTw/l5zQP
http://paperpile.com/b/A2YzTw/l5zQP
http://paperpile.com/b/A2YzTw/l5zQP
http://paperpile.com/b/A2YzTw/ZiHSA
http://paperpile.com/b/A2YzTw/ZiHSA
http://paperpile.com/b/A2YzTw/ZiHSA
http://paperpile.com/b/A2YzTw/ZiHSA
http://paperpile.com/b/A2YzTw/ZiHSA
http://paperpile.com/b/A2YzTw/ZiHSA
http://paperpile.com/b/A2YzTw/bLLNl
http://paperpile.com/b/A2YzTw/bLLNl
http://paperpile.com/b/A2YzTw/bLLNl
http://paperpile.com/b/A2YzTw/bLLNl
http://paperpile.com/b/A2YzTw/bLLNl
http://paperpile.com/b/A2YzTw/bLLNl
http://paperpile.com/b/A2YzTw/vzbAG
http://paperpile.com/b/A2YzTw/vzbAG
http://paperpile.com/b/A2YzTw/vzbAG
http://paperpile.com/b/A2YzTw/vzbAG
http://paperpile.com/b/A2YzTw/vzbAG
http://paperpile.com/b/A2YzTw/QAfm7
http://paperpile.com/b/A2YzTw/QAfm7
http://paperpile.com/b/A2YzTw/QAfm7
http://paperpile.com/b/A2YzTw/QAfm7
http://paperpile.com/b/A2YzTw/QAfm7
http://paperpile.com/b/A2YzTw/QAfm7
http://paperpile.com/b/A2YzTw/QAfm7
http://paperpile.com/b/A2YzTw/QAfm7
http://paperpile.com/b/A2YzTw/2SRsi
http://paperpile.com/b/A2YzTw/2SRsi
http://paperpile.com/b/A2YzTw/2SRsi
http://paperpile.com/b/A2YzTw/2SRsi
http://paperpile.com/b/A2YzTw/2SRsi
http://paperpile.com/b/A2YzTw/2SRsi
http://paperpile.com/b/A2YzTw/6a5LR
http://paperpile.com/b/A2YzTw/6a5LR
http://paperpile.com/b/A2YzTw/6a5LR
http://paperpile.com/b/A2YzTw/6a5LR
http://paperpile.com/b/A2YzTw/6a5LR
http://paperpile.com/b/A2YzTw/6a5LR
http://paperpile.com/b/A2YzTw/6a5LR
http://paperpile.com/b/A2YzTw/6a5LR
http://paperpile.com/b/A2YzTw/y2rue
http://paperpile.com/b/A2YzTw/y2rue
http://paperpile.com/b/A2YzTw/y2rue
http://paperpile.com/b/A2YzTw/y2rue
http://paperpile.com/b/A2YzTw/y2rue
http://paperpile.com/b/A2YzTw/y2rue
http://paperpile.com/b/A2YzTw/y2rue
http://paperpile.com/b/A2YzTw/y2rue
http://paperpile.com/b/A2YzTw/FbuEZ
http://paperpile.com/b/A2YzTw/FbuEZ
http://paperpile.com/b/A2YzTw/FbuEZ
http://paperpile.com/b/A2YzTw/FbuEZ
http://paperpile.com/b/A2YzTw/FbuEZ
http://paperpile.com/b/A2YzTw/FbuEZ
http://paperpile.com/b/A2YzTw/keH0Q
http://paperpile.com/b/A2YzTw/keH0Q
http://paperpile.com/b/A2YzTw/keH0Q
http://paperpile.com/b/A2YzTw/keH0Q
http://paperpile.com/b/A2YzTw/keH0Q
http://paperpile.com/b/A2YzTw/keH0Q
http://paperpile.com/b/A2YzTw/keH0Q
http://paperpile.com/b/A2YzTw/0MOGJ


 

39 

clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. 

Clin. Epigenetics 11, 62 (2019). 

24. Van Rossum, G. & Drake, F. L. The Python Language Reference Manual. (Network Theory 

Limited, 2011). 

25. Oliphant, T. E. A guide to NumPy. vol. 1 (Trelgol Publishing USA, 2006). 

26. Walt, S. van der, van der Walt, S., Chris Colbert, S. & Varoquaux, G. The NumPy Array: A 

Structure for Efficient Numerical Computation. Computing in Science & Engineering vol. 13 

22–30 (2011). 

27. McKinney, W. & Others. Data structures for statistical computing in python. in Proceedings 

of the 9th Python in Science Conference vol. 445 51–56 (Austin, TX, 2010). 

28. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007). 

29. Inc, P. T. Collaborative data science. Montreal: Plotly Technologies Inc Montral (2015). 

30. Clark, A. Pillow Python Imaging Library. Pillow—Pillow (PIL Fork) 5. 4. 1 documentation 

(2018). 

31. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. 

Nature Methods vol. 17 261–272 (2020). 

32. Oliphant, T. E. Python for Scientific Computing. Computing in Science Engineering 9, 10–

20 (2007). 

33. Millman, K. J., Jarrod Millman, K. & Aivazis, M. Python for Scientists and Engineers. 

Computing in Science & Engineering vol. 13 9–12 (2011). 

34. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine 

Learning research 12, 2825–2830 (2011). 

35. Ke, G. et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. in Advances in 

Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 3146–3154 (Curran 

Associates, Inc., 2017). 

36. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the 

http://paperpile.com/b/A2YzTw/0MOGJ
http://paperpile.com/b/A2YzTw/0MOGJ
http://paperpile.com/b/A2YzTw/0MOGJ
http://paperpile.com/b/A2YzTw/0MOGJ
http://paperpile.com/b/A2YzTw/0MOGJ
http://paperpile.com/b/A2YzTw/0MOGJ
http://paperpile.com/b/A2YzTw/Mku7m
http://paperpile.com/b/A2YzTw/Mku7m
http://paperpile.com/b/A2YzTw/Mku7m
http://paperpile.com/b/A2YzTw/Mku7m
http://paperpile.com/b/A2YzTw/9wPOA
http://paperpile.com/b/A2YzTw/9wPOA
http://paperpile.com/b/A2YzTw/9wPOA
http://paperpile.com/b/A2YzTw/CGyfG
http://paperpile.com/b/A2YzTw/CGyfG
http://paperpile.com/b/A2YzTw/CGyfG
http://paperpile.com/b/A2YzTw/CGyfG
http://paperpile.com/b/A2YzTw/CGyfG
http://paperpile.com/b/A2YzTw/5OnKo
http://paperpile.com/b/A2YzTw/5OnKo
http://paperpile.com/b/A2YzTw/5OnKo
http://paperpile.com/b/A2YzTw/5OnKo
http://paperpile.com/b/A2YzTw/Qomdf
http://paperpile.com/b/A2YzTw/Qomdf
http://paperpile.com/b/A2YzTw/Qomdf
http://paperpile.com/b/A2YzTw/Qomdf
http://paperpile.com/b/A2YzTw/Qomdf
http://paperpile.com/b/A2YzTw/sNoNk
http://paperpile.com/b/A2YzTw/sNoNk
http://paperpile.com/b/A2YzTw/sNoNk
http://paperpile.com/b/A2YzTw/29dwP
http://paperpile.com/b/A2YzTw/29dwP
http://paperpile.com/b/A2YzTw/29dwP
http://paperpile.com/b/A2YzTw/29dwP
http://paperpile.com/b/A2YzTw/EYUab
http://paperpile.com/b/A2YzTw/EYUab
http://paperpile.com/b/A2YzTw/EYUab
http://paperpile.com/b/A2YzTw/EYUab
http://paperpile.com/b/A2YzTw/EYUab
http://paperpile.com/b/A2YzTw/EYUab
http://paperpile.com/b/A2YzTw/kqtnd
http://paperpile.com/b/A2YzTw/kqtnd
http://paperpile.com/b/A2YzTw/kqtnd
http://paperpile.com/b/A2YzTw/kqtnd
http://paperpile.com/b/A2YzTw/kqtnd
http://paperpile.com/b/A2YzTw/kqtnd
http://paperpile.com/b/A2YzTw/cjdCp
http://paperpile.com/b/A2YzTw/cjdCp
http://paperpile.com/b/A2YzTw/cjdCp
http://paperpile.com/b/A2YzTw/cjdCp
http://paperpile.com/b/A2YzTw/uZI5m
http://paperpile.com/b/A2YzTw/uZI5m
http://paperpile.com/b/A2YzTw/uZI5m
http://paperpile.com/b/A2YzTw/uZI5m
http://paperpile.com/b/A2YzTw/uZI5m
http://paperpile.com/b/A2YzTw/uZI5m
http://paperpile.com/b/A2YzTw/uZI5m
http://paperpile.com/b/A2YzTw/uZI5m
http://paperpile.com/b/A2YzTw/Prifp
http://paperpile.com/b/A2YzTw/Prifp
http://paperpile.com/b/A2YzTw/Prifp
http://paperpile.com/b/A2YzTw/Prifp
http://paperpile.com/b/A2YzTw/Prifp
http://paperpile.com/b/A2YzTw/Prifp
http://paperpile.com/b/A2YzTw/Prifp
http://paperpile.com/b/A2YzTw/nR49V
http://paperpile.com/b/A2YzTw/nR49V


 

40 

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 

785–794 (Association for Computing Machinery, 2016). 

37. Bergstra, J., Yamins, D. & Cox, D. D. Hyperopt: A python library for optimizing the 

hyperparameters of machine learning algorithms. in Proceedings of the 12th Python in 

science conference vol. 13 20 (Citeseer, 2013). 

38. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. 

(2015). 

39. Chollet, F. & Others. keras. (2015). 

40. Kotikalapudi, R. & Others. keras-vis. 2017. URL https://github. com/raghakot/keras-vis 

(2019). 

41. Alber, M. et al. iNNvestigate neural networks. J. Mach. Learn. Res. 20, 1–8 (2019). 

42. Hossain, S., Calloway, C., Lippa, D., Niederhut, D. & Shupe, D. Visualization of 

Bioinformatics Data with Dash Bio. in Proceedings of the 18th Python in Science 

Conference 126–133 (2019). 

43. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] (2014). 

44. Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method. arXiv [cs.LG] (2012). 

45. Hinton, G. Slide 29 of Lecture 6, Geoffrey Hinton coursera’s class. 

http://www.cs.toronto.edu 

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. 

46. Nair, V. & Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines. 

(2010). 

47. Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-Normalizing Neural 

Networks. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 

971–980 (Curran Associates, Inc., 2017). 

48. Prechelt, L. Early Stopping - But When? in Neural Networks: Tricks of the Trade (eds. Orr, 

G. B. & Müller, K.-R.) 55–69 (Springer Berlin Heidelberg, 1998). 

http://paperpile.com/b/A2YzTw/nR49V
http://paperpile.com/b/A2YzTw/nR49V
http://paperpile.com/b/A2YzTw/nR49V
http://paperpile.com/b/A2YzTw/tUirV
http://paperpile.com/b/A2YzTw/tUirV
http://paperpile.com/b/A2YzTw/tUirV
http://paperpile.com/b/A2YzTw/tUirV
http://paperpile.com/b/A2YzTw/tUirV
http://paperpile.com/b/A2YzTw/CQOwt
http://paperpile.com/b/A2YzTw/CQOwt
http://paperpile.com/b/A2YzTw/CQOwt
http://paperpile.com/b/A2YzTw/CQOwt
http://paperpile.com/b/A2YzTw/wn0CA
http://paperpile.com/b/A2YzTw/aBHnb
http://paperpile.com/b/A2YzTw/aBHnb
http://paperpile.com/b/A2YzTw/aBHnb
http://paperpile.com/b/A2YzTw/aBHnb
http://paperpile.com/b/A2YzTw/2XwSC
http://paperpile.com/b/A2YzTw/2XwSC
http://paperpile.com/b/A2YzTw/2XwSC
http://paperpile.com/b/A2YzTw/2XwSC
http://paperpile.com/b/A2YzTw/2XwSC
http://paperpile.com/b/A2YzTw/2XwSC
http://paperpile.com/b/A2YzTw/2XwSC
http://paperpile.com/b/A2YzTw/a464W
http://paperpile.com/b/A2YzTw/a464W
http://paperpile.com/b/A2YzTw/a464W
http://paperpile.com/b/A2YzTw/a464W
http://paperpile.com/b/A2YzTw/a464W
http://paperpile.com/b/A2YzTw/HPF4W
http://paperpile.com/b/A2YzTw/HPF4W
http://paperpile.com/b/A2YzTw/HPF4W
http://paperpile.com/b/A2YzTw/P0UOX
http://paperpile.com/b/A2YzTw/P0UOX
http://paperpile.com/b/A2YzTw/P0UOX
http://paperpile.com/b/A2YzTw/Bi4RP
http://paperpile.com/b/A2YzTw/Bi4RP
http://paperpile.com/b/A2YzTw/Bi4RP
http://paperpile.com/b/A2YzTw/Bi4RP
http://paperpile.com/b/A2YzTw/Bi4RP
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://paperpile.com/b/A2YzTw/Bi4RP
http://paperpile.com/b/A2YzTw/cVp2v
http://paperpile.com/b/A2YzTw/cVp2v
http://paperpile.com/b/A2YzTw/Je6tx
http://paperpile.com/b/A2YzTw/Je6tx
http://paperpile.com/b/A2YzTw/Je6tx
http://paperpile.com/b/A2YzTw/Je6tx
http://paperpile.com/b/A2YzTw/Je6tx
http://paperpile.com/b/A2YzTw/InbCd
http://paperpile.com/b/A2YzTw/InbCd
http://paperpile.com/b/A2YzTw/InbCd
http://paperpile.com/b/A2YzTw/InbCd


 

41 

49. Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma, Technische 

Universität München 91, (1991). 

50. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J. & Others. Gradient flow in 

recurrent nets: the difficulty of learning long-term dependencies. (2001). 

51. Alqaraawi, A., Schuessler, M., Weiß, P., Costanza, E. & Berthouze, N. Evaluating saliency 

map explanations for convolutional neural networks: a user study. in Proceedings of the 

25th International Conference on Intelligent User Interfaces 275–285 (Association for 

Computing Machinery, 2020). 

52. Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-

based localization. in Proceedings of the IEEE international conference on computer vision 

618–626 (2017). 

53. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for 

discriminative localization. in Proceedings of the IEEE conference on computer vision and 

pattern recognition 2921–2929 (2016). 

54. Wang, Z. & Yang, J. Diabetic Retinopathy Detection via Deep Convolutional Networks for 

Discriminative Localization and Visual Explanation. arXiv [cs.CV] (2017). 

55. Duffy, B. A. et al. Regression activation mapping on the cortical surface using graph 

convolutional networks. (2019). 

56. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and 

annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017). 

57. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants 

from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010). 

58. Le Goallec, A. & Patel, C. J. Age-dependent co-dependency structure of biomarkers in the 

general population of the United States. Aging  11, 1404–1426 (2019). 

59. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B 

Stat. Methodol. 58, 267–288 (1996). 

http://paperpile.com/b/A2YzTw/UuQYW
http://paperpile.com/b/A2YzTw/UuQYW
http://paperpile.com/b/A2YzTw/UuQYW
http://paperpile.com/b/A2YzTw/UuQYW
http://paperpile.com/b/A2YzTw/UuQYW
http://paperpile.com/b/A2YzTw/UuQYW
http://paperpile.com/b/A2YzTw/UOMIu
http://paperpile.com/b/A2YzTw/UOMIu
http://paperpile.com/b/A2YzTw/xVhhY
http://paperpile.com/b/A2YzTw/xVhhY
http://paperpile.com/b/A2YzTw/xVhhY
http://paperpile.com/b/A2YzTw/xVhhY
http://paperpile.com/b/A2YzTw/xVhhY
http://paperpile.com/b/A2YzTw/xVhhY
http://paperpile.com/b/A2YzTw/1gDHQ
http://paperpile.com/b/A2YzTw/1gDHQ
http://paperpile.com/b/A2YzTw/1gDHQ
http://paperpile.com/b/A2YzTw/1gDHQ
http://paperpile.com/b/A2YzTw/1gDHQ
http://paperpile.com/b/A2YzTw/1gDHQ
http://paperpile.com/b/A2YzTw/1gDHQ
http://paperpile.com/b/A2YzTw/Dqlsw
http://paperpile.com/b/A2YzTw/Dqlsw
http://paperpile.com/b/A2YzTw/Dqlsw
http://paperpile.com/b/A2YzTw/Dqlsw
http://paperpile.com/b/A2YzTw/Dqlsw
http://paperpile.com/b/A2YzTw/pMz32
http://paperpile.com/b/A2YzTw/pMz32
http://paperpile.com/b/A2YzTw/pMz32
http://paperpile.com/b/A2YzTw/pMz32
http://paperpile.com/b/A2YzTw/Nt7cS
http://paperpile.com/b/A2YzTw/Nt7cS
http://paperpile.com/b/A2YzTw/Nt7cS
http://paperpile.com/b/A2YzTw/Nt7cS
http://paperpile.com/b/A2YzTw/V9cjc
http://paperpile.com/b/A2YzTw/V9cjc
http://paperpile.com/b/A2YzTw/V9cjc
http://paperpile.com/b/A2YzTw/V9cjc
http://paperpile.com/b/A2YzTw/V9cjc
http://paperpile.com/b/A2YzTw/V9cjc
http://paperpile.com/b/A2YzTw/L1xcY
http://paperpile.com/b/A2YzTw/L1xcY
http://paperpile.com/b/A2YzTw/L1xcY
http://paperpile.com/b/A2YzTw/L1xcY
http://paperpile.com/b/A2YzTw/L1xcY
http://paperpile.com/b/A2YzTw/L1xcY
http://paperpile.com/b/A2YzTw/NeBfM
http://paperpile.com/b/A2YzTw/NeBfM
http://paperpile.com/b/A2YzTw/NeBfM
http://paperpile.com/b/A2YzTw/NeBfM
http://paperpile.com/b/A2YzTw/NeBfM
http://paperpile.com/b/A2YzTw/NeBfM
http://paperpile.com/b/A2YzTw/PAhr7
http://paperpile.com/b/A2YzTw/PAhr7
http://paperpile.com/b/A2YzTw/PAhr7
http://paperpile.com/b/A2YzTw/PAhr7
http://paperpile.com/b/A2YzTw/PAhr7
http://paperpile.com/b/A2YzTw/PAhr7


 

42 

60. Hoerl, A. E. & Kennard, R. W. Ridge Regression: Biased Estimation for Nonorthogonal 

Problems. null 12, 55–67 (1970). 

61. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. 

Soc. Series B Stat. Methodol. 67, 301–320 (2005). 

62. Rosenblatt, F. The Perceptron: A Theory of Statistical Separability in Cognitive Systems 

(Project Para). (Cornell Aeronautical Laboratory, 1958). 

63. Popescu, M.-C., Balas, V. E., Perescu-Popescu, L. & Mastorakis, N. Multilayer perceptron 

and neural networks. WSEAS Trans. Circuits and Syst. 8, (2009). 

64. Ribeiro, M. T., Singh, S. & Guestrin, C. ‘ Why should I trust you?’ Explaining the predictions 

of any classifier. in Proceedings of the 22nd ACM SIGKDD international conference on 

knowledge discovery and data mining 1135–1144 (2016). 

65. Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001). 

66. Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 

29, 1189–1232 (2001). 

67. Kohavi, R. & Others. A study of cross-validation and bootstrap for accuracy estimation and 

model selection. in Ijcai vol. 14 1137–1145 (Montreal, Canada, 1995). 

68. Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for Hyper-Parameter 

Optimization. in Advances in Neural Information Processing Systems 24 (eds. Shawe-

Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. & Weinberger, K. Q.) 2546–2554 (Curran 

Associates, Inc., 2011). 

69. Bergstra, J., Yamins, D. & Cox, D. Making a Science of Model Search: Hyperparameter 

Optimization in Hundreds of Dimensions for Vision Architectures. in (eds. Dasgupta, S. & 

McAllester, D.) vol. 28 115–123 (PMLR, 2013). 

70. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. 

Res. 13, 281–305 (2012). 

http://paperpile.com/b/A2YzTw/PAop5
http://paperpile.com/b/A2YzTw/PAop5
http://paperpile.com/b/A2YzTw/PAop5
http://paperpile.com/b/A2YzTw/PAop5
http://paperpile.com/b/A2YzTw/PAop5
http://paperpile.com/b/A2YzTw/PAop5
http://paperpile.com/b/A2YzTw/93I2D
http://paperpile.com/b/A2YzTw/93I2D
http://paperpile.com/b/A2YzTw/93I2D
http://paperpile.com/b/A2YzTw/93I2D
http://paperpile.com/b/A2YzTw/93I2D
http://paperpile.com/b/A2YzTw/93I2D
http://paperpile.com/b/A2YzTw/JnQhD
http://paperpile.com/b/A2YzTw/JnQhD
http://paperpile.com/b/A2YzTw/JnQhD
http://paperpile.com/b/A2YzTw/JnQhD
http://paperpile.com/b/A2YzTw/6X129
http://paperpile.com/b/A2YzTw/6X129
http://paperpile.com/b/A2YzTw/6X129
http://paperpile.com/b/A2YzTw/6X129
http://paperpile.com/b/A2YzTw/6X129
http://paperpile.com/b/A2YzTw/6X129
http://paperpile.com/b/A2YzTw/5NRpe
http://paperpile.com/b/A2YzTw/5NRpe
http://paperpile.com/b/A2YzTw/5NRpe
http://paperpile.com/b/A2YzTw/5NRpe
http://paperpile.com/b/A2YzTw/5NRpe
http://paperpile.com/b/A2YzTw/dXVj8
http://paperpile.com/b/A2YzTw/dXVj8
http://paperpile.com/b/A2YzTw/dXVj8
http://paperpile.com/b/A2YzTw/dXVj8
http://paperpile.com/b/A2YzTw/dXVj8
http://paperpile.com/b/A2YzTw/HslSF
http://paperpile.com/b/A2YzTw/HslSF
http://paperpile.com/b/A2YzTw/HslSF
http://paperpile.com/b/A2YzTw/HslSF
http://paperpile.com/b/A2YzTw/HslSF
http://paperpile.com/b/A2YzTw/HslSF
http://paperpile.com/b/A2YzTw/Xqd9L
http://paperpile.com/b/A2YzTw/Xqd9L
http://paperpile.com/b/A2YzTw/Xqd9L
http://paperpile.com/b/A2YzTw/Xqd9L
http://paperpile.com/b/A2YzTw/kCCVX
http://paperpile.com/b/A2YzTw/kCCVX
http://paperpile.com/b/A2YzTw/kCCVX
http://paperpile.com/b/A2YzTw/kCCVX
http://paperpile.com/b/A2YzTw/kCCVX
http://paperpile.com/b/A2YzTw/kCCVX
http://paperpile.com/b/A2YzTw/cy6aG
http://paperpile.com/b/A2YzTw/cy6aG
http://paperpile.com/b/A2YzTw/cy6aG
http://paperpile.com/b/A2YzTw/qxT1K
http://paperpile.com/b/A2YzTw/qxT1K
http://paperpile.com/b/A2YzTw/qxT1K
http://paperpile.com/b/A2YzTw/qxT1K
http://paperpile.com/b/A2YzTw/qxT1K
http://paperpile.com/b/A2YzTw/qxT1K

	Table of contents
	Results
	Biological age does not outperform chronological age as a survival predictor
	Quality control and power of genome-wide association studies

	Discussion
	Analysis of the bias in the residuals
	Biological age does not outperform chronological age as a survival predictor

	Methods
	Hardware
	Software Versions
	Our code can be found on github: https://github.com/Deep-Learning-and-Aging. The versions of the libraries are in the Supplement and in the repository. For the genetics analysis, we used the BOLT-LMM (v. 2.3.2) and BOLT-REML (v. 2.3.2) and FUMA (v1.3....
	Training, tuning and predictions
	Hyperparameters tuning upstream of the cross-validation
	Cross-validation
	Cross-validation example

	Generating average predictions for each participant
	Interpretability of the predictions
	Genome-wide association study (GWAS) of accelerated aging
	Non-genetic correlates of accelerated aging
	Imputation of the non-genetic X-variables
	X-Wide Association Studies
	Prediction of accelerated abdominal aging
	Algorithms
	Training and tuning of the models
	Nested cross-validation
	Bayesian hyperparameters optimization
	Example

	Interpretability of the models

	X-Correlations between the abdominal aging dimensions
	X-Correlations based on the XWAS results
	X-Correlations based on the feature importances


	Survival prediction

	Supplementary Figures
	Supplementary Tables
	Supplementary References

