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The associations between metagenomics data and clinical parameters 

In gut microbiome, our analysis showed that the abundance of species belongs to Bacteroides 

(Sanguibacteroides justesenii) in the gut was negatively correlated with all HS, AST, ALT, 

GGT and uric acid levels (P<0.05, Figure 3A, Dataset S5). In an extended manner, we 

observed that the reduced abundance of individual species in Firmicutes (Firmicutes 

bacterium CAG 95, Firmicutes bacterium CAG 110, Firmicutes bacterium CAG 238, 

Lactobacillus ruminis, Phascolarctobacterium sp CAG 266), Lentisphaerae (Victivallis 

vadensis and Proteobacteria (Bilophila wadsworthia), as well as the increased abundance of 

species, belongs to Proteobacteria (Haemophilus sp HMSC71H05) in the gut were 

significantly correlated with the HS (P<0.05, Figure 3A, Dataset S5). We also found that the 

abundance of species belongs to Actinobacteria (Bifidobacterium longum), Firmicutes 

(Ruminococcus obeum CAG 39 and Holdemanella biformis) and Proteobacteria (Escherichia 

coli) was significantly negatively correlated with ALT, AST and GGT levels, however, 

Firmicutes (Coprococcus comes) was significantly negatively correlated only with ALT and 

AST levels (P<0.05, Figure 3A, Dataset S5). 

In oral microbiome, AST and ALT levels were negatively correlated with the abundances of 

Bacteroides plebeius and Capnocytophaga gingivalis; HS and GGT were negatively 

correlated with the abundances of Capnocytophaga leadbetteri, Streptococcus sp HPH0090 

and Prevotella marshii; HS and AST were positively correlated with the abundances of 

Oscillibacter sp 57 20 and Bacteroides fragilis. Moreover, HS positively correlated with the 

abundances of Alistipes shahii, Escherichia coli, Neisseria macacae, Actinomyces sp oral 

axon 414 as well as negatively correlated with the abundances of Porphyromonas 

endodontalis, Streptococcus sp F0442, Prevotella marshii, Treponema sp OMZ 838, 

Prevotella sp F0091 and Treponema denticola (P<0.05, Figure 3B, Dataset S5). 

The gut microbiota plays a significant role in uric acid metabolism. We showed that the 

abundances of Ruminococcus bromii, Slackia isoflavoniconvertens, Dorea longicatena, 

Firmicutes bacterium CAG 95, Firmicutes bacterium CAG 110, Bilophila wadsworthia, 

Victivallis vadensis, Roseburia sp CAG 182 and Phascolarctobacterium sp CAG 266 in the 

gut microbiome and the abundances of Capnocytophaga leadbetteri, Capnocytophaga 

granulosa, Streptococcus sp HPH0090 and Treponema denticola in the oral microbiome were 

significantly negatively correlated with both uric acid levels and HS (P<0.05, Figure 3A & 

Figure 3B, Dataset S5). We also found that the abundances of Bacteroides sp CAG 144, 

Alloprevotella tannerae, Prevotella jejuni, Streptococcus cristatus and Veillonella rogosae in 

the gut microbiome and the abundances of Centipeda periodontii, Prevotella sp oral taxon 

820, Actinomyces meyeri and Desulfobulbus oralis in the oral microbiome were significantly 

positively correlated with the uric acid levels (P<0.05, Figure 3A & Figure 3B, Dataset S5). 

We observed a negative correlation between uric acid levels and the abundances of species 

belongs to Actinobacteria (Bifidobacterium angulatum, Bifidobacterium longum and 

Bifidobacterium bifidum), Bacteroides (Butyricimonas virosa) and Firmicutes (Mitsuokella 

multacida, Oscillibacter sp CAG 241, Firmicutes bacterium CAG 83, Megasphaera elsdenii, 

Blautia obeum, Eisenbergiella tayi and Eubacterium sp CAG 251) in the gut microbiome 



(P<0.05, Figure 3A, Dataset S5), and the abundances of species belongs to Bacteroides 

(Capnocytophaga sputigena) in the oral microbiome (P<0.05, Figure 3B, Dataset S5) 

The link between the oral and gut microbiome 

To study the transitions and interactions between the oral and gut microbiome, we performed 

correlation analysis between the abundance of species and observed significant correlations 

between them (P<0.05, Figure 3C, Dataset S6). We found that the abundance of the 

Oscillibacter sp CAG 241, which was significantly reduced in severe steatosis vs no steatosis 

and negatively associated with uric acid levels in the gut was significantly positively 

correlated with the abundance of Prevotella histicola and Aggregatibacter segnis in the oral 

microbiome. We also found that the abundance of the Bacteroides uniformis, significantly 

increased in moderate steatosis vs no steatosis, in the gut was significantly positively 

correlated with the abundance of Rothia mucilaginosa in the oral microbiome. Similarly, we 

found that the abundance of the Roseburia inulinivorans significantly increased in moderate 

steatosis vs no steatosis in the gut was significantly positively correlated with the abundance 

of Actinomyces odontolyticus and Actinomyces sp HMSC035G02 and significantly negatively 

correlated with the abundance of Porphyromonas somerae and Neisseria flavescens in the 

oral microbiome. 

On the other hand, we found that the abundance of Campylobacter concisus, significantly 

negatively associated with HS in the oral microbiome was significantly positively correlated 

with the abundance of Alistipes putredinis and Collinsella aerofaciens in the gut microbiome 

(P<0.05, Figure 3C, Dataset S6). Moreover, we found that that the abundance of Veillonella 

atypica, significantly reduced in mild steatosis vs no steatosis in the oral microbiome was 

significantly negatively correlated with the abundance of Parasutterella excrementihominis 

in the gut microbiome. Of note, we found that abundances of Parasutterella 

excrementihominis in the gut microbiome were mostly affected by alterations in the 

abundance of different species in the oral microbiome (P<0.05, Figure 3C, Dataset S6). 

The influence of the microbiome on the plasma metabolome  

In the gut microbiome, we observed that the abundance Bacteroides uniformis, significantly 

increased in subjects with moderate steatosis and Oscillibacter sp CAG 241 that was 

significantly reduced in subjects with severe steatosis is significantly correlated with the 

plasma metabolites involved in amino acid metabolism. 

In the oral microbiome, the plasma level of phenol glucuronide (tyrosine metabolism) was 

positively correlated with the abundances of Prevotella sp oral taxon 306, Porphyromonas 

gingivalis and Prevotella intermedia but negatively correlated with the abundances of Rothia 

dentocariosa and Streptococcus sanguinis (Figure S3, Dataset S13). We also observed that 

the abundance of Campylobacter concisus, significantly negatively correlated with HS and 

Veillonella atypica, significantly reduced in subjects with mild steatosis vs no steatosis was 

significantly correlated with the glutamate and phenol sulfate, respectively. These species' 

abundances were also associated with the plasma level of metabolites involved in amino acid 

metabolism, carnitine metabolism, and lipid metabolism. 



The plasma level isovalerylcarnitine, associated with BCAA metabolism, was positively 

correlated with the abundances of Alloprevotella tannerae, Prevotella nigrescens and 

Prevotella oulorum but negatively correlated with the abundances of Prevotella histicola and 

Streptococcus infantis. The plasma level of tiglyl carnitine, associated with BCAA 

metabolism, was positively correlated with the abundances of Alloprevotella tannerae and 

Prevotella shahii but negatively correlated with the abundances of Streptococcus 

parasanguinis, Megasphaera micronuciformis, Veillonella atypica, Veillonella dispar and 

Neisseria sicca.  

The plasma level of N6,N6,N6-trimethyllysine (lysine metabolism) was positively correlated 

with the abundances of Porphyromonas gingivalis and Porphyromonas somerae but 

negatively correlated with the abundances of Veillonella atypica, Prevotella histicola, 

Prevotella salivae and Neisseria sp oral taxon 014. The plasma level of 2,3-dihydroxy-5-

methylthio-4-pentenoate (methionine, cysteine, and taurine metabolism) was positively 

correlated with the abundances of Prevotella nigrescens but negatively correlated with the 

abundances of Actinomyces odontolyticus, Actinomyces sp HMSC035G02, Prevotella 

intermedia and Campylobacter concisus. The plasma level of glutamate (glutamate 

metabolism) was positively correlated with the abundances of Prevotella copri and Neisseria 

mucosa but negatively correlated with the abundances of Prevotella intermedia, 

Fusobacterium periodonticum and Campylobacter concisus; urate (purine metabolism) was 

positively correlated with the abundances of Prevotella oulorum, Prevotella sp oral taxon 

306, Tannerella sp oral taxon HOT 286 but negatively correlated with the abundances of 

Porphyromonas endodontalis and Prevotella intermedia. All correlations between individual 

species in the oral microbiome and plasma metabolites presented in Figure S3 and Dataset 

S13. 

The influence of the microbiome on the plasma proteome 

In the group with the moderate steatosis, we found that CSF1 was positively correlated with 

the abundance of Parasutterella excrementihominis; TWEAK was positively correlated with 

the abundance of Oscillibacter sp CAG 241; CCL23 was negatively correlated with the 

abundances of Roseburia intestinalis, Eubacterium eligens, Barnesiella intestinihominis and 

Roseburia faecis (Figure S4, Dataset S14). Additionally, associations of significant proteins 

in the group with severe steatosis with gut microbiome revealed a negative correlation 

between HGF plasma level and the abundances of Butyrivibrio crossotus and Roseburia 

intestinalis; a negative correlation between NT-3 plasma level and the abundances of 

Prevotella sp CAG 279; a positive correlation between OPG plasma level and the abundances 

of Dialister sp CAG 357 and Coprococcus eutactus; a positive correlation between CCL3 

plasma level and the abundances of Oscillibacter sp 57 20, Dialister sp CAG 357 and 

Coprococcus eutactus; a positive correlation of CCL4 plasma level and the abundances of 

Roseburia inulinivorans and Coprococcus eutactus, but a negative correlation with the 

abundances of Roseburia intestinalis; a positive correlation of CCL20 plasma level and the 

abundances of Coprococcus eutactus (Figure S4, Dataset S14).  

In the oral microbiome, we found species within Neisseria genus (N. mucosa, Neisseria sp 

oral taxon 014, N. elongate, N. subflava, N. sicca), Rothia genus (R. aeria, R. dentocariosa, 



R. mucilaginosa) and Veillonella genus (V. parvula, V. atypica) were positively associated 

with the numerous inflammatory proteins (Figure S5, Dataset S14). However, there was a 

negative correlation between the abundance of species belonging to the Porphyromonas 

genus (namely P. somerae, P. endodontalis, P. gingivalis) and the Prevotella genus (namely 

P. pallens, P. oulorum, P. shahii, P. intermedia) with the inflammation-related proteins 

(Figure S5, Dataset S14). Interestingly, the abundances of the Neisseria flavescens, 

Haemophilus parainfluenzae and Campylobacter concisus were also negatively correlated 

with inflammation-related proteins (Figure S5, Dataset S14). Besides, FGF-21 plasma level 

was negatively correlated with the abundances of Streptococcus mitis and Tannerella sp oral 

taxon HOT 286; CDCP1 plasma level was positively correlated with the abundances of 

Neisseria mucosa and negatively correlated with the abundances of Tannerella sp oral taxon 

HOT 286; IL-6 plasma level was negatively correlated with the abundances of 

Porphyromonas endodontalis and CSF-1 plasma level was negatively correlated with the 

abundances of Alloprevotella tannerae (Figure S5, Dataset S14). Other significantly 

correlated species with plasma inflammation-related proteins are presented in Figure S5, 

Dataset S14.  

 

SUPPLEMENTARY FIGURE LEGENDS 



 

Figure S1 (A) Venn diagram shows significantly altered lipid metabolites in all 

comparisons. Heatmap shows Log2FC based alterations of metabolites that are 

exclusively different in the subjects with (B) mild steatosis and (C) moderate 

steatosis compared to the subjects with no steatosis. (D) All significantly altered lipid 

metabolites in the subjects with severe steatosis compared to the subjects with no 



steatosis. Asterisks indicate statistical significance based on t-test. P<0.05. Log2FC: 

log2(fold change). 

  



 

Figure S2 Heatmap is showing the Spearman correlation score (paired) between 

metabolites and gut microbiota species (abundance > 1%). Asterisks denotes 

significant correlations (P < 0.05). Only metabolites that were significantly correlated 

with 5 or more species are shown in the heatmap 

  



 

Figure S3 Heatmap is showing the Spearman correlation score (paired) between 

metabolites and oral microbiota species (abundance > 1%). Asterisks denotes 

significant correlations (P < 0.05). Only metabolites that were significantly correlated 

with 5 or more species are shown in the heatmap 

  



 

Figure S4 Heatmap is showing the Spearman correlation score (paired) between 

proteins and gut microbiota species (abundance > 1%). Asterisks denotes significant 

correlations (P < 0.05). 

  



 

Figure S5 Heatmap is showing the Spearman correlation score (paired) between 

proteins and oral microbiota species (abundance > 1%). Asterisks denotes 

significant correlations (P < 0.05). 

  



 

Figure S6 Top 20 features from (A) clinical, (B) metabolomics, and (C) proteomics 

data identified by random forest classification. Analytes altered significantly (P < 

0.05) between severe vs no steatosis comparison are marked in bold. 

  



 

Figure S7 Top 20 features from (A) Gut and (B) Oral microbiome data identified by 

random forest classification. Analytes altered significantly (P < 0.05) between severe 

vs no steatosis comparison are marked in bold. 

  



 

Figure S8 (A) – (I) AUC-ROC curves for HS prediction based on single/multi-omics 

data based on the data from 56 subjects. (J) AUC-ROC curve for validation of the 

final model predicts HS based on the data from 22 subjects. 

  



SUPPLEMENTARY DATASETS 

Dataset S1 Clinical and physical variables (A-C) are presented for the 56 subjects, 

recruited in the finding cohort. D) The mean values for these variables and the 

differences in the clinical and physical variables between subjects with mild, 

moderate, and severe hepatic steatosis are compared to those with no hepatic 

steatosis. 

Dataset S2 Clinical and physical variables (A-C) and the mean values (D) of the 

variables are presented for the 22 subjects, recruited in the validation cohort. Multi-

omics data, including oral (E) and gut (F) metagenomics, metabolomics (G) and 

proteomics (H) data generated for the 22 subjects. (I) The difference of clinical 

characteristics between the overall 56 subjects and the 22 subjects. 

**Dataset S3 Metagenomics Raw Data for each of 56 subject recruited in the 

study.** 

Dataset S4 Differences in the abundance of the species in the gut and oral 

microbiome between the subjects with mild, moderate and severe hepatic steatosis 

compared to those with no hepatic steatosis.  

Dataset S5 Associations between the abundance of the species in the gut and oral 

microbiome and the level of significantly altered clinical variables are presented. 

Dataset S6 Association between the abundances of species in the gut and oral 

microbiome is presented. 

**Dataset S7 Untargeted metabolomics data for each of 56 subject recruited in the 

study.** 

Dataset S8 Differences in plasma level of metabolites between the subjects with 

mild, moderate and severe hepatic steatosis compared to the subjects with no 

hepatic steatosis. Only metabolites detected in >50% of samples were analysed. 

Dataset S9 Associations between the plasma level all metabolites and the level of 

significantly altered clinical and physical variables are presented. 

**Dataset S10 The Olink multiplex inflammation panel used to detect the dynamic 

range of 72 proteins in the subjects' plasma samples.** 

Dataset S11 Differences in the plasma level of inflammation-related proteins 

between the subjects with mild, moderate and severe hepatic steatosis compared to 

the subjects with no hepatic steatosis. Only proteins detected in >50% of samples 

were analysed. 

Dataset S12 Associations between the plasma level of all inflammation-related 

proteins and the level of significantly altered clinical and physical variables are 

presented. 

Dataset S13 Associations between the plasma level all metabolites and the 

abundance of the species in the gut and oral microbiome are presented. 



Dataset S14 Associations between the plasma level all proteins and the abundance 

of the gut and oral microbiome species are presented. 

Dataset S15 Highly ranked metabolites, proteins, species and clinical features based 

on Random Forest analysis. 

Dataset S16 Multi-Omics Network Data, including edges and nodes information, are 

presented. The network is shown in the iNetModels (http://inetmodels.com). 

 

 


