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1. Details of LC-MS datasets 

1.1. Example S1: MESA serum LPOS vs Rotterdam serum LPOS and Example S2: MESA 

serum LNEG vs Rotterdam serum LNEG 

These datasets were acquired by Metabometrix, a London-based metabolomics service company. The 

samples were processed and analysed in study batches. Multi-ethnic study of atherosclerosis (MESA) 
1 and Rotterdam study 2 human serum samples were thawed, and three parts of cold isopropanol were 

added to each sample, followed by incubation of 2 h at -20°C, centrifugation, and analysis of the 

supernatant with a Waters Acquity Ultra Performance LC system coupled to a Xevo G2-S ToF mass 

spectrometer (Waters Corp., Milford, MA, USA) . The metabolites were separated by reversed-phase 

ultra-performance liquid chromatography by gradient elution. The mobile phases were composed of 

a solution of 5 mM Ammonium acetate + 0.05% Acetic acid in a mixture of 25:25:50 proportion of 

Isopropanol, acetonitrile and ultra-pure water (Mobile phase A); and 5mM Ammonium acetate + 

0.05% Acetic acid in a 50:50 mixture of Acetonitrile and Isopropanol (Mobile phase B).  After injection 

of 100 μL sample the chromatography was run at flow rate of 0.6 mL/min using the gradient: 99% A 

(0-2 min); 70% A (2-11.5 min) and 10% A (11.5-12 min). The MS data was collected separately in 

positive and negative mode electrospray ionization (RP UPLC MS ESI+/-). The capillary voltage was set 

to 1.5 kV for positive mode and 1.0 kV for negative mode, cone voltage was 20 V, source temperature 

was set at 120 °C with a cone gas (nitrogen) flow rate of 50 L/h, a desolvation gas temperature of 600 
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°C, and a nebulization gas (nitrogen) flow of 1000 L/h.  All mass spectral data were collected in centroid 

mode using a 50-2000 m/z scan range. Lock-mass scans were collected every 30 s to perform mass 

correction. Leucine Enkephalin (555.2645 amu) (20 μg/L) at a flow rate of 15 μL/min was used for lock-

mass correction. The MSE data acquisition mode was used, in which MS scans are acquired by 

alternating all-ion fragmentation with no fragmentation 3. When no fragmentation was employed 

(odd scans) a low collision energy (4 eV) was used and a high collision energy (ramp (10-30 eV) was 

used to acquire fragmentation scans (even scans). Only low collision scans MS from both datasets 

were considered.  

Both datasets were separately processed using XCMS 4. Briefly, peaks were picked using centWave 

method using the following parameters for UPLC MS ESI+: 15 ppm tolerance, peak width (8, 20), signal-

to-noise threshold (snthresh) 10, noise level 300 and prefilter (6, 1000); and for UPLC MS ESI-: 30 ppm 

tolerance, peak width (5, 20), signal-to-noise threshold (snthresh) 15, noise level 300 and prefilter (6, 

1000). After peak grouping, non-linear retention time correction was applied, then missing values 

were imputed which yielded a table of samples (rows) by features (columns).  

Retention time trimming was applied to both MESA and Rotterdam datasets. In the LPOS platform, 

only features at RT < 12 minutes were selected, while in the LNEG platform only features between 

0.45 – 9.5 minutes were selected. Additionally, a set of quality control samples created from the same 

pooled sample but at different dilution levels were injected, and for each metabolomic feature the 

linearity of the measured value vs know value was evaluated using robust linear regression. R-squared 

was used as a goodness-of-fit measure, and all features with R-squared < 0.7 were removed. 

1.2. Example S4: AD plasma LPOS vs Airwave plasma LPOS 

1.2.1. AD plasma LPOS 

 

This dataset was acquired by Prof. Julian Griffin’s group at Imperial College London. The 40 samples 

were obtained from a group of Alzheimer’s patients and control. Briefly, samples were defrosted from 

-80°C overnight to 4°C. Extraction was performed using a modified Folch extraction, 100 µl plasma 

was homogenised in 800 µl cold (-20C) CHCl3:MeOH (2:1,v/v). In addition, 20 µl of each sample were 

collected for a pooled quality control sample (QC). Samples were stored at -20°C for 30 minutes to 

ensure protein precipitation. Then 400 µL water was added, followed by vortex mixing (2 x 20 s) and 

centrifugation at 12000 RPM, 4°C, for 15 minutes. The organic lower layer from each sample was 

transferred to a 2ml glass vial and evaporated to dryness under a stream of nitrogen and stored at -

20°C until analysis.  

On the day of analysis samples were re-constituted with IPA:ACN:H2O and each sample spiked with 

SPLASH LIDIDOMIX Mass Spec Standard (1:300, Avanti Polar Lipids Inc., Alabaster, AL, US). Instrument 

setup has been described previously 5. Briefly, the ion-mobility chromatography used an Infinity II 

UHPLC coupled to an Agilent 6560 IM QTOF MS (Agilent Technologies, Santa Clara, USA) using a 

reversed-phase ACQUITY CSH C18 column (1.7µm, 2.1 x 100mm, Waters, UK), thermostated at 55°C 

during analysis. The mobile phase consisted of (A) 10 mM ammonium formate solution in 60% of water 

and 40% of ACN and (B) 10 mM ammonium formate solution containing 90% of IPA, 10% of ACN, 

pumped at a flow rate of 400 µL/minute. The gradient was initiated at 60% A, linearly decreased to 

50% A over 2 minutes, then decreased to 1% A over 14 minutes before being brought back to initial 

conditions over 2 minutes. 

Raw data was pre-processed with the MassHunter Workstation suite (Agilent Technologies, Santa 

Clara, USA) to perform mass re-calibration, DTCCSN2 re-calibration and deconvolution, yielding a matrix 

containing all features present across all samples. The data matrix was further processed with KniMet 
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6, a pipeline on the Knime analytic platform. Features were filtered based on their presence in blanks 

and QC samples.  

 

1.2.2. Airwave plasma LPOS 

 

The Airwave health monitoring study 7 was established to study possible health risks from the use of 

a personal communication device in police and emergency personnel in the United Kingdom. This large 

epidemiological dataset (~3000 samples) was acquired by the National Phenome Centre at Imperial 

College London. Airwave utilised lithium heparin plasma samples stored at −80 °C prior to the analysis. 

The complete sample preparation and acquisition details can be found in 8. Briefly, samples were 

thawed at 4°C for 2h, then prepared for lipid analysis by addition of four parts of isopropanol (IPA) 

containing the mixture of reference standards to one part of the sample for protein precipitation. 

After mixing to allow protein precipitation and centrifugation for 10mins at 3486×g and 4°C, the 

supernatant was aliquoted to a 96-well plate for the analysis.  Subsequently, 2µL of sample were 

injected in the chromatographic system using full loop mode. Lipidomic profiling was conducted using 

a 2.1×100mm BEH C8 column, held at 55°C. Mobile phase A consisted of a 50:25:25 mixture of 

H2O:ACN:IPA with 5mm ammonium acetate, 0.05% acetic acid, and 20µM phosphoric acid. Mobile 

phase B consisted of 50:50 ACN:IPA with 5mm ammonium acetate, 0.05% acetic acid. The initial 

conditions were 99% A, decreased to 10% A over 11.4 minutes at a flow rate of 0.6 mL/minute, 

followed by column wash and equilibration at initial conditions. The mass spectrometry parameters 

for lipid analysis were set as follows: capillary voltage 2/1.5kV (positive/negative ionisation mode), 

sample cone voltage 25V, source temperature 120°C, desolvation temperature 600°C, desolvation gas 

flow 1000L.h-1, and cone gas flow 150L.h-1. Data were collected in centroid mode with a scan range of 

50-2000m/z and a scan time of 0.15s. For mass accuracy, LockSpray mass correction was performed 

using a 200pg.μL-1 leucine enkephalin solution (m/z 556.2771 in ESI+) in 50:50 H2O:ACN solution at a 

flow rate of 10μL.min-1. Lockmass scans were collected every 60s and averaged over 3 scans. 

The dataset was processed using XCMS 4, yielding a table of samples (rows) by features (columns). 

Retention time trimming was applied, selecting only features between 0.45-12 minutes. Also, only 

features between 120-1400 m/z were considered. To ensure the quality of the features used in this 

matching, we only used those that were present also in two other datasets in our laboratory. 

 

 

1.3. Example S5: Airwave plasma HPOS vs MESA serum HPOS 

1.3.1. Airwave plasma HPOS 

The Airwave health monitoring study 7 was established to study possible health risks from the use of 

a personal communication device in police and emergency personnel in the United Kingdom. This large 

epidemiological dataset (~3000 samples) was acquired by the National Phenome Centre at Imperial 

College London. Airwave utilised lithium heparin plasma samples stored at -80 °C previous to the 

analysis. The complete sample preparation and acquisition details can be found in 8. Samples were 

thawed at 4°C for 2h. Subsequently, 100 µL of samples were spiked with 10 µL of HILIC internal 

standards (details can be found in Izzi-Engbeaya et al., 2018). Three parts of acetonitrile were then 

added to one part of the sample for protein precipitation followed by mixing and centrifugation to 

separate precipitated protein from supernatant aliquoted for the analysis using LC and MS parameters 

reported in 9. 
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The dataset was processed using XCMS 4, yielding a table of samples (rows) by features (columns). 

Retention time trimming was applied, selecting only features between 0.55-6.2 minutes. To ensure 

the quality of the features used in this matching, we only used features that were present also in two 

other datasets in our laboratory.  

1.3.2. MESA1 serum HPOS 

This large dataset (~2000 samples) was acquired by Metabometrix, a London-based metabolomics 

services company. MESA 1 human serum samples were stored in -80°C. For sample preparation, they 

were thawed, and three parts of cold isopropanol were added to each sample, followed by incubation 

of 2 h at -20°C, centrifugation, and analysis of the supernatant by an Acquity UPLC system coupled to 

a Xevo G2 ToF mass spectrometer (Waters Corporation). The metabolites were separated by 

Hydrophilic interaction ultra-performance liquid chromatography. The mobile phases were composed 

of: A - 100% ACN + 0.1% formic acid; B - H2O, 20mM Ammonium formate, 0.1% formic acid. The 

gradient was initiated at 95% A with a flow rate of 0.6 mL/minute. A was decreased to 50% over 6.75 

minutes and held at 50% for 1.15 minutes before equilibration prior to injection.  

The dataset was processed using XCMS 4, yielding a table of samples (rows) by features (columns). 

Retention time trimming was applied, selecting only features between 0.4-6.0 minutes. Only features 

detected in at least 20% of the samples were considered. 

 

1.4. Example S6: MESA serum HPOS vs Airwave urine HPOS 

1.4.1. MESA2 serum HPOS 

This large dataset (~2000 samples) was acquired by Metabometrix, a London-based metabolomics 

services company. MESA 1 human serum samples were stored in -80°C. For sample preparation, they 

were thawed, and three parts of cold isopropanol were added to each sample, followed by incubation 

of 2 h at -20°C, centrifugation, and analysis of the supernatant by an Acquity UPLC system coupled to 

a Xevo G2-S ToF mass spectrometer (Waters Corporation). The metabolites were separated by 

Hydrophilic interaction ultra-performance liquid chromatography. The mobile phases were composed 

of: A - H2O, 20mM Ammonium formate, 0.1% formic acid; B - 100% ACN + 0.1% formic acid. The 

gradient was initiated at 95% B with a flow rate of 0.6 mL/minute. B was decreased to 80% over 4.5 

minutes, then decreased to 50% over 0.9 minute and held at 50% for 1.5 minutes before equilibration 

prior to the subsequent injection. The dataset was processed using XCMS 4, yielding a table of samples 

(rows) by features (columns). Retention time trimming was applied, selecting only features between 

0.5-6.5 minutes. Additionally, features that correlated more than 0.75 with a peak due to undesired 

polymeric compound were deleted.  

 

1.4.2. Airwave urine HPOS 

The Airwave health monitoring study 7 was established to study possible health risks from the use of 

a personal communication device in police and emergency personnel in the United Kingdom. This large 

dataset was acquired by the National Phenome Centre at Imperial College London. The details have 

been published previously 9. The data acquisition was performed using an ACQUITY UPLC (Waters 

Corp., Milford, MA, USA) coupled to a Xevo G2-S oaTOF MS (Waters Corp., Manchester, UK) operating 

in positive ESI mode. 

The dataset was processed using Progenesis QI, yielding a table of samples (rows) by features 

(columns). Retention time trimming was applied, selecting only features between 0.6-6.5 minutes.  

2. Procedure notes 



S-7 
 

2.1. Reference and target datasets 
The terms “reference” and “target” dataset refer to the two datasets to be matched. All thresholds 

and calculations are made and plotted using the “reference dataset”. Due to the way the inter-dataset 

shifts are found, the method is not symmetric, meaning different results may be obtained by swapping 

reference and target datasets. Nevertheless, in our experience, very similar results are expected 

regardless of the choice of reference and target datasets. 

For each dataset we are provided with a set of features to match, defined by (RT, MZ, FI) values. Note 

that these are summary level data, not individual level ones.  For example, the FI of a feature 

corresponds to the median FI for that feature across all samples in the dataset. This has the advantage 

that sample- or individual-specific information is not required to run the algorithm. 

2.2. Use of FI for matching 
Though usually we discuss the use of RT, MZ and FI for matching, not all have to be used, depending 

on the application and on dataset similarity. For example, when the datasets are very similar (e.g., 

different batches of the same experiment) one could use RT, MZ and FI. Conversely, when matching 

datasets peak-picked using different software or from different populations or tissues, the FI is not 

expected to be similar in the two sets and the FI weight (in WFI) can be set to zero. It may be necessary 

to adjust the target FI to the reference, which is explained in section 4.3. 

2.3. Metabolomic feature aggregation 
For best results, during peak-detection and integration it advantageous to keep the features of all 

adducts and isotopic forms of a metabolite, instead of combining them into a single feature. This is 

because, if the features are combined, then a single (MZ, RT, FI) triad will represent the feature and it 

may not be the same (MZ, RT, FI) selected in both datasets, and thus a match may not be found. Also, 

for each metabolite, in case of undesirable effects such as detector saturation, abnormal peak 

integration, missing adducts, there is increased probability that at least one of the adducts/isotopic 

forms will match the corresponding one on the other dataset, thus increasing the number of matched 

features available and of good quality for later statistical evaluation. 

2.4. Metabolomic feature quality control 
For better matching results, before applying the method, the independently peak-picked reference 

and target datasets can be cleaned of low-quality features, to reduce the number of poor matches. 

The quality control (QC) procedures may include using laboratory-defined retention time and m/z 

ranges of interest, evaluating the variability of quality control samples for each variable, evaluating 

the regression quality of dilution quality control samples, counting the number of samples containing 

the peak, among others 10. Although improving the quality of the matches, this procedure also reduces 

the number of matches, as deleting low-quality features in even only one of the sets reduces the 

matching across sets. 

3. Supplementary figures 

 

Figure S 1: (left) Example of retention time (RT) correlation between target and reference datasets; (right) example of RT 
distance (RTdist) between RT of target and reference features as a function of the reference RT. Similar plots can be also 
made for MZ and log10FI. 
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Figure S 2: Possible occurrences of poor matches in four multiple-match clusters, or connected components (CCs), with 
reference features in dark blue, target features in light blue). From left to right: single match; multiple-match cluster with two 
features in both reference and target; multiple-match cluster with two features in reference and three in target; multiple-
match cluster with two reference and five target features. The single match cluster will yield one match, while all others may 
each yield (in this example) a maximum of two matches per cluster.  

4. Methods 

In this section we describe the matching method in more detail than space would allow in the main 

paper. 

4.1. Calculation of all distances between features in the two datasets (part of step 1) 
Considering a reference dataset with R features, and a target dataset with T features, the inter-dataset 

distance in each dimension can be calculated for each pair of reference-target features as: 

 

𝑅𝑇𝑑𝑖𝑠𝑡𝑡𝑟 = 𝑅𝑇𝑡𝑎𝑟𝑔𝑒𝑡 𝑡 − 𝑅𝑇𝑟𝑒𝑓 𝑟    (1a) 

𝑀𝑍𝑑𝑖𝑠𝑡𝑡𝑟 = 𝑀𝑍𝑡𝑎𝑟𝑔𝑒𝑡 𝑡 − 𝑀𝑍𝑟𝑒𝑓 𝑟    (1b) 

𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡𝑡𝑟 = 𝑙𝑜𝑔10𝐹𝐼𝑡𝑎𝑟𝑔𝑒𝑡 𝑡 − 𝑙𝑜𝑔10𝐹𝐼𝑟𝑒𝑓 𝑟   (1c) 

 

4.2. Definition of initial matching thresholds (part of step 1) 
Two lines in the per dimension plots (e.g., RTdist vs RT) define the upper and lower limits of the 

matching areas (see e.g., Figure SE1 3), and they describe absolute threshold values if the slope is 

defined as zero or relative values otherwise. The equations below are used twice in each dimension 

(for lower and upper thresholds, using two different values of intercept and slope). The intercept and 

slope parameters are defined by the user. 

𝑅𝑇𝑑𝑖𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑡𝑟) = 𝑅𝑇𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑅𝑇𝑠𝑙𝑜𝑝𝑒 ∙ 𝑅𝑇𝑟𝑒𝑓(𝑟)    (2a) 

𝑀𝑍𝑑𝑖𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑡𝑟) = 𝑀𝑍𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑀𝑍𝑠𝑙𝑜𝑝𝑒 ∙ 𝑀𝑍𝑟𝑒𝑓(𝑟)   (2b) 

𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑡𝑟) = 𝑙𝑜𝑔10𝐹𝐼𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑙𝑜𝑔10𝐹𝐼𝑠𝑙𝑜𝑝𝑒 ∙ 𝑙𝑜𝑔10𝐹𝐼𝑟𝑒𝑓(𝑟)  (2c) 

 

The cases when the three values in the triad (RTdisttr, MZdisttr, log10FIdisttr) are within their respective 

thresholds become candidate matches. In those cases, the feature-related subscript “tr” is substituted 

by the match-related “m” and a total of M candidate matches (including multiple ones) is found for 

the two datasets (Figure 1, bottom panel, step 1). The cases where that triad is not within the 

thresholds do not originate candidate matches, and those are not considered any more in the 

procedure. 
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4.3. Adjust FI of target to FI of reference (part of step 1) 
Considering that after matching features between two datasets a number of matches have been 

obtained, at this point it is possible to compare their log10FI. Again, note that we only consider the 

median of the log10FI across each dataset, and ignore values for individual samples. If no good 

correlation between the median log10FI in the two sets is observed, then log10FI should not be used 

for matching. Otherwise, for datasets with similar characteristics it is reasonable to expect that a large 

peak in one is also large in the other (on average) and FI can be considered for matching. Correlation 

does not require identical values in both sets, thus the log10FI values of target can be adjusted to the 

reference before any calculations. Two methods are proposed: 

4.3.1. Median method 

To simply adjust robustly for a systematic difference, assume the offset as the median difference 

between log10FI of all matches: 

FIoffset = median (log10FItarget – log10FIref)    (3a) 

and subtract it from each target feature in a match m:  

log10FItarget(m) = log10FItarget(m) - FIoffset     (3b) 

as shown in Figure SE1 4.  

4.3.2. Regression method 

In this case the adjustment is performed using robust linear regression of log10FIref vs log10FItarget of the 

two sets: 

log10FIref = slope . Log10FItarget + intercept     (3c) 

and then obtain the adjusted log10FItarget as the model’s predicted values of log10FItarget. 

 

 

4.4. Define neighbours (part of step 2a) 
The neighbours of a feature m are the k features in the same dataset that are closest to that feature, 

either in each dimension (RT, MZ, FI) separately, or as a consensus including multiple dimensions. The 

number of neighbours can be directly defined (e.g., 21) or as a percentage of the number of features 

in the reference dataset without considering features in clusters of multiple matches (e.g., 0.01 for 1% 

of the number of reference features not in clusters). There are two methods to define neighbours, 

“cross” and “circle”, these names arising from the pattern the neighbours form in the MZ vs RT plot 

(Figure S 3 and Figure S 4, left plots).  

In order to reduce the influence of features that are part of matches but will not be selected in the 

end (either because they were in multiple matches or in poor matches), only features in single matches 

are used to sample the neighbours. This is applied in both methods. 

4.4.1. “Cross” method 

The “cross” method defines k neighbours independently in each of the dimensions (RT/MZ/log10FI) 

and uses those to calculate expected inter-dataset shift (trends) and residuals for each dimension 

separately. A robust LOESS using a span of 10% (of the number of matches) is then used to smooth 

the expected inter-dataset shift points (trends) for the complete dataset. This results in the RTdist 

being the same for features at the same RTref (and similarly for MZ). 
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Figure S 3: Definition of neighbours and expected inter-dataset shift for a single match using the “cross” method. A set of 
independent k neighbours is defined in each dimension, meaning they are the closest features to the feature in question in 
that dimension. Bottom row shows a zoom of the top row plots. The grey “x” represents the inter-dataset distance for the 
match in question and the “o” is the corresponding expected inter-dataset shift, red and blue dots are the chosen neighbours 
in each of the dimensions. The first plot on the left is the MZ vs RT of reference and the others are distance plots as previously 
presented. 

4.4.2. “Circle method” 

The “circle” method defines k neighbours in (normalised) RT and MZ simultaneously (thus finding the 

same features as neighbours in both dimensions) by evaluating the Euclidean distance using those 

dimensions only, not FI. This means that the RTdist (and/or MZdist) can be different for features at 

similar RTref. Because the expected log10FI is not necessarily similar for neighbour features in the MZ 

vs RT space, log10FI is not used in this method and the expected inter-dataset shift for log10FI is 

defined as zero. Thus, in practice the residuals for log10FI are directly obtained by reference log10FI 

subtraction from target log10FI.  

 

 

 

Figure S 4: Definition of neighbours and expected distances for a random feature using the “circle” method. A set of k 
neighbours is defined simultaneously for RT and MZ using Euclidean distance. The bottom row of plots shows a zoom of the 
top row. The grey “x” represents the inter-dataset distance for the feature in question and the “o” is its expected inter-dataset 
shift. Notice there is no FI dimension in this method. 
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Figure S 5: Match distances (black dots) in each of the dimensions and expected distances (red circles) calculated by the two 
methods (“cross” and “circle”) using 1% of the total number of reference features as neighbours. Top row: Independently 
calculated expected distances in each dimension using the “cross” method. Bottom row: Consensus expected distances for RT 
and MZ using the “circle” method. The “cross” method seems to define more tight expected values than the “circle” method, 
as the latter allows for different e.g., RTdist for the same RT of a reference. Notice that while the “cross” method red points 
are actually a smooth line, the ones in the “circle” are individual unsmoothed points. 

 

4.4.3. Difference between the two methods 

Importantly, the “circle” method allows for clusters of features at e.g., same RT but different MZ to 

present different inter-dataset RT shift trends, and this does not happen in the “cross” method, where 

matches at the same reference RT have a single inter-dataset RT shift trend (the same would apply for 

MZ). In other words, the points obtained by the “cross” method can be smoothed by adjusting a line 

to it, while the points in the “circle” method are left unsmoothed (as there could be multiple “lines” 

for each e.g., RT of the reference). As an example of this effect, consider the reference features (left 

plot) in Figure S 6 and compare the groups of features at RT = 8 minutes and MZ = 700 m/z to the 

features with the same RT at around MZ = 1600. If those features had different physico-chemical 

properties, then in the target dataset (right plot) the two groups should not elute at the same 

retention time, and the use of the “circle” method may be advantageous, modelling both individually. 

The left plots on Figure S 5 actually show this effect in practice, as while in the “cross” plot there is 

only one line (in red), at RTref < 2 minutes the “circle” method presents two almost parallel sets of 

points, meaning it is finding the distances differently for two groups of matches at the same RTref. 

Another example is presented in Figure S 6. 

  

Figure S 6: The expected RT inter-dataset shift at the same RT=8 minutes value is not necessarily the same for clusters of 
features at different values in MZ, and the “circle” method can model both separately. These two matches could both be at 
their own expected inter-dataset shift regardless of being at the same retention time. That would not happen if using the 
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“cross” method, as there is a single expected inter-dataset shift for each RT value. (NOTE: The same applies to inverse roles 
of RT and MZ).  

4.5. Step 2a: Define inter-dataset shift using feature neighbours 
To find the inter-dataset shift at a specific e.g. RT value, start by finding the k nearest neighbours of 

its reference feature in the (MZ, RT, log10FI) space of the reference dataset according to one of the 

methods previously described. Then calculate RTdistneigh(m), the RTdist for each of its k neighbours. 

Finally, define the expected inter-dataset shift RTdistexpected(m) for that match as the median (or other 

averaged measure) value of its neighbours’ RTdistneigh(m) as shown in Figure S 5 and calculated below: 

𝑅𝑇𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑚) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑇𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑖𝑔ℎ(𝑚) − 𝑅𝑇𝑟𝑒𝑓_𝑛𝑒𝑖𝑔ℎ(𝑚))  (6a) 

 

The same procedure is also applied to calculate the MZdistexpected(m) and log10FI(m):  

 

𝑀𝑍𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑚) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑍𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑖𝑔ℎ(𝑚) − 𝑀𝑍𝑟𝑒𝑓_𝑛𝑒𝑖𝑔ℎ(𝑚))  (6b) 

In the “circle” neighbours’ method FI is not used, so one defines 𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑚) = 0. For the 

“cross” method, 

𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑚) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑙𝑜𝑔10𝐹𝐼𝑡𝑎𝑟𝑔𝑒𝑡(𝑚) − 𝑙𝑜𝑔10𝐹𝐼𝑟𝑒𝑓(𝑚))  (6c) 

 

4.6. Step 2b: Calculate and normalise residuals 

4.6.1. Calculate residuals 

RT and MZ residuals (Δdist(m)) are the difference between the e.g. RTdist(m) of each candidate match 

and its expected inter-dataset shift value RTdistexpected (m), as in row 3 of Figure 3 (in main paper) 

according to: 

∆𝑅𝑇𝑑𝑖𝑠𝑡(𝑚) = 𝑅𝑇𝑑𝑖𝑠𝑡(𝑚) − 𝑅𝑇𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑚)   (7a) 

∆𝑀𝑍𝑑𝑖𝑠𝑡(𝑚) = 𝑀𝑍𝑑𝑖𝑠𝑡(𝑚) − 𝑀𝑍𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑚)  (7b) 

For the FI dimension the calculation depends on the neighbours’ method chosen. In the neighbours’ 

“cross” method the FI residuals are calculated similarly to the other dimensions:  

∆𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡(𝑚) =  𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡(𝑚) − 𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑚)   (7c) 

 

In the neighbours’ “circle” method we defined 𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑚) = 0, so FI residuals end up as 

simply the difference between target and reference, or 𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡(𝑚) . 

 

4.6.2. Normalise residuals 

The objective in this section is to normalise the values of the residuals in each dimension (RT, MZ, 

log10FI) to control their dispersion, by attributing them the same value (of 1) at a specific threshold 

point. The residuals of the three dimensions are the distances to the inter-dataset shift trends 

observed in each dimension, and by being defined in different units (RT minutes, m/z units, log10FI 

units) need to be normalised before being combined into penalisation scores. A robust z-like score is 

obtained (in each dimension separately) by dividing them by a threshold point defined as the median 
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of the values plus a factor F (default = 3) times the median absolute deviation (MAD). The general 

expression is 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡𝑥 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥) + 𝐹 ∗ 𝑀𝐴𝐷(𝑥)    (8a) 

and thus, applied to each dimension becomes: 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡∆𝑅𝑇𝑑𝑖𝑠𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛(∆𝑅𝑇𝑑𝑖𝑠𝑡) + 𝐹 ∗ 𝑀𝐴𝐷(∆𝑅𝑇𝑑𝑖𝑠𝑡)     (8b) 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡∆𝑀𝑍𝑑𝑖𝑠𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛(∆𝑀𝑍𝑑𝑖𝑠𝑡) + 𝐹 ∗ 𝑀𝐴𝐷(∆𝑀𝑍𝑑𝑖𝑠𝑡)    (8c) 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡∆𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛(∆𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡) + 𝐹 ∗ 𝑀𝐴𝐷(∆𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡)   (8d) 

 

The standardisation becomes thus: 

𝑛𝑜𝑟𝑚∆𝑅𝑇𝑑𝑖𝑠𝑡(𝑚) =
∆𝑅𝑇𝑑𝑖𝑠𝑡(𝑚)

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡∆𝑅𝑇𝑑𝑖𝑠𝑡
   (9a) 

𝑛𝑜𝑟𝑚∆𝑀𝑍𝑑𝑖𝑠𝑡(𝑚) =
∆𝑀𝑍𝑑𝑖𝑠𝑡(𝑚)

𝑡ℎ𝑟𝑒𝑠ℎℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡∆𝑀𝑍𝑑𝑖𝑠𝑡
   (9b) 

𝑛𝑜𝑟𝑚∆𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡(𝑚) =
∆𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡(𝑚)

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡
∆𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡

   (9c) 

 

The threshold point defines a percentile of the residuals. The threshold point could also be decided by 

the analyst directly, by just choosing the desired value of the residuals to be the threshold point, from 

visually inspecting the residuals on e.g., Figure SE1 9. After this adjustment the residual value for all 

dimensions is 1 at the threshold points decided (see e.g., Figure SE1 10), and the residuals of all 

dimensions can be combined into a single value. 

4.7. Step 2c: Define weights for each dimension’s residuals 
The normalisation of the residuals to the value of 1 at the value of the residuals’ dMAD (or defined 

percentile) allows one to understand the impact of the residuals of each dimension and helps define 

their weights WRT,MZ,FI. In the simplest case, and by default, WRT,MZ,FI can be the same in all dimensions 

([1, 1, 1]). Alternatively, the value of WRT,MZ,,FI can be manually defined by inspection of residual plots 

such as in row 4 of Figure 3 (in main paper). For cases where e.g., FI is not relevant, define WFI = 0. 

Notice that the FI dimension should only be considered in case the feature intensities are highly 

correlated and thus comparable in both datasets. 

 

4.8. Step 2d: Calculate penalisation scores 
 

The penalisation score is a weighted root sum of squares of the normalised residuals: 

𝑆𝑐𝑜𝑟𝑒𝑚 = √(𝑊𝑅𝑇 ∙ 𝑛𝑜𝑟𝑚∆𝑅𝑇𝑑𝑖𝑠𝑡(𝑚))2 + (𝑊𝑀𝑍 ∙ 𝑛𝑜𝑟𝑚∆𝑀𝑍𝑑𝑖𝑠𝑡(𝑚))2 + (𝑊𝐹𝐼 ∙ 𝑛𝑜𝑟𝑚∆𝑙𝑜𝑔10𝐹𝐼𝑑𝑖𝑠𝑡(𝑚))2   (10) 

 

4.9. Step 2e: Select best matches in multiple-match clusters 

Consider Figure SE1 13 showing all the matches. Most of those are single matches, though there are 

some to the left that are in multiple-match clusters and decisions need to be taken regarding which 

matches to select. A simple greedy algorithm is used. For each cluster with multiple matches select 

first the match with lowest penalisation score (the “best” match). After deleting the matches that are 

not possible anymore once the features in the best match are removed, the match with the lowest 
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score in the remaining network becomes the new “best” match. This process is iterated until no 

features remain. In the end the cluster yields at least one match, though it could yield more. 

 

4.10. Step 3: Detect poor matches (tighten thresholds) 

After choosing the best matches in the multiple match clusters there are only unique matches. Poor 

matches are defined as unique matches far away from the inter-dataset shift trends, which obtain a 

high penalisation score. Those matches are more probable to have happened by chance than the ones 

closer to the shift trends, and optionally can be deleted.  

4.10.1. “Trend mad” method 

In this method, the unique matches from step 2 are found and the procedure is restarted from the 

beginning using only those ones: 1. The neighbours and residuals are recalculated for the three 

dimensions (RT/MZ/log10FI). 2. It then finds a threshold value (see “Normalise residuals”) in each 

dimension. 3. It defines the poor matches as the ones outside limits in at least one dimension. Note 

that this method uses the “cross” method for the calculation of neighbours and thus uses the residuals 

of the three dimensions. 

 

Figure S 7: Example of “Trend mad” method result showing distance plots in each of the dimensions with red lines representing 
the threshold values, as well as step 2 rejected matches from clusters (blue), good matches (black) and poor matches (red). 
Poor matches are the ones that are outside threshold points in at least one dimension. 

4.10.2. “Scores” method  

In this method, the calculated penalisation scores are used to find the poor matches, by finding the 

ones larger than a threshold value (see “Normalise residuals”). The procedure has the following steps: 

1. Collect only the penalisation scores of the final single matches selected (multiple matches have 

already been deleted). 2. Calculate the threshold value for the penalisation scores; 3. Find the matches 

that are outside the penalisation score threshold points, those are the poor matches. 

 

 

Figure S 8: Example of “Scores” method result showing distance plots in each of the dimensions with good matches (black), 
poor matches (red) and false matches that were part of clusters and were not selected (blue). There are no limit lines in the 
plots as what is evaluated is the penalisation score, which is an aggregate measure of the residuals. 
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5. Example S1: MESA serum LPOS vs Rotterdam serum LPOS 

Here we give a detailed description of the matching of Dataset 1 in the article. 

5.1. Matching procedure 
The complete example of the matching of features of serum LPOS MESA (reference) vs Rotterdam 

(target) presented in the main body of the article is shown below.  

 

 

Figure SE1 1: MZ vs RT plots of serum lipid positive mode datasets after RT trimming, coloured by log10FI. 

 

5.1.1. Step 1: Match all features within thresholds 

 

Initially large values of RT, MZ, FI thresholds may be used to guarantee that all possible matches are 

found and for a trend in deviation to be observed. An initial matching with large thresholds was 

calculated, to detect all possible matches and to visualise trends between the two datasets, where 

some of the inter-dataset trends were clearly observed (Figure SE1 2). In our lipidomics datasets a 

maximum of RTthresh = 30 seconds, MZthresh = 100 ppm, log10FIthresh= 3 is in general enough. The following 

large thresholds were used: 

 

opt.FIadjustMethod = 'median'; 
 
opt.multThresh.RT_intercept = [-1, 1]; 
opt.multThresh.RT_slope = [0 0]; 
opt.multThresh.MZ_intercept = [-0.025, 0.025]; 
opt.multThresh.MZ_slope = [0, 0]; 
opt.multThresh.log10FI_intercept = [-1000, 1000]; 
opt.multThresh.log10FI_slope = [0 0]; 
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Figure SE1 2: Initial matching with large thresholds, to detect major inter-dataset shift trends. The RT and MZ trends are 
clearly seen in the respective plots, while the FI dimension is less clear. Matches containing features involved in multiple match 
clusters s are shown in blue, unique matches in black. 

The FI was adjusted using the “median” method, which subtracts to the target matched features the 

difference between the medians of the two datasets.  

By visually inspecting the plots in Figure SE1 2, it was observed that there is a cloud of points in log10FI 

that does not correlate well between the two datasets and thus the log10FI threshold was defined in a 

way as to delete those matches. After several tests with different settings, the Log10FI adjustment 

method and the settings for RT/MZ/log10FI thresholds were decided as: 

opt.FIadjustMethod = 'median'; 
 
opt.multThresh.RT_intercept = [-0.1, 0.1]; 
opt.multThresh.RT_slope = [0, 0]; 
opt.multThresh.MZ_intercept = [-0.0075, 0.015]; 
opt.multThresh.MZ_slope = [-0.01/2000, -0.01/2000]; 
opt.multThresh.log10FI_intercept = [-1.4, 0.75]; 
opt.multThresh.log10FI_slope = [0, 0]; 
 
After RTdist, MZdist, and log10FIdist thresholds are set, every pair p of reference-target features with 

these distances lower than all respective thresholds is a match m (Figure SE1 2). New peak tables with 

columns RT, MZ, and FI (as in Figure 1, step 1) for each inter-dataset match m are defined. Notice that 

at this point we change from referring to RTdist in terms of the features (as in RTdistij) and refer to it 

in terms of its match index m (as in RTdistm) These two tables contain information on all matches, and 

the matched features of reference and target are in the same row. Also, features may appear multiple 

times in the table, as one feature in the reference dataset may find multiple matches in the target 

dataset, and vice-versa. This procedure can be repeated with different threshold values, for 

optimization purposes.  

 
  

 

 

Figure SE1 3: Matches within thresholds in the RT, MZ, log10(FI) domains between LPOS datasets. (left) RT distance of target 
to reference; (centre) MZ distance of target to reference; (right) log10(FI) of target vs reference. Absolute thresholds are 
represented as horizontal lines, relative threshold as diagonal lines. Matches are represented as black dots; if part of a cluster 
of multiple matches their outline is emphasised in blue; if outside the log10FI thresholds they are coloured in orange. 

 

In order to use the FI for matching the log10FI of both datasets is harmonised, using in this case the 

“median” method (see SI section “Adjust FI of target to FI of reference”). 
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Figure SE1 4: Results of harmonisation of FI in the two LPOS sets, using the ‘median’ method. (left) Log10 FI of target vs 
reference; (centre) Sorted values and median of difference between Log10 FI of target and reference; (right) Initial (black 
dots) and corrected values (orange dots) of Log10 FI of target to reference. 

 

Figure SE1 5: All possible matches (edges, as lines) within thresholds between the features (nodes, as dots) of the two LPOS 
sets. Reference features in dark blue, target features in light blue. Orange edges represent the matches outside of log10FI 
thresholds. 

5.1.2. Step2: Find unique correspondence 

 

The two datasets may be shifted in each of the dimensions, and that inter-dataset shift should be 

modelled. For each feature, its inter-dataset shift in a dimension is given by the median of the shifts 

of its neighbours. Thus, the first step in this process is to find the k-nearest neighbours of each feature, 

and this search is only performed within the set of features that are not involved in multiple match 

clusters (Figure SE1 6). The neighbours for the calculation of residuals were found using the following 

definitions: 

opt.neighbours.nrNeighbors = 0.01; 

opt.calculateResiduals.neighMethod = 'cross'; 
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This means that the “cross” method will be used, with the number of neighbours for each feature set 

to 1% of the total number of features that are not part of multiple match clusters. 

 

Figure SE1 6: (top) Features captured in matches within thresholds in the LPOS datasets, including the ones in multiple-match 
cases; (bottom) features with only single match possibilities used to calculate neighbours in LPOS datasets. Notice the 
similarity between corresponding reference and target sets (left and right figures), as well as the similarity between the sets 
and match sets (top and bottom figures) as in this case most matching features only single match. 

Using the “cross” method, the k features closest to a feature using Euclidean distance on normalized 

MZ and RT values are the chosen ones for neighbours of that feature. 

 

 

Figure SE1 7: Example of calculation of neighbours for a random feature (in this case feature with index 2713) using the 
“cross” method. This method selects neighbours of a feature in each dimension independently, thus the neighbours in each 
dimension are not necessarily the same. The red and blue dots are the closest neighbours  of the feature highlighted with a 
grey cross; the grey circle is the median of the neighbours indicating the inter-dataset shift trend for that dimension for that  

 

The median inter-dataset difference of the neighbours of a feature represents the inter-dataset shift 

for the feature (after robust loess smoothing using 1% of the points), as seen in Figure SE1 8.  
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Figure SE1 8: Expected smoothed values (in red) of the inter-dataset shift using the “cross” method for each feature (black 
dots) used to calculate the residuals in the RT, MZ, log10FI domains.  

By subtracting the value of the expected inter-shift distances of a feature from each distance between 

that feature and its corresponding match in the other dataset, one obtains the residuals (see Figure 

SE1 9). These indicate the distance of the match to the inter-dataset shift distance. 

 

 

Figure SE1 9: Residuals in the three domains, to be used in the calculation of the penalisation scores for each match. 

The threshold point calculated with median + 3*MAD was used to find the value of the residuals to be 

used for normalisation (to divide by) in each of the dimensions and those values were at the 

percentiles 91.8/92.4/95.0 for (RT, MZ, log10FI), respectively. After dividing by the value at those 

percentiles, the residuals were normalised (Figure SE1 10). 

 

 

Figure SE1 10: (top) Median-centred residuals for RT/MZ/log10FI and red lines indicating residuals’ percentiles 95.8, 96.0, 
99,2 found using the median plus 3 MAD of the residuals in the RT, MZ, log10FI dimensions, respectively. These values will be 
used as pivot and will become =1 in the normalised residuals; (bottom) normalised residuals after dividing the median-centred 
residuals by the percentile values. Notice that as the residuals are in normalised units, the bottom plots scale is the same, for 
magnitude comparison.  
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After the residuals are normalised, it is easy to combine them into a single value, by weighing them 

with a value W, which can be different in each dimension. In this case it was decided to give the same 

weight (1) to the RT and MZ dimensions, while penalising the log10FI with a weight of 0.2 (W = [1, 1, 

0.2]), with the resulting weighted residuals represented on Figure SE1 11.  

 

 

Figure SE1 11: Weighted residuals, after using a unit weight on RT and MZ, but penalising log10FI, as the weights were defined 
as W=[1, 1, 0.2]. These are used to calculate the penalisation scores (squared root of the sum of squares of the weighted 
residuals) in the next step. By looking at the plots one can understand that in this case the contributions of RT and MZ are the 
most relevant dimension in the calculation of the penalisation score, while the contribution of log10FI is much more reduced. 

The penalisation scores are then created as the squared sum of squares of the normalised weighted 

residuals and can be visualised by colouring the previous distance plots (Figure SE1 12). 

 

  

 

Figure SE1 12: Matches in the RT, MZ, log10(FI) domains between LPOS datasets. (left) RT distance of target to reference; 
(centre) MZ distance of target to reference; (right) log10(FI) of target vs reference. All plots are coloured by match 
penalisation scores created from the normalised residuals. 

 

The network of all matches (including clusters of multiple matches) is shown in Figure SE1 13. It is 

remarkable that most of the clusters only involve one feature from each set (unique matches). This 

means that all those are already in their final form, and except for outlier matches that stand too far 

from the inter-dataset shift trends, there is not much room for wrong matches to happen. 
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Figure SE1 13: Network with all matches (edges) coloured by penalty scores. Metabolomic features (nodes) of reference in 
black, target features in blue. 

  

5.1.3. Step 3: Detect poor matches (tighten thresholds) 

 

The initial threshold definition can be tightened so it is possible to find matches that - although 

unique – are at large distances from the inter-dataset shift trends and produced high penalisation 

scores. These are the so-called “poor” matches. The method “scores” was used to find the scores 

that were at a distance larger than the median of the scores plus 3 MAD. 

 

 

Figure SE1 14: Tightening of thresholds used to define poor matches (in red) using the method “scores” to find matches with 
penalisation scores higher than the median plus 3 MAD. Multiple matches that were previously deleted in blue; poor matches 
in red; good matches in black. 
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The numbers of features and matches during each stage of the process are presented in Figure SE1 15 
and in Table SE1 1. 

.  

Figure SE1 15: MZ vs RT plots of LPOS datasets at each stage of the process (top to bottom) coloured by penalisation scores. 

Table SE1 1: Summary of number of matches, features and clusters of multiple matches in the network. There are 5426 total 

matches, most of them unique (5303 clusters of matches with only 2 nodes, when both features only match to each other). 
The network of these matches produces 5364 clusters with 2-4 features each, which after recursive division end up yielding a 
total of 5365 unique matches. Excluding poor matches (by tightening thresholds) results in 4953 matches.  

 

Total matches 5426 

             Reference features 5396 
             Target features 5394 
  

Features in only one match  

             In Reference 5366 
              In Target 5362 
  

Features with multiple matches  

              In Reference 30 
              In Target 32 
  

Clusters of matches 5364 

              2 nodes 5303 
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              3 nodes 
              4 nodes 
 
Unique matches including poor 
Unique matches without poor 

60 
1 
 
5365 
4953 

 

5.2. Validation  
 

5.2.1. Comparison of FI 

The composition of plasma is highly regulated thus the median concentration of a metabolite should 

be of a similar order of magnitude in both sets. Although from different populations, the sample type, 

extraction, injection and peak-picking methods were similar, and we observe that peak size in both 

sets shows good agreement on a log10FI scale for most features (plot on the right, Figure SE1 12 and  

Figure SE1 17). 

 

5.2.2. Comparison of metabolite annotations 

The two datasets (MESA and Rotterdam) were thoroughly manually annotated (see Experimental 

section/Data/Metabolite annotation in the main text), with 604 features in both datasets having the 

same annotation. Evaluating the number of matches that correctly match two features with the same 

annotation is the best way to validate the data, though depending on the number of annotations. The 

results of this strategy are presented in Table SE1 2, Figure SE1 16 and Figure SE1 17. 

 

Table SE1 2: Number of annotated matches in the data at each stage. There are 604 annotations in the initial data of both 
Reference (10427 features) and Target datasets (14097 features). There are 9 annotated features in each set that could 
match, but their matches are outside of the defined initial thresholds. After setting thresholds for multiple matching only 
around 44% of the features in the datasets match to each other (5426 matches). After unique matching (5365 matches) all 
annotated matches (595) are found to have the correct ID in both datasets. Regrettably, after deleting poor matches (ending 
in 4953 matches) 10 correctly annotated matches are deleted, ending with a total of 585 (96.8%) correct and 19 (3.1%) 
incorrect/not found matches. 

 

Stage and results Number annotations Number matches 

Initial data 604 (10427/14097 unmatched features) 

Matches outside thresholds  9 

      

After all matches within thresholds (step1) 595 5426 

      

After unique matches (step 2) 595 5365 

Correct ID matches 595 - 

Wrong ID matches 0 - 

   

After removing poor matches (step 3)   4953 

Final number of correct ID matches 585  
Final number of wrong ID/outside threshold 

matches 19   

   

Poor matches 10 412 
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With correct ID 10 - 

With wrong ID 0 - 

 

 

 

 

Figure SE1 16: MZ vs RT of reference (left) and target (right) LPOS datasets, with a summary of matching results for each of 
the metabolomic features. For each plot, small black dots represent all features in the dataset, while larger black dots 
represent features that were matched. Red “+” show features that were initially found outside of the defined thresholds, blue 
dots are the annotated features matching a feature with the correct (same) annotation in the other dataset, red “X” are 
features matched to features with wrong (different in the two datasets) annotations, red “o” are features with correctly 
matched annotations but deleted for being in a match considered as poor. 

 

 

Figure SE1 17: LPOS distance plots in RT, MZ as well as log10FI target vs reference, with a summary of matching results for 
each of the matches. For each plot, black dots represent all matches within threshold. Red “+” show matches of features that 
were annotated in both sets but were initially found outside of the defined thresholds, blue dots are the annotated matches 
with the correct (same) annotation in both datasets, red “X” are matches with wrong (different in the two datasets) 
annotations, red “o” are matches with correct annotations, but deleted as poor matches. 

 

5.2.3. Comparisons of associations to covariates 

 

The assumption here is that for true associations to defined covariates, the direction of association is 

the same in the two populations. Age, gender and body mass index (BMI), which distributions are 

shown in Figure SE1 18, were chosen because they are easy to access and are known to have many 

associations to metabolites. We calculated Pearson correlations (for age or BMI) or t-test (for gender, 

and log10[fold change] between the two sexes medians) of matched features to these covariates in 

each dataset and compared the results for both datasets (Table SE1 3). The expected result that the 

associations are comparable would lead all true associations to the bottom left and top right 

quadrants, which is not observed when no thresholds are set (black dots in Figure SE1 19), but it is 

almost perfectly observed for more robust associations such as FDR and Bonferroni-level thresholds 

(green dots in Figure SE1 19). 
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Figure SE1 18: Age, gender and BMI distributions in the MESA and Rotterdam datasets. 

 

 

Figure SE1 19: Comparison of correlation (for age and BMI) and log10(gender fold change) of all features in the target and 
reference datasets (black dots). Features that are significant at a specific significance level are presented in colour: red for 
nominal significance (p<0.05); blue for FDR significance (p<0.05); green for Bonferroni significance (0.05/6018). The plot for 
Gender has been zoomed for better visualisation, thus hiding some outliers (<5).  

 

Table SE1 3: Number of features whose Pearson correlations (with age or BMI) or fold change (with gender) agrees or 
disagrees (has the same sign or not) in both datasets. That number was calculated for: A -all matches, no p-value threshold; 
B - only for matches with statistically significant coefficient/t-test with p-value at α = 0.05; C – as B, but controlling for false 
discovery rate (FDR) at α = 0.05 (Benjamini-Hochberg); D – as B, but controlling for family-wise error rate (Bonferroni). Notice 
that the level of agreement is around 60% when calculating all associations without thresholds as only a minority of variables 
correlate with these covariates but increases to close to 100% for the more stringent thresholds, which shows a high level of 
agreement. 
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5.2.4. Check if feature selection on multiple matches is correct 

 

The npeaks parameter resulting from peak-picking using the xcms software registers the number of 

peaks that were found for each feature (expectedly similar to the total number of samples). In this 

validation strategy we assume that features detected in a higher number of samples have larger signal 

to noise and better quality, thus correctly matched features should be detected in more samples than 

incorrect matches. For each match in a cluster with 3 nodes, we computed the “npeaks” difference of 

[selected matches minus discarded matches]. For clusters with more than 3 features (nodes) we 

computed the best versus the worst match (according to the penalty scores). 

Reference and target datasets contain 1958/2639 and 814/1178 biological/total samples respectively 

(datasets contain QC samples at time of peak picking). A much higher proportion (50 in 60, or 83%) of 

“npeaks” differences are positive in both reference and target (see Figure SE1 20), suggesting that the 

correct match was usually selected from the cluster.  

 

Age all nominal FDR Bonferroni

All features 4953 471 203 49

Agreeing 2838 443 200 49

Disagreeing 2115 28 3 0

% agreeing 57.3 94.1 98.5 100.0

% disagreeing 42.7 5.9 1.5 0.0

Gender all nominal FDR Bonferroni

All features 4953 1641 1414 576

Agreeing 3403 1483 1304 574

Disagreeing 1550 158 110 2

% agreeing 68.7 90.4 92.2 99.7

% disagreeing 31.3 9.6 7.8 0.3

BMI all nominal FDR Bonferroni

All features 4953 1338 1126 290

Agreeing 3009 1181 1019 290

Disagreeing 1944 157 107 0

% agreeing 60.8 88.3 90.5 100.0

% disagreeing 39.2 11.7 9.5 0.0
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Figure SE1 20: Difference in npeaks between same-dataset features of selected and deleted matches (between multiple 
matches from same clusters of multiple matches) in reference (blue) and target (red) sets for each of the matches involved in 
a multiple match cluster. Positive values represent matches with more peaks in the features of matches that were preferred, 
versus features that were discarded, while negative values represent the opposite. A good outcome for the method is shown, 
as most matches used the feature with highest number of npeaks among the possible features in the multiple match clusters. 

 

5.2.5. Evaluation of the number of highly correlated features with the matched features 

 

These datasets are expected to contain adducts and isotopes, as the features have not been 

aggregated. Those are expected to be highly correlated among each other, and in a similar fashion for 

matched features in both datasets. For each matched feature, we found all features in the same 

dataset at a small retention time distance (< 0.25 seconds) and highly correlated (Spearman 

correlation > 0.7), and calculated five entities: number of within-dataset features correlated with each 

feature in the reference dataset; same for the target dataset; minimum number between these two 

values, which defines the maximum possible number of common features between matched features; 

number of common highly correlated features in two matched features; and the common-to-

minimum number of correlated features ratio “patternScore” (1 is added to the number of minimum 

features to allow division when the minimum is zero). The results of this strategy are presented in 

Figure SE1 21. 

 

 

*These three plots contain only the features that survived removal of poor matches. 

**Highly correlated features were defined as having Spearman > 0.7 and RT difference < 0.25 seconds. 

Figure SE1 21: (left) Number of common features* highly correlated** with each matched feature vs penalty scores used in 
the matching method (after removing poor matches). The lower the penalty score the higher the number of common 
correlated features; (centre) number of features highly associated (not necessarily common) with each matched feature in 
target vs reference; (right) Number of common correlated features vs the minimum number of correlated features (not 
necessarily common) between the reference or target datasets. All plots are coloured by a score obtained by the ratio 
common/(minimum +1). 
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6. Example S2: MESA serum LNEG vs Rotterdam serum LNEG 

Here we present a second example of matching, using Dataset 2. This corresponds to the same cohorts 

and analytical setup as Dataset 1 but was acquired in separate analytical runs and in negative 

ionisation mode. 

6.1. Matching procedure 
The complete example of the matching of features of plasma lipids in the negative mode (LNEG) MESA 

(reference, 6793 features) vs Rotterdam (target, 6315 features) datasets is shown below. If not 

mentioned in the text, figures replicate those given for Example S1.  

 

 

Figure SE2 1: MZ vs RT plots of LNEG datasets after RT trimming, coloured by log10FI. A: reference and B: target feature sets. 

 

6.1.1. Step 1: Match all features within thresholds 

 

As in example S1, initially the datasets are matched dimension using large thresholds (same as in 

example S1) in each dimension, so it helps visualise the trends of the inter-dataset shifts (see Figure 

SE2 2).  

 

Figure SE2 2: Initial matches at large thresholds to detect major inter-dataset shift trends. The RT and MZ trends are clearly 
seen in the respective plots, while the FI dimension is less clear. Matches containing features involved in multiple match 
clusters s are shown in blue, unique matches in black. 

 

After visual inspection of the plots in Figure SE2 2,  the adjustment method for Log10FI and definition 

of RT/MZ/log10FI thresholds were set as: 

opt.FIadjustMethod = 'regression'; 
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opt.multThresh.RT_intercept = [-0.55,0.15]; 

opt.multThresh.RT_slope = [0, 0]; 

opt.multThresh.MZ_intercept = [-0.01, 0.01]; 

opt.multThresh.MZ_slope = [-5e-6, 5e-6]; 

opt.multThresh.log10FI_intercept = [-1, 1.5]; 

opt.multThresh.log10FI_slope = [0, 0];  

 

 

Figure SE2 3: Matches within thresholds in the RT, MZ, log10(FI) domains between LNEG datasets. (left) RT distance of target 
to reference; (centre) MZ distance of target to reference; (right) log10(FI) of target vs reference. Absolute thresholds are 
represented as horizontal lines, relative threshold as diagonal lines. Matches are represented as black dots; if part of a cluster 
of multiple matches their outline is emphasised in blue, and the matches are connected by thin dashed lines; if outside the 
log10FI thresholds they are coloured in orange. 

 

 

Figure SE2 4: Results of harmonization of FI in the two LNEG sets, using the ‘regression’ method. (left) Log10FI of target vs 
reference, plus line of perfect correlation; (centre) Same as left plot, plus red line with robust linear regression predictions for 
log10FItarget values; (right) Same as left plot, with additional orange dots representing the corrected Log10FItarget values.  
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Figure SE2 5: All possible matches (edges, as lines) within thresholds between the features (nodes, as dots) of the two LNEG 
sets. Reference features in dark blue, target features in light blue. Orange edges represent the matches outside of log10FI 
thresholds. 

6.1.2. Step 2: Find unique correspondence 

  

The neighbours for the calculation of residuals were found using the following definitions: 

opt.neighbours.nrNeighbors = 21; 

opt.calculateResiduals.neighMethod = 'circle'; 
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Figure SE2 6: (top) Features captured in matches within thresholds in the LNEG datasets, including the ones in multiple-match 
clusters; (bottom) features with only single-match possibilities used to calculate neighbours in LNEG datasets. Notice the 
similarity between corresponding reference and target sets (left and right figures), as well as the similarity between the sets 
and match sets (top and bottom figures) as most matching features only have single matches. 

 

 

 

Figure SE2 7: Example of calculation of neighbours for a random feature (in this case feature with index 1323) using the ‘circle’ 
method (thus log10FI is not used). The red dots are the closest neighbours (same on the two dimensions) of the feature 
highlighted with a grey cross; the grey circle is the median of the neighbours indicating the inter-dataset shift trend for that 
dimension for that feature 

  

 

Figure SE2 8: Expected values using the “circle” method for each feature (in red) used to calculate the residuals in the RT, MZ, 
domains used for the calculation of the scores. This method assumes there is no inter-dataset shift in log10FI, meaning that 
it is equal to zero, thus in practice the residuals are calculated by direct subtraction of log10FI of the reference to the target. 
. 
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Figure SE2 9: Residuals in the three domains, to be used in the calculation of the penalisation scores for each match. 

For the normalisation of residuals, the plots of Figure SE2 9 were inspected, and it was decided to 

manually define the values of the residuals (threshold points) that will become 1 after residualisation. 

Those values were [0.1, 0.01, 1.5] for RT, MZ and log10FI respectively. 

 

 

Figure SE2 10: (top) Median-centred residuals for RT/MZ/log10FI and red lines indicating the manually chosen residual values 
which become pivot points to be made equal to 1 for the three domains. (bottom) normalised residuals after dividing the 
median-centred residuals by the pivot point values selected. Notice that as the residuals are in normalised units, the bottom 
plots scale is the same for magnitude comparison.  

The weights W were defined as [1, 1, 1], thus giving equal weight to the residuals of each dimension 

in the construction of the penalisation scores. Though due to the distribution of the residuals one can 

expect that the penalisation scores of the more extreme matches will be more influenced by the 

residuals of RT, then MZ and finally log10FI, as can be seen in Figure SE2 11. 
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Figure SE2 11: Weighted residuals after weights were chosen to be equal in the three dimensions [1, 1, 1]. These will be used 
to calculate the penalisation scores (squared root of the sum of squares of the weighted residuals) in the next step. By looking 
at the plots one can understand that in this case RT is the most relevant dimension in the calculation of the penalisation score. 

  

 

Figure SE2 12: Matches in the RT, MZ, log10(FI) domains between LNEG datasets. (left) RTdist of target to reference; (centre) 
MZdist of target to reference; (right) log10(FI) of target vs reference. All plots are coloured by match penalisation scores 
created from the normalised residuals. 

 

 

 

 

Figure SE2 13: Network with all matches (edges) coloured by penalty scores. Metabolomic features (nodes) of reference in 
black, target features in blue. 

  

6.1.3. Step 3: Detect poor matches (tighten thresholds) 
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The method chosen to detect matches at extreme distances from the trends was “trend_mad”. Using 

this method, the inter-dataset shift trends were recalculated in each dimension using only the final 

matches, and thresholds were set using a factor of 5 median absolute deviations. 

  

Figure SE2 14: Tightening of thresholds (red lines) used to define poor matches using the method ‘trend_mad’, with 5 MAD. 
Inter-dataset distance plots showing good matches as black dots, matches not selected from clusters as blue squares, poor 
matches as red circles  

The numbers of features and matches during each stage of the process are presented in Figure SE2 15 

and Table SE2 1. 
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Figure SE2 15: MZ vs RT plots of LNEG datasets at each stage of the process (top to bottom) coloured by penalisation scores. 

 

Table SE2 1: Summary of number of matches, features and clusters of multiple matches in the network. There are 2646 total 
matches, most of them unique (2308 clusters of matches with only 2 nodes, when both features only match to each other). 
The network of these matches produces 2467 clusters with 2-5 features each, which after recursive division end up yielding a 
total of 2486 unique matches. Excluding poor matches (by tightening thresholds) results in 2324 matches.  

Total matches 2646 

             Reference features 2547 
             Target features 2566 
  

Features in only one match  

             In Reference 2448 
              In Target 2486 
  

Features with multiple matches  

              In Reference 99 
              In Target 80 
  

Clusters of matches 2467 

              2 nodes 2308 
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              3 nodes 
              4 nodes 
              5 nodes 
 
Unique matches including poor 
Unique matches without poor 

140 
18 
1 
 
2486 
2324 

 

 

6.2. Validation  
 

6.2.1. Comparison of FI 

The composition of plasma is highly regulated thus the median concentration of a metabolite should 

be on a similar order of magnitude in both sets. Although from different populations, the sample type, 

extraction, injection and peak-picking methods were similar, and we observe that peak size in both 

sets shows good agreement in a log10FI scale for most features (plot on the right, Figure SE2 12 and 

Figure SE2 17). 

 

6.2.2. Comparison of metabolite annotations 

 

Table SE2 2: Number of annotated matches in the data at each stage. There are 87 annotations in the initial data of both 
Reference (6793 features) and Target datasets (6315 features). There are 3 annotated features in each set that could match, 
but their matches are outside of the defined initial thresholds. After setting thresholds for multiple matching only around 40% 
of the features in the datasets match to each other (2646 matches). After unique matching (2486 matches) 82 of the 
annotated features are found with correct ID in both datasets, while for 2 of them the ID is different. Regrettably, after 
deleting poor matches (ending in 2324 matches) 3 correctly annotated matches are deleted, ending with a total of 79 (90.8%) 
correct and 8 (9.2%) incorrect/not found matches. 

Stage and results Number annotations Number matches 

Initial data 87 (6793/6315 unmatched features) 

Matches outside thresholds  3 

      

After all matches within thresholds (step1) 84 2646 

      

After unique matches (step 2) 84 2486 

Correct ID matches 82 - 

Wrong ID matches 2 - 

   

After removing poor matches (step 3)   2324 

Final number of correct ID matches 79  

Final number of wrong ID/outside threshold matches 8   

   

Poor matches 3 162 

With correct ID 3 - 

With wrong ID 0 - 
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Figure SE2 16: MZ vs RT of reference (left) and target (right) LNEG datasets, with a summary of matching results for each of 
the metabolomic features. For each plot, small black dots represent all features in the dataset, while larger black dots 
represent features that were matched. Red “+” show features that were initially found outside of the defined thresholds, blue 
dots are the annotated features matching a feature with the correct (same) annotation in the other dataset, red “X” are 
features matched to features with wrong (different in the two datasets) annotations, red “o” are features with correctly 
matched annotations but deleted for being in a match considered as poor. 

 

 

 

Figure SE2 17: LNEG distance plots in RT, MZ as well as log10FI target vs reference, with a summary of matching results for 
each of the matches. For each plot, black dots represent all matches within threshold. Red “+” show matches of features that 
were annotated in both sets but were initially found outside of the defined thresholds, blue dots are the annotated matches 
with the correct (same) annotation in both datasets, red “X” are matches with wrong (different in the two datasets) 
annotations, red “o” are matches with correct annotations, but deleted as poor matches. 

 

6.2.3. Comparison of associations to covariates 

 

Figure SE2 18: Age, gender and BMI distributions in the MESA and Rotterdam datasets. 
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Figure SE2 19: Comparison of correlation (for age and BMI) and log10(gender fold change) of all features in the target and 
reference datasets (black dots). Features that are significant at a specific significance level are presented in colour: red for 
nominal significance (p<0.05); blue for FDR significance (p<0.05); green for Bonferroni significance (0.05/2079). The plot for 
Gender has been zoomed for better visualisation, thus hiding some outliers (<10).  

Table SE2 3: Number of features whose regression coefficient (with age or BMI) or fold change (with gender) agrees or 
disagrees (same sign or not) in both datasets. That number was calculated for: A -all matches, no p-value threshold; B - only 
for matches with statistically significant coefficient/t-test with p-value at α = 0.05; C – as B, but controlling for false discovery 
rate (FDR) at α = 0.05 (Benjamini-Hochberg); D – as B, but controlling for family-wise error rate (Bonferroni). Notice that the 
level of agreement is close to 60% when calculating all associations without thresholds as only a minority of variables 
correlate with these covariates but increases to nearly 100% for more stringent thresholds, showing a high level of agreement. 

Age all nominal FDR Bonferroni 

All features 2324 210 79 9 

Agreeing 1392 193 74 9 

Disagreeing 932 17 5 0 

% agreeing 59.9 91.9 93.7 100.0 

% disagreeing 40.1 8.1 6.3 0.0 

          

     

Gender all α = 0.05 FDR Bonferroni 

All features 2324 285 126 31 

Agreeing 1410 237 117 30 

Disagreeing 914 48 9 1 

% agreeing 60.7 83.2 92.9 96.8 

% disagreeing 39.3 16.8 7.1 3.2 

     

     

BMI all α = 0.05 FDR Bonferroni 

All features 2324 218 104 22 

Agreeing 1389 180 93 22 

Disagreeing 935 38 11 0 

% agreeing 59.8 82.6 89.4 100.0 

% disagreeing 40.2 17.4 10.6 0.0 

 

 

6.2.4. Check if feature selection on multiple matches is correct 
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Figure SE2 20: Difference in npeaks between same-dataset features of selected and deleted matches (between multiple 
matches from same clusters of multiple matches) in reference (blue) and target (red) sets for each of the matches involved in 
a multiple match cluster. Positive values represent matches with more peaks in the features of matches that were preferred, 
versus features that were discarded, while negative values represent the opposite. A good outcome for the method is shown, 
as most matches used the feature with highest number of npeaks among the possible features in the multiple match clusters. 

 

6.2.5. Evaluation of the number of highly correlated features 

 

*These three plots contain only the features that survived removal of poor matches. 

**Highly correlated features were defined as having Spearman > 0.7 and RT difference < 0.25 seconds. 

Figure SE2 21: (left) Number of common features* highly correlated** with each matched feature vs penalty scores used in 
the matching method (after removing poor matches). The lower the penalty score the higher the number of common 
correlated features; (centre) number of features highly associated (not necessarily common) with each matched feature in 
target vs reference; (right) Number of common correlated features vs the minimum number of correlated features (not 
necessarily common) between the reference or target datasets. All plots are coloured by a score obtained by the ratio 
common/(minimum +1).  

7. Example S3: Step-by-step analysis of synthetic data 

7.1. Data 
Two synthetic datasets were prepared by adding systematic and random variation into features of a 

real dataset (the MESA negative mode dataset), and the two were then matched. The synthetic 

datasets were prepared in order to have similar variation and inter-dataset shifts to the MESA vs 

Rotterdam negative mode datasets described in example S2. To simplify the analysis, FI is not used to 

define penalisation scores (WFI = 0), thus the FI dimension is irrelevant for the matching. The synthetic 

dataset was prepared according to the following: systematic RT (in minutes) and MZ (in Dalton) shifts 

were created, according to  

SystematicShifti = offset + maxShift . sinθi 

, where θi  was defined for each of the N (= number of features) equal increments in a specified 

interval, multiplied by a maximum shift factor, and added of an offset value. For RT,  θi  was defined 

in [0,π/2], with maxRTshift = -0.4 and offset = 0. For MZ the parameter θi  was defined in [0,π/2], 

with maxMZshift = -0.005 Dalton and offset = 0.0025. 

Random variation (noise) was also created to be added for both RT and MZ. For RT, it was defined as  

RTnoisei = RTnoisefactor . randomShiftRT, 

with RTnoisefactor = 0.02 (in minutes) and by sampling randomShiftRT from a uniform distribution 

defined in [-1,1]. For MZ the noise was proportional to the MZi and was defined as  

MZnoisei = (MZnoisefactor. MZi) . randomShiftMZ, 

with MZnoisefactor = 4x10-6 (in Daltons) and by sampling randomShiftMZ from a uniform distribution 

defined in [-1,1]. 

The systematic and random variations were added to each of the dimensions after these were sorted, 

resulting in a smooth shift along the RT and MZ as seen in the original datasets (see Figure SE3 3), 

according to: 
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RTsynthetici = sortedRTi + SystematicRTshifti + RTnoisei 

MZsynthetici = sortedMZi + SystematicMZshifti + MZnoisei 

 

The sources of variation added to the LNEG features are presented in Figure SE3 1, together with the 

distances plots. Notice that the FI are the same so they are not presented. 

 

Figure SE3 1: Systematic and random variation to add to RT and MZ of the MESA negative mode dataset to create an artificial 
dataset. (top left) Systematic RT shifts to add to the sorted RT; (top right) Systematic MZ shifts to add to the sorted MZ. 
(centre left) Random variation to add to the sorted RT. (centre right) Proportional random variation to add to the sorted MZ. 
(bottom left) The RT difference between synthetic and original data as a function of the original data’s sorted RT. (bottom 
right) The MZ difference between synthetic and original data as a function of the original data’s sorted MZ. 

 

At this point, for each feature in the original dataset there is a single corresponding one in the synthetic 

dataset, thus all features are paired. In order to create additional differences in the original and 

synthetic datasets a block 30% of the features is deleted in the reference dataset, and a different block 

with 30% of the features is deleted in the target. Thus, each of the datasets contains now 40% of the 

same features and 30% unpaired ones (randomly chosen), in a total of 4755 features each (each 

dataset has only 70% of the 6793 in initial LNEG). If only the designed matches would match, we should 

be able to match correctly 0.4*6793 = 2717 features. 

7.2. Procedure 
For comparison with the artificial datasets, the initial real LNEG datasets looked like: 
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Figure SE3 2: initial LNEG real features 

And the real LNEG distances plots looked like: 

 

Figure SE3 3: Distance plots for the real LNEG datasets 

 

The MZ vs RT plots for the MESA reference and (target) artificial dataset are presented below. Notice 

that the reference dataset features are the same as in the initial MESA negative mode dataset, though 

only 70% of them make part of this dataset. The artificial target dataset also contains only 70% of the 

variables of MESA (with added variance), as previously described.  

 

Figure SE3 4: the artificial datasets features 

The same initial thresholds as in Example S2 were set for the RT and MZ dimension. The FI dimension 

is not used to simplify the analysis (we will set later WFI = 0), so the thresholds are irrelevant. The 

distance plots for the artificial sets matches within thresholds are: 
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Figure SE3 5: Distance plots for all matches between the artificial datasets 

The matches represented as a network are: 

 

Figure SE3 6: Network with all matches (edges). Metabolomic features (nodes) of reference in black, target features in blue. 

The “circle” method using 21 neighbours was applied to find inter-dataset shifts and residuals. The 
inter-dataset shifts for RT, MZ are presented in Figure SE3 7: 

 

Figure SE3 7: Trends for RT and MZ in the artificial datasets 

The threshold values used to normalise the residuals were [0.1,0.01,1.5]. The weights were defined 
as W = [1, 1, 0], thus FI does not enter in the calculation of the scores. The weighted residuals are 
shown in Figure SE3 8: 
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Figure SE3 8: Weighted residuals of the artificial datasets 

The distance plots coloured by scores are presented in Figure SE3 9: 

 

Figure SE3 9: Distance plots with matches coloured by penalisation scores. 

All matches within thresholds represented as a network, edges coloured by penalisation scores: 

 

Figure SE3 10: Network with all matches (edges) coloured by penalty scores. Metabolomic features (nodes) of reference in 
black, target features in blue.  
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The poor matches were found using the “scores” method at 5 MAD, and are presented in Figure SE3 

11: 

 

 

Figure SE3 11: Tightening of thresholds used to define poor matches (in red) using the method ‘scores’, at 5 dMAD. Residuals 
plots showing poor matches in red and true positive matches in black, as well as the features from clusters that were not 
selected in blue. 

We expected to find 2717 matches, while 2712 clusters were found after step 1. From these, after 

step 2, 2728 were unique matches. Notice that there are more unique matches than expected ones, 

as additional matches not accounted by the dataset design may happen by chance. After detection 

and deletion of poor matches (step 3), the number reduced to 2707 (99.63%), a result very close to 

the expected one.  

 

8. Example S4: AD plasma LPOS vs Airwave plasma LPOS 

This example has three objectives:  

- Show the application of our method to lipidomics datasets with large retention time differences 

- Compare the M2S methodology and results with another method, metabCombiner 11, without using 

annotations to assist in the matching 

- Add practical information about the use of some functions and strategy for matching using M2S 

 

These two plasma lipidomics datasets were acquired by different research groups. The AD samples 

underwent modified Folch lipid extraction, while Airwave did not. AD was acquired using ion mobility, 

while Airwave was not. The chromatograms were acquired in different instruments (both in ESI 

positive mode) using very different elution gradients, yielding non-linear, large retention time 

differences (up to 6 minutes in a total of 18 minutes), as well as significant m/z systematic difference. 

The peaks in each sample were detected, integrated and assembled into a single table using different 

software packages (MassHunter Workstation suite for AD and XCMS for Airwave). For this article the 

median values of RT, MZ, FI were then obtained/calculated for each of the datasets, and the datasets 

were matched. 

8.1. Matching using metabCombiner 
 

We aimed to replicate the experience of a regular user, accessing both the article and an online tutorial 

for information. For the R session we followed the online tutorial posted at 12, and the function calls 

and discussion in this section can be better understood by following that webpage.  
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We used the default ‘binGapValue’ of 0.005 m/z, to combine the features into groups (or clusters), 

obtaining 311 groups of features. Then we used the settings below to define the anchors. Anchors are 

the inter-dataset-matched highest intensity features in each dataset within retention time and m/z 

delimited windows. This methodology forces the feature intensity to be comparable in both sets, thus 

should only work in datasets of the same biological fluids. 

 p.combined.2 = selectAnchors(p.combined, windx = 0.025,windy = 0.025, tolQ = 10, tolmz = 0.0075, 

useID = FALSE) 

We modelled the inter-dataset retention time shift using the Generalized Additive Model with the 

following settings: 

set.seed(100) 

p.combined.3 = fit_gam(p.combined.2, useID = FALSE, k = seq(12,20,2), iterFilter = 2, coef = 2, prop = 

0.5, bs = "bs", family = "gaussian", m = c(3,2)) 

The only plot supplied by the metabCombiner package is the following: 

 

Figure SE4 1: metabCombiner scatter plot of RT of target vs RT of reference. The black dots are the anchor matches, and the 
blue line is the modelled inter-dataset shift. 

We then calculated the scores by adjusting the weights as: 

p.combined.4 = calcScores(p.combined.3, A = 85, B = 13, C = 0.5, usePPM = FALSE, useAdduct = FALSE, 

groups = NULL) 

The results of the matching were collected in two ways, one containing a table with all matches 

(including conflicts), and another forcing a decision on the conflicts, yielding only one-to-one matches, 

which could be compared directly with the results of our method. 

The function calls to obtain all matches were: 

combined.table.byMZRT = labelRows(combined.table, minScore = 0.5, maxRankX = 3, maxRankY = 3, 

method = "mzrt", balanced = TRUE, delta = c(0.005,0.5,0.005,0.5)) 

The instructions for obtaining only one-to-one matches were: 

combined.table.finalReport = reduceTable(combined.table, minScore = 0.5, maxRankX = 3, maxRankY 

= 3) 
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After these steps the matching of the two datasets using metabCombiner was complete. 

 

8.2. Matching using M2S 
 

We loaded the data and created unique MZRT string identifiers representing each of the features. 

[refFeatures] = importdata(refFilename); 
[targetFeatures] = importdata(targetFilename); 

  
[refMZRT_str] = M2S_createLabelMZRT('ref',refFeatures(:,2), 

refFeatures(:,1)); 
[targetMZRT_str] = M2S_createLabelMZRT('target', targetFeatures(:,2), 

targetFeatures(:,1)); 

 

The two datasets are presented in the figures below. 

M2S_figureH(0.8,0.5) 
subplot(1,2,1), 
M2S_plotMZRT_featureSet(refFeatures,1,8,1); title('Reference featureSet') 
subplot(1,2,2), 
M2S_plotMZRT_featureSet(targetFeatures,1,8,1); title('Target featureSet') 

 

 

Figure SE4 2: MZ vs RT plots of plasma positive mode LC-MS lipidomics of experiments AD (left) and Airwave (right), coloured 
by log10FI 

We started by matching the two datasets using large thresholds (function “M2S_matchAll.m” with 

default settings: no RT threshold, MZ threshold = 0.02 Da, no FI adjustment neither and no FI 

threshold). This allowed one to start understanding the inter-dataset shifts. We then had a look at the 

matches, and by colouring them by delta MZ one could see retention time difference trends clearly 

(greyish points in figure below). For these thresholds, one can use the function M2S_matchAll with 

default settings as below. We used the following code: 

[refSet_i,targetSet_i,Xr_connIdx_i,Xt_connIdx_i,opt_i]=M2S_matchAll( 

refFeatures,targetFeatures) 
M2S_figureH(0.8,0.4) 
M2S_plotDelta_matchedSets(refSet_i,targetSet_i,'.k') 
M2S_colorByY_ofSubplot(2,gcf) 
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Figure SE4 3: Plot of matches using function “M2S_plotDelta_matchedSets.m” and “M2S_colorByY_ofSubplot.m”. These 
functions help at visualising the inter-dataset shifts in more complex cases. Top row: differences vs reference values for each 
of the dimensions. Bottom row: target vs reference values for each of the dimensions. 

Additionally, selecting only small clusters of matches and disregarding the larger ones, allows one to 

have a better understanding of the expected inter-dataset differences, even using these large 

thresholds. We used the function “deleteLargeClusters .m” to visualise only clusters with 2 features 

(meaning only 1-to-1 matches) with the following code: 

maxFeaturesInCluster=2; 
[refFeatures_noBigClusters,targetFeatures_noBigClusters,Xr_connIdx_i, 

Xt_connIdx_i] = M2S_deleteLargeClusters(refSet_i,targetSet_i 

,maxFeaturesInCluster, opt_i); 

 

 

Figure SE4 4: 1-to-1 matches between the two datasets, allowing to better visualise the inter-dataset shifts. 

Notice that until now the user would be just trying to figure out where the trends are, in order to 

select adequate threshold settings in the following phase. With the help of the plots above, at this 

point we could understand the main trends. 

As FI is expected to be correlated in plasma samples of the two cohorts, we adjusted the target FI 

using the “median method”. The MZ intercept and slope were manually defined by clicking the desired 

plot in two points at a time, using the function “M2S_calculateInterceptSlope.m”: 

[interceptSlope] = M2S_calculateInterceptSlope() 
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The settings used for the matching were then defined as below. Notice that the RT and FI thresholds 

are large enough to accommodate all possible matches in those dimensions, and thus the matching is 

entirely based on the MZ thresholds: 

opt = struct; 
opt.FIadjustMethod = 'median';  
opt.multThresh.RT_intercept = [ -20 20]; 
opt.multThresh.RT_slope = [0 0]; 
opt.multThresh.MZ_intercept = [-0.0048 0.0035]; 
opt.multThresh.MZ_slope = [0.00000765 0.000012]; 
opt.multThresh.log10FI_intercept = [-10 10]; 
opt.multThresh.log10FI_slope = [0 0];  

 

We then obtained the matches using the thresholds defined, as seen below, using the code: 

plotType = 2;  
[refSet,targetSet,Xr_connIdx,Xt_connIdx,opt]=M2S_matchAll(refFeatures, 

targetFeatures,opt.multThresh,opt.FIadjustMethod,plotType); 

 

 

 

Figure SE4 5: M2S matches (black dots) plotted as distances vs reference value in the three dimensions. Matches in clusters 
of multiple matches (in blue) are connected by red dotted lines (multiple reference features) or blue dotted lines (multiple 
target features). 

The inter-dataset shift trends are calculated with the definitions below. 

opt.neighbours.nrNeighbors = 0.05; 
opt.calculateResiduals.neighMethod = 'cross'; 
opt.pctPointsLoess = 0.1; 
plotTypeResiduals = 1; 
[Residuals_X,Residuals_trendline] = 

M2S_calculateResiduals(refSet,targetSet,Xr_connIdx,Xt_connIdx,opt.neighbour

s.nrNeighbors, 

opt.calculateResiduals.neighMethod,opt.pctPointsLoess,plotTypeResiduals) 

 

 

 

Figure SE4 6: All matches (black dots) and inter-dataset shifts for each match (red circles) in each dimension 
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The residuals are obtained in the same step, by subtraction of the inter-dataset shift in each dimension 

from each match. 

 

Figure SE4 7: Residuals in each dimension 

The residuals are in different units (RT, MZ, log10FI). By visualising the plots above the user can 

harmonise them, selecting the value in each dimension that will be equal to 1 in the normalised 

residuals. In this case we defined them manually, and used the following settings: 

opt.adjustResiduals.residPercentile = [1, 4e-3, 2]; 
[adjResiduals_X,residPercentile] = M2S_adjustResiduals(refSet,targetSet 

,Residuals_X,opt.adjustResiduals.residPercentile); 

 

 

Figure SE4 8: (top) Selection of points (red lines) which become equal to 1 in the standardised residuals. (bottom) Standardised 
residuals obtained by dividing by the value defined for each dimension. In this case, RT is the dimension that affects the most 
the matches far from the inter-dataset shift. 

As previously referred, plasma datasets are expected to have correlated log10FI, so we give a weight 

of 1 to each dimension, to build the penalisation scores. Nevertheless, by looking at the standardised 

residuals, the RT dimension will be the one dominating the scores: 

opt.weights.W = [1,1,1]; 

plotOrNot = 1;  
[penaltyScores] = M2S_defineW_getScores(refSet,targetSet, adjResiduals_X, 

opt.weights.W, plotOrNot); 
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Figure SE4 9: All M2S matches coloured by penalisation scores. 

The M2S algorithm successively selects the best matches from the clusters with multiple matches 

presented in the figure below, using the penalisation scores in the following function: 

[eL,eL_INFO,CC_G1]= M2S_decideBestMatches(refSet, targetSet, Xr_connIdx, 

Xt_connIdx, penaltyScores); 

 
Figure SE4 10: Network with all matches (edges) coloured by penalty scores. Metabolomic features (nodes) of reference in 
black, target features in blue.  

 

Finally, we adjust the thresholds for RT, MZ, log10FI, to delete possible matches that although not in 

clusters of multiple matches, were still found just by chance (and by using a too generous threshold 

definition): 

 
opt.falsePos.methodType = 'trend_mad' 
opt.falsePos.nrMad = 5; 
plotOrNot = 1; 
[eL_final, eL_final_INFO] 

=M2S_findPoorMatches(eL,refSet,targetSet,opt.falsePos.methodType,opt.falseP

os.nrMad,plotOrNot) 
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Figure SE4 11: Tightening of thresholds (red lines) used to define poor matches using the method ‘trend_mad’, with 5 MAD. 
Inter-dataset distance plots showing good matches as black dots, matches not selected from clusters as blue squares, poor 
matches as red circles. The limits are represented as red dots. 

 

At this point, the matching using M2S is complete. 

8.3. Comparison of results of metabCombiner and M2S 
 

The metabCombiner software is designed for cases when the two datasets are acquired from the same 

biological fluid so the FI is comparable, which is the case in this example. Both methods seem 

competent at aligning the RT, yielding very similar results for that dimension, as we can see below. 

 

Figure SE4 12: Comparison of inter-dataset shift for the RT dimension obtained by metabCombiner and M2S. Both methods 
seem to perform appropriately. 

As mentioned in the main text, we find some major issues with metabCombiner when compared to 

our method M2S. One is the limited plotting capabilities of the software, which presents a single plot 

during the whole process. Because of that, it was difficult to define appropriate limits for MZ 

thresholds, thus we missed a large set of matches outside of the defined thresholds (blue circle in the 

figures below). Another is the lack of alignment of MZ, which may show a systematic shift in this case. 

As in this example there is a systematic difference in MZ at higher values of MZ, the lack of alignment 

of MZ had a negative impact. In clusters, the selected match was the one closest to MZ=0 (red circle 

in figures below) and not the one close to the inter-dataset MZ shift trend, as we think is appropriate 

and is used in M2S. 
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Figure SE4 13: Results using (top) metabCombiner, (middle) M2S, and (bottom) 1-to-1 matches comparison between M2S 
and metabCombiner. In the top and middle plots the red dots are multiple matches and the black circles are final 1-to-1 
matches. In the bottom plot the black dots are M2S and the red circles are metabCombiner final 1-to-1 matches. The blue 
circles indicate matches that seem to not have been found in metabCombiner due to defective choice of thresholds. The red 
circles indicate areas with metabCombiner matches that seem to have been wrongly decided from clusters of multiple 
matches. 

The final number of matches using both methods is presented in the table below. 

Table SE4 1: Number of features and matches found in the different phases of the matching. 

Match type M2S metabCombiner 

Features to match (ref/target)  3633 / 1822 

Clusters of matches 1632 247 

1-to1 matches 522 195 

Common matches 137 

Different matches 385 58 

With different ref OR target 43 38 

With different ref AND target 342 20 

 

These matches were not annotated in the two datasets, so it is not possible to count a number of 

correctly matched annotated features. From an initial number of 3633 reference and 1822 target 

features, M2S found 1632 clusters which yielded 522 unique matches, while metabCombiner found 

247 clusters, yielding 195 matches. From these, 137 matches were exactly the same in M2S and 

metabCombiner. M2S found 385 matches that were not found in metabCombiner, 43 of them 

containing a reference or target feature that was matched to something else in metabCombiner, while 

342 contained both reference and target features that were never matched by metabCombiner. 

Similarly, metabCombiner found 58 (38 + 20) matches that were not reciprocated in M2S.   
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The large difference in the final “1-to-1 matches” (522/195) reflects the difficulty of setting the right 

parameters in metabCombiner because of the lack of visualisations. We think that with the right 

thresholds metabCombiner numbers might approach M2S numbers. On the contrary, the relatively 

small number of “common matches” (137 in the possible 195) is due to the different choice of “best” 

matches in the clusters with multiple matches and cannot be rectified. As metabCombiner does not 

correct the MZ inter-dataset shift, it tends to select matches that have lower MZ difference between 

datasets, rather than lower MZ difference to the systematic shift. We think that M2S was superior on 

this matching of the two datasets. 

 

9. Example S5: Airwave plasma HPOS vs MESA serum HPOS 

This example has three objectives:  

- Show the applicability of the M2S method to non-lipidomics datasets with large retention time 

differences 

- Compare the M2S methodology and results with another method, metabCombiner, without using 

annotations to assist in the matching  

- Add practical information about the use of some functions and strategy for matching using M2S 

 

These are two large datasets, obtained using similar – though not identical – analytical methods, and 

from slightly different biological fluids, plasma in Airwave and serum in MESA1. Hydrophilic 

interaction (liquid) chromatography was used in both cases (with ESI positive mode), using different 

elution gradients, resulting in chromatograms with a significant retention time differences (up to 

1.65 minutes in a total of 6 minutes), as well as significant m/z systematic difference. The peaks in 

each sample were detected, integrated and assembled into a single table using different software 

packages, XCMS for Airwave and Progenesis QI for MESA1. Please notice that Progenesis QI aggregates 

features of the same metabolite and selects one of the features to represent the metabolite in the 

dataset. This feature may not be the same in both datasets, reducing the number of matches. The 

Airwave 1 dataset was acquired by the National Phenome Centre at Imperial College London, while 

MESA1 was acquired by Metabometrix, a metabolomics services company at Imperial College London. 

For this article the median values RT, MZ, FI were then obtained/calculated for each of the datasets, 

and the datasets were matched. 

 

9.1. Matching using metabCombiner 
 

We tried to replicate the experience of a regular user, accessing both the article and an online tutorial 

for information. For the R session we followed the online tutorial posted at 12, and the function calls 

and discussion in this section can be better understood by following that webpage.  

We used the default ‘binGapValue’ of 0.005 m/z, to combine the features into groups, obtaining 568 

groups of features. Then we used the settings below to define the anchors. Anchors are the inter-

dataset-matched highest intensity features in each dataset within retention time and m/z delimited 

windows. This methodology forces the feature intensity to be comparable in both sets, thus should 

only work in datasets of the same biological fluids. 
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p.combined.2 = selectAnchors(p.combined, windx = 0.03, windy = 0.02, tolQ = 0.3, tolmz = 0.005, useID 

= FALSE) 

We modelled the inter-dataset retention time shift using the Generalized Additive Model with the 

following settings: 

set.seed(100) 

p.combined.3 = fit_gam(p.combined.2, useID = FALSE, k = seq(12,20,2), iterFilter = 2, coef = 2, prop = 

0.5, bs = "bs", family = "gaussian", m = c(3,2)) 

The only plot supplied by the metabCombiner package is the following: 

 

Figure SE5 1: metabCombiner scatter plot of RT of target vs reference showing the differences between both. The black dots 
are the anchor matches, and the blue line is the modelled inter-dataset shift. 

We then calculated the scores by adjusting the weights as: 

p.combined.4 = calcScores(p.combined.3, A = 85, B = 15, C = 0.5, usePPM = FALSE, useAdduct = FALSE, 

groups = NULL) 

The results of the matching were collected in two ways, one containing a table with all matches 

(including conflicts), and another forcing a decision on the conflicts, yielding only one-to-one matches. 

The function calls to obtain all matches were: 

combined.table.byMZRT = labelRows(combined.table, minScore = 0.5, maxRankX = 3, maxRankY = 3, 

method = "mzrt", balanced = TRUE, delta = c(0.005,0.5,0.005,0.5)) 

The instructions for obtaining only one-to-one matches were: 

combined.table.finalReport = reduceTable(combined.table, minScore = 0.5, maxRankX = 3, maxRankY 

= 3). 

After these steps the matching the matching of the two datasets using metabCombiner was complete. 

 

9.2. Matching using M2S 
 

We loaded the data and created unique MZRT string identifiers representing each of the features. 

[refFeatures] = importdata(refFilename); 
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[targetFeatures] = importdata(targetFilename); 

  
[refMZRT_str] = 

M2S_createLabelMZRT('ref',refFeatures(:,2),refFeatures(:,1)); 
[targetMZRT_str] = 

M2S_createLabelMZRT('target',targetFeatures(:,2),targetFeatures(:,1)); 

 

The two datasets are presented in the figures below. 

M2S_figureH(0.8,0.5) 
subplot(1,2,1), 
M2S_plotMZRT_featureSet(refFeatures,1,8,1);  
subplot(1,2,2), 
M2S_plotMZRT_featureSet(targetFeatures,1,8,1);  

 

 

Figure SE5 2: MZ vs RT plots of plasma positive mode LC-MS HILIC of experiments Airwave plasma (left) and MESA1 serum 
(right), coloured by log10FI 

After setting only large MZ thresholds (maximum difference of 0.02 m/z between cohorts) it is possible 

to see the trends representing the shifts between the datasets. For these thresholds, one can use the 

function M2S_matchAll with default settings as below. 

[refSet_i,targetSet_i,Xr_connIdx_i,Xt_connIdx_i,opt_i]=M2S_matchAll( 

refFeatures, targetFeatures) 

 

 

Figure SE5 3: Plot of all matches within thresholds in all three dimensions after using function “M2S_matchAll.m” with default 
settings. Black dots are 1-to-1 matches, and blue dots are matches that are part of clusters with multiple matches. The major 
inter-dataset shifts are visible. 

We then applied the following settings to match the two datasets: 

opt = struct; 
opt.FIadjustMethod = 'median';  
opt.multThresh.RT_intercept = [ -2.1,1]; 
opt.multThresh.RT_slope = [0 0]; 
opt.multThresh.MZ_intercept = [-0.003919186017602 0.013418570345910]; 
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opt.multThresh.MZ_slope = [-0.000005141022420 -0.000004477501300]; 
opt.multThresh.log10FI_intercept = [-1000 1000]; 
opt.multThresh.log10FI_slope = [0 0];  

 

The MZ intercept and slope were defined using the function “M2S_calculateInterceptSlope.m”, which 

facilitates the choice of these parameters by clicking directly on the plot of choice. 

[interceptSlope] = M2S_calculateInterceptSlope() 

 

The shifts are now perfectly visible in the RT and MZ. Notice how the MZ shift is not close to zero at 

lower MZ values. Also, notice the larger difference in log10FI for features with low values. 

 

Figure SE5 4: Plot of all matches within thresholds in all three dimensions after using function “M2S_matchAll.m” with final 
settings. Black dots are 1-to-1 matches, and blue dots are matches that are part of clusters with multiple matches. Multiple 
matches of the same cluster are connected by dotted lines. 

The inter-dataset shifts are modelled using the settings below. Notice the adaptation of the inter-

dataset shift to the matching points, arguably over-fitting, which could be changed by increasing the 

percentage of points in the loess curve. 

opt.neighbours.nrNeighbors = 0.025; 
opt.calculateResiduals.neighMethod = 'cross'; 
opt.pctPointsLoess = 0.1; 
plotTypeResiduals = 1 
[Residuals_X,Residuals_trendline] = M2S_calculateResiduals(refSet, 

targetSet, Xr_connIdx,Xt_connIdx,opt.neighbours.nrNeighbors, 

opt.calculateResiduals.neighMethod, opt.pctPointsLoess, plotTypeResiduals) 

 

 

Figure SE5 5: All matches (black dots) and inter-dataset shifts for each match (red circles) in each dimension 

The residuals are obtained in the same step, by subtraction of the inter-dataset shift in each dimension 

from each match. 
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Figure SE5 6: Residuals in each dimension 

The residuals are in different units (RT, MZ, log10FI). By visualising the plots above the user can 

harmonise them, selecting the value in each dimension that will be equal to 1 in the normalised 

residuals. We used the default settings, meaning in each dimension the median of the residuals plus 

3 times the median absolute deviation (MAD) will be equal to 1 (red lines), as below: 

[adjResiduals_X,residPercentile] = M2S_adjustResiduals (refSet, targetSet, 

Residuals_X,NaN); 

 

Figure SE5 7: (top) Selection of points (red lines) which become equal to 1 in the standardised residuals. (bottom) Standardised 
residuals obtained by dividing by the value defined for each dimension. In this case, both RT and MZ are the dimensions that 
affect the most the matches far from the inter-dataset shift. 

As one of the datasets was plasma and the other was serum we decided to not use FI to build the 

scores. Although we can see (in the plot on the right in the figure below) that log10FI are correlated, 

there can be some metabolomic features for which that correlation may not apply. We thus use the 

default settings for the weights (W = [1, 1, 0]), to build the penalisation scores: 

[penaltyScores] = M2S_defineW_getScores(refSet,targetSet,adjResiduals_X); 

 

 

Figure SE5 8: All M2S matches coloured by penalisation scores. 
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The M2S algorithm successively selects the best matches from the clusters with multiple matches 

presented in the figure below, using the penalisation scores in the following function: 

[eL,eL_INFO,CC_G1]= M2S_decideBestMatches(refSet, targetSet, Xr_connIdx, 

Xt_connIdx, penaltyScores); 

 

 

 

 
Figure SE5 9: Network with all matches (edges) coloured by penalty scores. Metabolomic features (nodes) of reference in 
black, target features in blue.  

Finally, we adjust the thresholds or RT, MZ, log10FI, to delete possible matches that although not in 
clusters of multiple matches, were still found just by chance (and too generous threshold definition). 
In this case we used default settings, (meaning  methodType='residuals_mad'; nrMad=5; 
plotOrNot = 1;) 
 

[eL_final, eL_final_INFO] = M2S_findPoorMatches(eL,refSet,targetSet); 
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Figure SE5 10: Tightening of thresholds (red lines) used to define poor matches using the method “residuals_mad”, with 5 
MAD. Residuals plots showing good matches as black dots, poor matches as red circles. The limits are represented by red 
lines. 

At this point, the matching using M2S is complete. 

 

9.3. Comparison of results of metabCombiner and M2S 
 

The metabCombiner software is designed for cases when the two datasets are acquired from the same 

biological fluid so the FI is comparable. In this case we are matching plasma and serum and both 

methods seem competent at aligning the RT, yielding very similar results for that dimension, as we 

can see below. 

 

Figure SE5 11: Comparison of inter-dataset shift for the RT dimension obtained by metabCombiner and M2S. Both methods 
seem to perform appropriately.  

As in the previous case, the lack of visualisation in the metabCombiner method made it difficult to 

define appropriate limits for MZ thresholds, thus by using the specified thresholds metabCombiner 

missed a number of matches outside of those (blue circle in the figure below). Another issue is the 

lack of alignment of MZ (and in some cases FI), which may show a systematic effect that needs 

modelling. As in this case there was a relevant systematic trend in MZ at low values of MZ, the lack of 

alignment of MZ had a negative impact on the choice of the best of the multiple matches. Fortunately, 

there were not many multiple matches at low MZ, thus it seems to only have affected two matches 

that happened to be closer to MZ=0 (red circle in figure below). In this case M2S selected the ones 

closer to the inter-dataset shift instead. 
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Figure SE5 12: Results using (top) metabCombiner, (middle) M2S, and (bottom) 1-to-1 matches comparison between M2S 
and metabCombiner. In the top and middle plots the red dots are multiple matches and the black circles are final 1-to-1 
matches. In the bottom plot the black dots are M2S and the red circles are metabCombiner final 1-to-1 matches. The blue 
circles indicate matches that seem to not have been found in metabCombiner due to defective choice of thresholds. The red 
circles indicate areas with metabCombiner matches that seem to have been wrongly decided from clusters of multiple 
matches. 

Table SE5 1: Number of features and matches found in the different phases of the matching. 

Match type M2S metabCombiner 

Features to match (ref/target) 784/5093 

Clusters of matches 680 461 

1-to1 matches 571 460 

Common matches 450 

Different matches 121 10 

With different ref OR target 3 3 

With different ref AND target 118 7 

 

These matches were not annotated in the two datasets, so it is not possible to count a number of 

correctly matched annotated features. From an initial number of 784 reference and 5093 target 

features, M2S found 680 clusters which yielded 571 unique matches, while metabCombiner found 461 

clusters, yielding 460 matches. From these, 450 matches were exactly the same in M2S and 

metabCombiner. M2S found 121 matches that were not found in metabCombiner, 3 of them 

containing a reference or target feature that was matched to something else in metabCombiner, while 

118 contained both reference and target features that were never matched by metabCombiner. 

Similarly, metabCombiner found 10 (3 + 7) matches that were not reciprocated in M2S.   

The difference in the final “1-to-1 matches” (571/460) reflects the fact that it was not easy to select 

the right parameters in metabCombiner because of the lack of visualisations. We think that with the 

right thresholds metabCombiner numbers would approach M2S numbers. As mentioned above, the 

lack of MZ modelling by metabCombiner didn’t have a strong detrimental effect only because of the 

small number of clusters of multiple matches. We think that M2S was superior on this matching of the 

two datasets. 
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10. Example S6: MESA serum HPOS vs Airwave urine HPOS 

 

This example has three objectives:  

- Show the applicability of the M2S method to datasets of different biological fluids 

- Compare the M2S methodology and results with another method, metabCombiner, without using 

annotations to assist in the matching 

- Add practical information about the use of some functions and strategy for matching using M2S 

 

The two large datasets were acquired from different biological fluids, serum in MESA2 and urine in 

Airwave. Hydrophilic interaction (liquid) chromatography (HILIC) was used in both, with mass 

spectrometry detection using ESI in the positive ionisation mode, resulting in chromatograms with a 

small retention time difference (up to 0.25 minutes in a total of 6 minutes). The peaks in each sample 

were detected, integrated and assembled into a single table using different software packages, XCMS 

for MESA and Progenesis QI for Airwave. Note that Progenesis QI aggregates features detected for the 

same metabolite and selects one of them to represent the metabolite in the dataset. The selected 

feature may not be the same in both datasets, reducing the number of matches. For this article the 

median values RT, MZ, FI were then obtained/calculated for each of the datasets, and the datasets 

were matched. 

10.1. Matching using metabCombiner 
 

We tried to replicate the experience of a regular user, accessing both the article and an online tutorial 

for information. For the R session we followed the online tutorial posted at 12, and the function calls 

and discussion in this section can be better understood by following that webpage.  

We used the ‘binGapValue’ of 0.01 m/z, to combine the features into groups, obtaining 1045 groups 

of features. Then we used the settings below to define the anchors. Anchors are the inter-dataset-

matched highest intensity features in each dataset within retention time and m/z delimited windows. 

This methodology forces the feature intensity to be comparable in both sets, thus should only work in 

datasets of the same biological fluids. 

p.combined.2 = selectAnchors(p.combined, windx = 0.02, windy = 0.03, tolQ = 1.1, tolmz = 0.01, useID 

= FALSE) 

We modelled the inter-dataset retention time shift using a Generalized Additive Model with the 

following settings: 

set.seed(100) 

p.combined.3 = fit_gam(p.combined.2, useID = FALSE, k = seq(12,20,2), iterFilter = 2, coef = 2, prop = 

0.5, bs = "bs", family = "gaussian", m = c(3,2)) 

The only plot supplied by the metabCombiner package is the following: 



S-62 
 

 

Figure SE6 1: metabCombiner scatter plot of RT of target vs reference showing the differences between both. The black dots 
are the anchor matches, and the blue line is the modelled inter-dataset shift. 

We then calculated the scores by adjusting the weights as: 

p.combined.4 = calcScores(p.combined.3, A = 70, B = 7, C = 0, usePPM = FALSE, useAdduct = FALSE, 

groups = NULL)  

The final results of the matching were collected in two ways, one containing a table with all matches 

(including conflicts), and another forcing a decision on the conflicts, yielding only one-to-one matches. 

The function calls to obtain all matches were: 

combined.table.byMZRT = labelRows(combined.table, minScore = 0.5, maxRankX = 3, maxRankY = 3, 

method = "mzrt", balanced = TRUE, delta = c(0.005,0.5,0.005,0.5)) 

The instructions for obtaining only one-to-one matches were: 

combined.table.finalReport = reduceTable(combined.table, minScore = 0.5, maxRankX = 3, maxRankY 

= 3) 

After these steps the matching of the two datasets using metabCombiner was complete. 

 

10.2. Matching using M2S 
 

We loaded the data and created unique MZRT string identifiers representing each of the features. 

[refFeatures] = importdata(refFilename); 
[targetFeatures] = importdata(targetFilename); 

  
[refMZRT_str] = 

M2S_createLabelMZRT('ref',refFeatures(:,2),refFeatures(:,1)); 
[targetMZRT_str] = 

M2S_createLabelMZRT('target',targetFeatures(:,2),targetFeatures(:,1)); 

 

The two datasets are presented in the figures below. As expected, the datasets look very different 

from each other, mostly because of a lack of features at m/z values higher than 500. 
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M2S_figureH(0.8,0.5) 
subplot(1,2,1), 
M2S_plotMZRT_featureSet(refFeatures,1,8,1);  
subplot(1,2,2), 
M2S_plotMZRT_featureSet(targetFeatures,1,8,1);  

 

 

Figure SE6 2: MZ vs RT plots of positive mode LC-MS HILIC of experiments MESA serum (right), and Airwave urine (right), 
coloured by log10FI 

After setting only MZ thresholds (0.02), although there is a massive number of matches, it is possible 

to see the trends representing the shifts between the datasets (using function 

“M2S_plotDelta_matchedSets.m”), especially in the RT dimension. 

The code used was: 

[refSet_i,targetSet_i,Xr_connIdx_i,Xt_connIdx_i,opt_i]= 

M2S_matchAll(refFeatures,targetFeatures) 
M2S_figureH(0.8,0.8) 

M2S_plotDelta_matchedSets(refSet_i,targetSet_i,'.k') 

 

 

Figure SE6 3: Plot of matches using function “M2S_plotDelta_matchedSets.m”. These functions help at visualising the inter-
dataset shifts in more complex cases. Top row: differences vs reference values for each of the dimensions. Bottom row: target 
vs reference values for each of the dimensions. 

We do not expect the FI to be highly correlated in these two different biofluids, so we do not adjust 

the FI at all. After experimenting with several threshold settings, these were defined as: 

opt = struct; 
opt.FIadjustMethod = 'none';  



S-64 
 

opt.multThresh.RT_intercept = [-0.167660910518054   0.247270821283979]; 
opt.multThresh.RT_slope = [-0.016180962050604 -0.013785753852324]; 
opt.multThresh.MZ_intercept = [-0.006 0.001231968031968  ]; 
opt.multThresh.MZ_slope = [0  0.000008097815277]; 
opt.multThresh.log10FI_intercept = [-10 10]; 
opt.multThresh.log10FI_slope = [0 0];   

 

The MZ intercept and slope were defined using the function “M2S_calculateInterceptSlope.m”, which 

facilitates the choice of these parameters by clicking directly on the plot of choice. 

[interceptSlope] = M2S_calculateInterceptSlope() 

 

The matches found within thresholds are shown below. 

 

Figure SE6 4: Plot of all matches within thresholds in all three dimensions after using function “M2S_matchAll.m” with final 
settings. Black dots are 1-to-1 matches, and blue dots are matches that are part of clusters with multiple matches. Multiple 
matches of the same cluster are connected by dotted lines. 

The inter-dataset shifts were modelled using the following settings: 

opt.neighbours.nrNeighbors = 11; 
opt.pctPointsLoess = 0.25; 
opt.calculateResiduals.neighMethod = 'circle'; 
plotTypeResiduals = 1; 
[Residuals_X,Residuals_trendline] =  

M2S_calculateResiduals(refSet,targetSet, Xr_connIdx,Xt_connIdx, 

opt.neighbours.nrNeighbors,  opt.calculateResiduals.neighMethod, 

opt.pctPointsLoess, plotTypeResiduals) 

 

 

Figure SE6 5: All matches (black dots) and inter-dataset shifts for each match (red circles) in each dimension 

The residuals are obtained in the same step, by subtraction of the inter-dataset shift in each dimension 

from each match. 
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Figure SE6 6: Residuals in each dimension 

The residuals are in different units (RT, MZ, log10FI). By visualising the plots above the user can 

harmonise them, selecting the value in each dimension that will be equal to 1 in the normalised 

residuals. We used the settings below, being careless about FI (we randomly set a value of 5), as later 

we will set the FI weight to zero.   

opt.adjustResiduals.residPercentile = [0.1,0.002,5]; 
[adjResiduals_X,residPercentile] = M2S_adjustResiduals(refSet, targetSet, 

Residuals_X,opt.adjustResiduals.residPercentile); 

 

Figure SE6 7: (top) Selection of points (red lines) which become equal to 1 in the standardised residuals. (bottom) Standardised 
residuals obtained by dividing by the value defined for each dimension. In this case, both RT and MZ are the dimensions that 
affect the most the matches far from the inter-dataset shift. 

As one of the datasets was serum and the other was urine we preferred to not use FI at all in the 

scores. We thus use the default settings for the weights (W = [1, 1, 0]), to build the penalisation scores: 

W = [1,1,0] 
[penaltyScores] = M2S_defineW_getScores(refSet, targetSet, adjResiduals_X, 

W,1); 

 

Figure SE6 8: All M2S matches coloured by penalisation scores. 
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The M2S algorithm successively selects the best matches from the clusters with multiple matches 

presented in the figure below, using the penalisation scores in the following function: 

[eL,eL_INFO,CC_G1]= M2S_decideBestMatches(refSet, targetSet, Xr_connIdx, 

Xt_connIdx, penaltyScores); 

 
 
Figure SE6 9: Network with all matches (edges) coloured by penalty scores. Metabolomic features (nodes) of reference in 
black, target features in blue.  

Finally, we adjust the thresholds or RT, MZ, log10FI, to delete possible matches that although not in 
clusters of multiple matches, were still found just by chance (and too generous threshold definition). 
In this case we used the “residuals_mad”, keeping all matches with residuals within 3 MAD: 
 

opt.falsePos.methodType = 'residuals_mad';  
opt.falsePos.nrMad = 3; 
plotOrNot = 1; 
[eL_final, eL_final_INFO] =M2S_findPoorMatches(eL,refSet, targetSet, 

opt.falsePos.methodType, opt.falsePos.nrMad, plotOrNot); 

 

 

Figure SE6 10: Tightening of thresholds (red lines) used to define poor matches using the method “residuals_mad”, with 3 
MAD. Residuals plots showing good matches as black dots, poor matches as red circles. The limits are represented by red 
lines. 
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At this point, the matching using M2S is complete. 

 

10.3. Comparison of results of metabCombiner and M2S 
 

The metabCombiner software is designed for cases when the two datasets are acquired from the same 

biological fluid, so FI is comparable. On the other hand, for datasets from different biological samples 

with uncorrelated FI we expect metabCombiner to fail if there are large RT shifts and many multiple 

matches. In that case the metabCombiner anchors should end up being near to randomly selected 

multiple matches and it would not be possible to model RT correctly due to too many outliers and no 

good RT inter-dataset shift to model. In this example, because the inter-dataset RT shift is small, 

metabCombiner seems to be successful at matching the two datasets. Nevertheless, by looking at the 

figure below, it seems that M2S still does a better job at modelling the RT shift. 

 

 

Figure SE6 11: Comparison of inter-dataset shift for the RT dimension obtained by metabCombiner and M2S. Both methods 
seem to perform appropriately.  

 

As in the previous case, the lack of visualisation in the metabCombiner method made it difficult to 

define appropriate limits for both RT and MZ thresholds. We realised that the metabCombiner 

thresholds may have been too generous, thus finding extra matches that in the matching using M2S 

were left out on purpose by the first threshold definition.  
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Figure SE6 12: Results using (top) metabCombiner, (middle) M2S, and (bottom) 1-to-1 matches comparison between M2S 
and metabCombiner. In the top and middle plots the red dots are multiple matches and the black circles are final 1-to-1 
matches. In the bottom plot the black circles are M2S and the red dots are metabCombiner final 1-to-1 matches. By looking 
at the distance to the core of the inter-dataset shifts, it seems that the metabCombiner thresholds may have been too relaxed. 

We tried to understand the choices made by metabCombiner and M2S when deciding the best match 

within a cluster. The plot below shows those results. The red and blue circles are matches in which the 

reference feature is the same in both metabCombiner and M2S, but the target feature differs. It seems 

apparent that the red circles representing M2S matches are closer to the trends both in the RT and 

MZ dimensions than the blue circles representing metabCombiner, which could indicate better results 

by M2S. 

 

 

Figure SE6 13: Results from matching with metabCombiner and M2S. Comparison between selected best matches from 
clusters of multiple matches. These are the same plots as in the figure before, the RT dimension was zoomed in the y-axis for 
better visualisation. Green dots are metabCombiner matches, black dots are M2S matches (many are superimposed over 
metabCombiner matches). Red circles are M2S matches with same reference feature as metabCombiner, but different target 
feature. Blue circles are metabCombiner matches with same reference feature as M2S, but different target feature.  

From an initial number of 10985 reference and 6924 target features, M2S found 741 clusters which 

yielded 451 unique matches, while metabCombiner found 906 clusters, yielding 643 matches. From 

these, 403 matches were exactly the same in M2S and metabCombiner. M2S found 48 matches that 

were not found in metabCombiner, 48 of them containing a reference or target feature that was 

matched to something else in metabCombiner, and zero matches with ref and target features both 

different from metabCombiner. Similarly, metabCombiner found 240 matches that were not 
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reciprocated in M2S, 48 of them containing a ref or target feature that was matched to some other in 

M2S, while it also contained 192 matches inexistent in M2S.   

As mentioned previously, the difference in the final “1-to-1 matches” (643/451) reflects the fact that 

it was not easy to select the right parameters in metabCombiner because of the lack of visualisations, 

thus we may have been too generous when defining metabCombiner thresholds. In this example, the 

48 different matches are (close to 100% of them) matches with the same reference but different 

target. By looking at their distances to the inter-dataset shifts, we suggest that those matches were 

better chosen by M2S than metabCombiner.  

Table SE6 1: Number of features and matches found in the different phases of the matching. 

Match type M2S metabCombiner 

Features to match (ref/target)  10985 / 6924 

Clusters of matches 741 906 

1-to1 matches 451 643 

Common matches 403 

Different matches 48 240 

With different ref OR target 48 48 

With different ref AND target 0 192 

 

Finally, the matches of M2S were investigated to check if the annotation of their reference and target 

features were the same. Annotation of some of the largest peaks in serum and corresponding 

matching features in the urine was performed. Features, including adducts and isotopologues, were 

annotated to confidence level 2 according to the Metabolomics Standards Initiative 13. This was done 

matching accurate mass, isotopic distributions and fragmentation spectra (from MSE all-ion 

fragmentation scans) to reference data from an in-house standards database and online databases 

METLIN 14, HMDB 15, GNPS 16 and MassBank 17. From the 40 annotated features in both reference and 

target dataset, M2S found 38 correctly matched and 2 incorrectly matched. Similarly, metabCombiner 

also found 38 correctly matched and 2 incorrectly matched. The incorrectly matched were not the 

same in the two methods. The figures and table below show those results. 
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Figure SE6 14: (top) metabCombiner and (bottom) M2S matches results in all dimensions. The plots show matches not selected 
from multiple match clusters (green dots), final matches (black dots), correctly matched according to manual annotations 
(blue circles) and incorrectly matched according to annotations (red circles). 

 

Table SE6 2: Results of matching according to annotation of features in 40 matches. According to the annotations, both 
methods found 38 matches in which both reference and target have the same annotation. Both methods failed at finding 2 
correct matches, though those were different in the two methods 

reference MZRTstr target_MZRTstr Metabolite annotation M2S mC 

ref_195.0887_0.7977 target_195.0872_0.8319 Caffeine TRUE TRUE 

ref_181.0727_0.9185 target_181.0714_0.9296 Theobromine and/or Paraxanthine TRUE TRUE 

ref_123.0601_1.0075 target_123.0560_1.0377 Niacinamide TRUE TRUE 

ref_209.0566_1.1823 target_209.0554_1.2332 Pseudouridine TRUE TRUE 

ref_203.0534_1.3600 target_203.0481_1.3483 Hexoses (glucose, fructose, mannose) TRUE TRUE 

ref_305.0860_1.3728 target_305.0859_1.4326 1-Methylinosine TRUE TRUE 

ref_137.0465_1.5242 target_137.0451_1.5561 Hypoxanthine TRUE TRUE 

ref_114.0673_2.4318 target_114.0656_2.4539 Creatinine TRUE TRUE 

ref_126.0228_2.5027 target_126.0217_2.5534 Taurine TRUE TRUE 

ref_169.9867_2.5031 target_169.9845_2.5622 Taurine TRUE TRUE 

ref_205.0976_3.7103 target_205.0920_3.5727 L-Tryptophan TRUE TRUE 

ref_370.2955_3.7878 target_370.2936_3.7424 Acylcarnitine (14:1) Myristoleoylcarnitine TRUE TRUE 

ref_368.2799_3.8221 target_368.2781_3.7620 Acylcarnitine (14:2) - Tetradecadiencarnitine TRUE TRUE 

ref_317.2522_3.9674 target_317.2498_3.9248 Acylcarnitine (10:0) - Decanoylcarnitine TRUE TRUE 

ref_316.2490_3.9688 target_316.2481_3.8968 Acylcarnitine (10:0) - Decanoylcarnitine TRUE TRUE 

ref_312.2172_4.0715 target_312.2167_4.0315 Acylcarnitine (10:2) Decadienoylcarnitine TRUE TRUE 

ref_288.2178_4.1023 target_288.2166_4.0484 Acylcarnitine (8:0) - Octanoylcarnitine TRUE TRUE 

ref_151.1450_4.1155 target_151.1428_4.1093 Trimethylamine-N-oxide (TMAO) TRUE TRUE 

ref_310.2021_4.1167 target_310.2016_4.0596 Acylcarnitine (10:3) Decatrienoylcarnitine TRUE TRUE 

ref_286.2023_4.1855 target_286.2014_4.1570 Acylcarnitine (8:1) Octenoylcarnitine TRUE TRUE 

ref_260.1863_4.2836 target_260.1853_4.2552 Acylcarnitine (6:0) - Hexanoylcarnitine TRUE TRUE 

ref_246.1706_4.4109 target_246.1693_4.3788 Acylcarnitine (5:0) - Isovalerylcarnitine TRUE TRUE 

ref_232.1547_4.5543 target_232.1550_4.6726 Acylcarnitine (4:0) - Butyrylcarnitine TRUE TRUE 

ref_118.0873_4.6357 target_118.0857_4.6978 Betaine TRUE TRUE 

ref_138.0558_4.7378 target_138.0542_4.7680 Trigonelline TRUE TRUE 

ref_218.1392_4.7464 target_218.1351_4.7792 Propionylcarnitine TRUE FALSE 

ref_144.1028_4.8103 target_144.1012_4.8522 Proline betaine TRUE TRUE 

ref_204.1240_4.9959 target_204.1230_4.9589 Acetylcarnitine TRUE TRUE 

ref_132.0777_5.0000 target_132.0759_4.9870 Creatine TRUE TRUE 

ref_154.0595_5.0440 target_154.0607_5.0347 Creatine TRUE TRUE 

ref_176.0413_5.0497 target_176.0403_4.9673 Creatine TRUE TRUE 

ref_162.1141_5.2248 target_162.1116_5.1714 Carnitine FALSE TRUE 

ref_175.1193_5.9231 target_175.1186_5.8313 L-Arginine TRUE TRUE 

ref_203.1505_5.9476 target_203.1498_5.8790 Asymmetric dimethylarginine TRUE TRUE 

ref_170.0927_6.1054 target_170.0916_5.9576 3-Methylhistidine TRUE TRUE 

ref_156.0769_6.2055 target_156.0756_5.9660 L-Histidine TRUE TRUE 

ref_314.2334_4.0061 target_314.2327_3.8013 Acylcarnitine (10:1) Decenoylcarnitine TRUE TRUE 

ref_90.0565_5.0517 target_90.0539_4.9870 Creatine TRUE FALSE 

ref_265.1188_2.0807 target_265.1181_2.1701 Phenylacetylglutamine TRUE TRUE 

ref_287.1007_2.0822 target_287.1003_2.1701 Phenylacetylglutamine FALSE TRUE 
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