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Experimental Section 

Materials: Glucose and dicyandiamide were purchased from Sigma-Aldrich. Ammonium tungsten 

oxide hydrate ((NH4)6W12O39•xH2O) was purchased from Alfa-Aesar. All the chemical reagents 

were used without further purification. 

Preparation of W@N-G and W@N-G/S: 0.25 g glucose and 5 g dicyandiamide were dissolved into 

250 mL deionized water, and then 2 mL (NH4)6W12O39•xH2O salt solution (0.025 M) was added 

dropwise into the above solution under the protection of N2. The mixture was stirred and heated at 

80 ℃ for 2 h. After cooling down and freeze-drying, the precursor was annealed at 600 ℃for 2 h and 

then rose to 900 ℃ for another 2 h (with a rate of 3 ℃/min). The S loading into/onto the W@N-G 

host is through a melt-diffusion process, firstly, mixing excess sulfur with W@N-G, and then heating 

at 155 °C under an Ar atmosphere for 12 h, finally, further heating at 200 °C for 2 h to obtain the 

W@N-G/S cathode. As a comparison, nitrogen-doped graphene (NG) was also prepared using the 

same method without the addition of (NH4)6W12O39•xH2O salt solution. 

Materials Characterization: XRD patterns were collected on a Bruker D8 Advance Discovery X-ray 

Diffractometer. Raman spectroscopy was carried out on the inVia Raman spectrometer from 

Renishaw with a HeNe laser (632.8 nm excitation wavelength). The morphology, microstructure, and 

composition of samples were characterized by emission scanning electron microscopy (FE-SEM, 

JEOL JSM-6700F) and transmission electron microscopy (FEI Talos F200X equipped with One 

View camera operated at 200 kV). XPS analysis was performed with a hemispherical analyzer of 100 

mm radius (Leybold Heraeus). For the ex-situ XPS, the electrodes were measured after three cycles 

and opened the batteries in the glove box, then the electrode surfaces were cleaned carefully use the 
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pure PC/EC, after dried, the electrodes were covered in the XPS holder and transferred to the XPS 

chamber. Thermogravimetric analysis (Mettler Toledo TGA/DSC 3+) was conducted under the N2 

atmosphere by heating from RT to 750 ℃ at 5 ℃ min
-1

. Ultraviolet/visible absorbance spectroscopy 

was performed in the spectral range of 200-800 nm using a Cary 5000 UV–vis variable wavelength 

spectrophotometer to evaluate the sodium NaPSs absorption capability of W@N-G and NG 

composite (the Na2S6 solution was synthesized by mixing Na2S and sulfur in a stoichiometric ratio of 

2:6 in DME (dimethoxyethane)).  

The W Nanoparticles Size Statistical Analysis: The W nanoparticles size distribution was calculated 

by the Photoshop soft, briefly, enlarge the STEM image 100 times (Figure 2c), select 50 W 

nanoparticles (random) and measure the largest length of each nanoparticle, and finally calculate the 

size distribution. 

Electrochemical Measurements: The working electrodes for the Na-S cells were fabricated by 

mixing the as-synthesized composites (W@N-G/S or NG/S), carbon black, and polyvinylidene 

difluoride (PVDF) with a weight ratio of 8: 1: 1 in N-methyl-2-pyrrolidone (NMP) to form a slurry, 

then uniformly pasted on the aluminum foil followed by drying under vacuum oven at 60 °C 

overnight. The Na-S cells were assembled with metallic sodium as the anode and the W@N-G/S (or 

NG/S) as the cathode by the CR2032 coin cell, glass fiber (Whatman GF/F) as the separator, and 1 M 

NaClO4 in 1:1 (volume ratio) ethylene carbonate/propylene carbonate (PC/EC) with 3 wt. % 

fluoroethylene carbonate (FEC) additive as the electrolyte, and 5 μL mg
-1

 and 10 μL mg
-1

 electrolyte 

was used in low and high (> 3 mg cm
-2

) sulfur loading electrodes, respectively. The assembly of all 

the Na-S cells was carried out in the Ar-filled glovebox (MBraun) with water and oxygen 
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concentrations less than 0.1 ppm. The electrochemical properties of the W@N-G/S and NG/S 

cathodes were investigated by the LAND CT 2001A charge/discharge system with a cut-off voltage 

range from 0.8 to 2.6 V (vs. Na/Na
+
). The cyclic voltammetry (CV, at a scan rate of 0.1 mV s

-1
) and 

electrochemical impedance spectroscopy (EIS) of the cells were conducted using Metrohm Auto-lab. 

Computational Methods: Based on density functional theory, the first-principles calculations were 

performed using LCAO calculator as implemented in QuantumATK package to investigate the 

equilibrium configurations and adsorption energies of NaPSs (Na2Sn (n=1, 2, 4, 6, 8)) and S8 on 

N-doped graphene film.
[1]

 The valence electrons and core interactions were described with 

PseudoDojo pseudopotentials. A generalized gradient approximation (GGA) proposed by Perdew, 

Burke, and Ernzerhof (PBE) was used to treat the exchange-correlation functional.
[2]

 A density mesh 

cut-off of 120 Ha was used to ensure reliable accuracy. The van der Waals (vdW) correction was 

also considered by using a Grimme DFT-D3 dispersion term.
[3]

 A 6 × 7 × 1 supercell of graphene 

was utilized to adsorb NaPSs. A vacuum layer of at least 20 Å perpendicular to the graphene film 

was applied to avoid the interaction between neighboring images. The first Brillouin zone was 

sampled using a 2 × 2 × 1 and 6 × 5 × 1 Monkhorst-Pack k-point scheme for structural optimization 

and adsorption energy calculations. All the structures were fully relaxed until the residual 

Hellmann-Feynman force on each atom is smaller than 0.01 eVÅ
-1

. The total energy convergence 

criterion was 1 × 10
-6

 eV. The adsorption energy was defined as: 

Eadsorption = Epolysulfides/substate − Epolysulfides − Esubstrate       (1) 
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Where Epolysulfides/substate, Epolysulfides, and Esubstrate denote the total energies of the NaPSs molecule 

(Na2Sn (n=1, 2, 4, 6, 8)) or S8 adsorbed on the substrate (W@N-G or N-G), single PSs molecule and 

substrate, respectively.  
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Table S1. A list of the catalyst weight ratio in sulfur cathode and the electrochemical performances 

in the recently reported RT Na-S batteries. 

Catalyst Ratio Initial 

capacity 

(2
nd

, mAh g
-1

) 

Capacity 

retention 

Rate 

performance 

Reference 

Co@PCNFs/S 

 

50% 600 (0.5 C) 398 (after 600 

cycles) 

240 (5 C) 
[4]

 

CNF-L@Co/S 

 

55% 745 (0.5 C) 538 (after 150 

cycles) 

442.7 (1.5 

C) 

[5]
 

S/TiN-TiO2@MCCFs 

 

43.1% 1150 (0.1 A 

g
-1

) 

640.4 (after 

100 cycles) 

440.2 (5 A 

g
-1

) 

[6]
 

CoS2/NC/S 49.3% 700 (0.1 A 

g
-1

) 

488 (after 100 

cycles) 

262 (5 A 

g
-1

) 

[7]
  

ZnS/C@S 38% 1070 (0.1 A 

g
-1

) 

1082 (after 

100 cycles) 

390 (3 A 

g
-1

) 

[8]
  

FeS2@NCMS/S 34.5% 760 (0.1 A 

g
-1

) 

524 (after 300 

cycles) 

337 (5 C) 
[9]

  

S/MoS2/NCS 56.2% 970 (0.5 A 

g
-1

) 

711.6 (after 

200 cycles) 

470.7 (5 A 

g
-1

) 

[10]
  

S@BPCS 30% 755 (0.5 C) 701 (after 350 

cycles) 

349 (3 C) 
[11]

  

W@N-G 9.1% 1160 (0.2 C,) 962 (after 100 

cycles) 

461 (5 C) This work 
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Figure S1. STEM of the W@N-G. 
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Figure S2. Morphological and structural characterizations of the N-G nanosheets. (a) STEM, and (b) 

HRTEM. XPS analysis of the (c) C 1s, and (d) N 1s spectrum.  
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Figure S3. TGA curve of N-G/S cathode under N2 atmosphere. 
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Figure S4. Photos showing the colour changes of Na2S6 solution after the exposure to N-G or 

W@N-G. 
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Figure S5. Structures of (a) N-G and (b)W@N-G hosts used in first-principles calculations.  
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Figure S6. Top view of the optimized adsorption conformations of intermediate species on (a) N-G, 

and (b) W@N-G. 
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Figure S7. The electronic properties of W@N-G with and without the adsorption of NaPSs. 
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Figure S8. Photos showing the glass fiber separators after three cycles.  
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Figure S9. SEM of (b) N-G/S and (b) W@N-G/S cathodes after three cycles.  
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Figure S10. First three charge/discharge curves of (a) N-G/S and (b) W@N-G/S cathodes. 
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Figure S11. Ex-situ XPS spectra of N-G/S cathode after discharged to 0.8 V (after three cycles). 
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Figure S12. Cycling performance of W@N-G/S cathode with high S mass loading under large 

current. 
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