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Supporting Information: Methods 

S1 Q-score: Contact Fraction of Native Contact Pairs 

The order parameter Q-score is the contact fraction of the formed native contact pairs in a 
given conformation. The native contact pairs are defined based on the reference PDB structure 
with the distance threshold 𝑑𝑑𝑇𝑇 = 6.5 Å as mentioned in Supporting Information S3. For a 
given protein conformation, we consider that the native contact between the i-th and j-th amino 

acids is formed if the distance 𝑟𝑟𝑖𝑖𝑖𝑖 is < 1.2 𝑟𝑟𝑖𝑖𝑖𝑖
(0), where 𝑟𝑟𝑖𝑖𝑖𝑖

(0) is the distance for the ij pair at the 

reference structure in protein data bank (PDB). Therefore, the Q-score indicates the degree to 
which the domain of the native structure is stably maintained at a given structure, i.e., the 
closer the Q-score to 1, the more stable and similar to the reference structure.  
In this study, Q-score (apo) and Q-score (holo) represent the contact fraction of the formed 

native contact pairs based on the apo and holo structures, respectively. 

 

S2 All-atom Molecular Dynamics (AA-MD) Simulation 

To prepare the dynamic cross-correlation coefficient map (DCCM)1, starting from the crystal 

structure in the apo-state (pdb-id:4AKE for ADK and pdb-id:1WDN for GBP), energy minimization 

and All-atom Molecular Dynamics (AA-MD) simulations in an explicit solvent were conducted 

using GROMACS version 4.6.52 using the AMBER ff99SB-ILDN force field3 as described below.  

An octahedron simulation box was constructed with a margin of approximately 8–10 Å to the 

boundary of the box. The target molecule was solvated with approximately 150 mM of NaCl 

solution, composed of TIP3P water molecules4 and sodium and chloride ions, using the GROMCS 

genion module, which can neutralize the net charge of the simulation system. Following energy 

minimization using the steepest descent algorithm, the system was equilibrated for 100 ps under a 

constant volume and temperature (NVT) ensemble at T = 298 K, followed by an MD run for 100 ps 

under constant pressure and temperature (NPT) conditions at T = 298 K and P = 1 atm with 

positional restraints applied on protein heavy atoms using a Nose-Hoover thermostat5 with a time 

constant of 0.3 ps and a Berendsen barostat6 with a time constant of 1.0 ps. Following equilibrium 

MD, production runs were conducted under the NPT ensemble at T = 298 K and P = 1 atm without 

positional restraints using the same thermostat and barostat as for equilibrium MD. During AA-MD 



simulation, under the periodic boundary condition, the van der Waals forces were switched smoothly 

to zero over a range of 8–10 Å, and electrostatic interactions were calculated using the particle mesh 

Ewald method7 with a cutoff length of 11 Å. The LINCS algorithm8 was applied to constrain all 

bond lengths with a simulation time step of 2 fs. To evaluate the DCCM in step 1 of the adaptive 

coarse-grained Elastic Network Model (ENM), we conducted five independent production runs of at 

most 50 ns with different initial velocity conditions.  

For qualitative analysis of the sampled structures, as shown in “Sampling Performance of New 

Adaptive CG-ENM and Comparison with Conventional CG-ENM and AA-MD” in the Results and 

Discussion, a productive run of the AA-MD simulation up to 1 µs was also conducted under NPT 

conditions (T = 300 K and P = 1 atm). The five productive run trajectories of an order of at most 50 

ns, with coordinate frames taken every 2 ps, were used for calculating the DCCM (”Evaluation of 

DCCM Based on Short-Time AA-MD Simulations” in Results and Discussion. Concretely for 

DCCM in Figure 2C and 2D, the AA-MD trajectories of 50 ns × 5 and 1.5 ns × 5 were utilized, 

respectively). To qualitatively analyze the structural ensemble (“Sampling Performance of New 

Adaptive CG-ENM and Comparison with Conventional CG-ENM and AA-MD”), 5000 structures 

taken every 0.2 ns from one productive run trajectory of 1 µs were used.Detailed information related 

to the AA-MD procedure for integrin in inactive state is mentioned in Supporting Information S7. 

 

 

S3 Conventional coarse-grained (CG)-ENM 

The force field for conventional CG-ENM (Trion-type CG-ENM) is expressed by the following 

equation:  

𝐸𝐸 = � 𝐾𝐾𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑖0�
2

𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖<𝑗𝑗

                                                (S3. 1) 

where 𝐾𝐾𝑖𝑖𝑖𝑖 (kcal/mol/ Å 2) and 𝑟𝑟𝑖𝑖𝑖𝑖(Å) are the spring constant and the distance between the i-th and j-th 

residue pair, respectively, and 𝑟𝑟𝑖𝑖𝑖𝑖0  is the distance at the reference structure (apo-structure of ADK and 

GBP, and inactive-structure of integrin) for the corresponding pair. The summation of the energy 

term is only performed over the native contact pairs (i-j), which are defined as follows: when one of 

the heavy atoms in the i-th amino acid is within a distance threshold, 𝑑𝑑𝑇𝑇 = 6.5 Å, from any non-
hydrogen atom in the j-th amino acid in the reference structure, the i-j pair is regarded as a 
native contact pair. In this study, by applying an enhanced sampling method, temperature replica 
exchange MD (TREMD), we investigated two types of conventional CG-ENMs with the spring 
constant 𝐾𝐾𝑖𝑖𝑖𝑖 = 10 (kcal/mol/Å 2), which is the default in CafeMol software, and the 10-fold 



weaker spring 𝐾𝐾𝑖𝑖𝑖𝑖 = 1 (kcal/mol/Å 2). 

S4 CG-MD Simulation with Under-damped Langevin 

Dynamics 

In this study, the time evolution of the CG system is expressed by the following under-damped 

Langevin dynamics equation:  

m𝑖𝑖
𝑑𝑑2𝒓𝒓𝒊𝒊
𝑑𝑑𝑑𝑑

= 𝒇𝒇𝒊𝒊 − m𝑖𝑖𝜸𝜸𝒊𝒊
𝑑𝑑𝒓𝒓𝒊𝒊
𝑑𝑑𝑑𝑑

+ m𝑖𝑖𝝃𝝃𝒊𝒊(𝑡𝑡) ,                                              (S4. 1) 

where m𝑖𝑖 and γ𝑖𝑖 are mass and friction coefficients for the i-th residue (coarse-grained particle), 𝒇𝒇𝒊𝒊 is 

the force derived from the total energy function 𝐸𝐸 as 𝒇𝒇𝒊𝒊 = − 𝑑𝑑𝑬𝑬
𝑑𝑑𝒓𝒓𝒊𝒊

, and 𝝃𝝃𝒊𝒊(𝑡𝑡) is the white Gaussian 

noise, which is responsible for the thermal fluctuation of the system through solvent effects. For the 

mass and friction coefficient, we adopted the default values in CafeMol 3.2: each particle has a 

residue-type dependent mass m𝑖𝑖 and a constant friction coefficient γ𝑖𝑖 = 0.8435. The white Gaussian 

noise 𝝃𝝃𝒊𝒊(𝑡𝑡) satisfies the following equation, termed as the fluctuation-dissipation theorem:  

〈𝝃𝝃𝒊𝒊(𝑡𝑡)〉 = 𝟎𝟎 , 〈𝝃𝝃𝒊𝒊(𝑡𝑡)𝝃𝝃𝒋𝒋(𝑡𝑡′)〉 = 𝟐𝟐𝒌𝒌𝑩𝑩𝑻𝑻
𝒎𝒎𝒊𝒊

𝛅𝛅(𝐭𝐭 − 𝐭𝐭′)𝜹𝜹𝒊𝒊𝒊𝒊,                                                  (S4. 2) 

where the bracket represents the ensemble average, 𝒌𝒌𝑩𝑩  is the Boltzmann constant, and T is the 

temperature. 

For parameter searching by Bayesian optimization (BO) (or exhaustive search) in step 2 of 

adaptive CG-ENM, starting from the reference structure (of ADK and GBP in apo-state, and of 

integrin in inactive-state), we conducted an under-damped Langevin dynamics simulation at T = 300 

K of up to 107 steps with a time-step dt = 0.2 for each parameter set. To evaluate the BO target 

function 𝐹𝐹𝐵𝐵𝐵𝐵, 5000 structures taken every 2000 steps from one trajectory (of 107 steps) were used. 

After parameter searching in step 2, with a suitable parameter set tuned by BO, a productive run of 

adaptive CG-ENM was conducted for 107 steps for ADK and GBP and 5×107 steps for integrin by 

applying an under-damped Langevin dynamics simulation at T = 300 K and dt = 0.2 with a different 

random seed for white Gaussian noise starting from initial structure (in apo-state for ADK and GBP, 

and in inactive-state for integrin). To analyze the sampled structure ensemble and time evolution of 

the Root Mean Square Deviation (RMSD), Q-score, radius of gyration (Rg), and other 

measurements, 5000 structures taken every 2000 steps from one trajectory of 107 steps were used for 



ADK and GBP, whereas 5000 structures taken every 10000 steps from one trajectory of 5×107 steps 

were used for integrin 

S5 Temperature Replica Exchange MD (TREMD) of 

Conventional CG-ENM 

Temperature replica exchange molecular dynamics (TREMD) is a representative enhanced 
sampling method used to sample various structures broadly. Beginning from the apo-structure 
for ADK and GBP and from the inactive structure for integrin, we conducted TREMD 
simulation of conventional CG-ENM for 256 replicas distributed exponentially in the range of 
300–1000 K by applying under-damped Langevin dynamics for 108 steps with a time step dt = 
0.2. We confirmed that during TREMD simulation, temperature exchange occurs with sufficient 
frequency as shown in Figure S22, which illustrates the replica-ID itinerancy at 300 K. To 
compare the sampled structural ensemble of conventional CG-ENM by TREMD with those of 
AA-MD and adaptive CG-ENM, 5000 structures taken every 2 × 104 steps from a replica trajectory 

(of 108 steps) at 300 K were used. 

 

S6 Comparison with Two Enhanced Sampling 

Methodologies 

We also compared adaptive CG-ENM with two other sampling methodologies that can realize 
modeling of holo-like structures from apo conformation9,10.  

In Seelinger’s procedure9, biased tCONCOORD11,12 sampling that takes the apo conformation 
(including atomistic information such as bond, angle, and dihedral) and the radius of gyration of 
target (holo) structure as constraints, is followed by the refinement procedure including energy 
minimization and AA-MD simulation. As a result, their methodology successfully generated the 
structure models within 1.6 Å backbone RMSD to the target (holo-structure). This RMSD value 

1.6 Å is much smaller than RMSD (vs holo) of the structure S1 sampled by adaptive CG-ENM: 3.9 
Å for ADK and 4.1 Å for GBP (as seen in Figure 5 and 6). However, our sampling procedure 
with adaptive CG-ENM does not require any information regarding the target (holo) structure, 
including the radius of gyration Rg. Therefore, based on only the apo-structure, we compared 
the structural ensemble sampled by tCONCOORD, which is one of a key element techniques in 



their broad structural sampling method9, without using the Rg of the target (holo) as constraints 
with ensemble sampled by our adaptive CG-ENM. Figures S19 and S20 show the probability 

distribution of Rg and Cα pair-distance between representative residues 40-149 for ADK and 
50-118 for GBP based on 5000 structures sampled by two methods. As shown in panel A of 
these figures for ADK and GBP, the structural ensemble by our adaptive CG-ENM is 
significantly broader than the one sampled by tCONCOORD without the Rg of holo as a 
constraint. Furthermore, model S1, of which RMSD vs holo is significantly smaller among the 
ensemble structures sampled by our adaptive CG-ENM was compared with model T1, whose 
RMSD to the target structure is the smallest among the ensemble structures sampled by 

tCONCOORD, which does not use Rg of holo as a constraint. The Cα pair-distance between 
representative residues in model-S1 (20.0 Å for ADK and 9.6 Å for GBP) sampled using our 
method is significantly closer to the corresponding distance in the target-holo (20.3 Å for ADK 
and 7.5 Å for GBP) than that in model-T1 (33.8 Å for ADK and 14.2 Å for GBP) sampled by 
tCONCOORD, as shown in panel B in Figures S19 and S20. 

Dokainish10, by applying AA-MD with gREST_SSCR, which is a type of enhanced 
conformational sampling algorithms, to ribose binding protein (RBP), succeeded in exploring 
large domain motion such as the open-closed conformational change. By utilizing the 
advantages of enhanced sampling with AA-MD, they also succeeded in determining important 
atomistic interactions through hydrogen bond analysis, which, in principle, could not be 
performed by our adaptive CG-ENM. Their simulation target RBP13 differs from our targets 

ADK and GBP; hence, it is difficult to make a direct comparison between the structural 
ensembles sampled by their gREST_SSCR and our adaptive CG-ENM. However, there are two 
similarities between RBP and GBP: i) two globular proteins are mainly composed of two 
domains and ii) the conformational transitions of two proteins between the apo-holo state are 
mainly caused by hinge motion. Therefore, it is assumed that the diversity of the sampled 
structural ensemble compared using gREST_SSCR (at T=300.0 K) based on RBP apo-state and 
adaptive CG-ENM based on GBP apo-state would provide some supporting information related 
to sampling performance. We selected the relative distribution width of the radius of gyration 

(∆𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎� ) based on the sampled structure ensemble, defined by the difference (∆𝑅𝑅𝑅𝑅 ) 

between the maximum and minimum values of Rg in the sampling structures and the ratio of Rg 
in the apo structure, as the measurement for the diversity of sampled ensemble. As a result of 

estimation, we found that ∆𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎�  estimated using our adaptive CG-ENM: 0.24 is wider 

than that estimated by their gREST_SSCR: 0.15. 



S7 Detailed Information related to AA-MD Procedure 

for Integrin αV in Inactive State 

To evaluate DCCM for integrin, beginning from the crystal structure in the inactive state of 

integrin αV (pdb-id: 1JV2), energy minimization and AA-MD simulations in an explicit solvent 

were conducted using GROMACS version 4.6.52 with the AMBER ff99SB-ILDN force field3 

through the same procedure for ADK and GBP mentioned in Supporting Information S2. For 

DCCM in Figure 7B, the AA-MD trajectories of 1.5 ns × 5 were utilized (five short AA-MD 

trajectories were concatenated to provide a single Cij  value for each residue pair). To 

qualitatively analyze the structural ensemble in the section “Application of the New Adaptive CG-

ENM to Larger Protein System Integrin αV” of Result and Discussion), 5000 structures taken 

every 10 ps from one AA-MD productive run trajectory of 50 ns were used. 

 

 

Supporting Information Figures: 

  

Figure S1. Probability distributions of RMSD vs initial structure for five short-time AA-MD 

trajectories with different initial velocities for samples 1–5. The probability distributions for adaptive 

CG-ENM in ADK, GBP, and Integrin are calculated based on structure ensemble sampled by 

production-run with a suitable parameter set (Ks, Kw, Cs, Cw) = (8.0, 7.0, 0.8, 0.6), (10.0, 8.0, 0.8, 

0.6), and (7.0, 1.0, 1.0, 0.8) explored by BO. The probability distributions for five short-time AA-

MD are shown with colored solid lines (cyan, yellow, pink, orange, light green). The dark-green 

dashed line shows the probability distribution for adaptive CG-ENM. 

 



 

Figure S2. DCCM for GBP based on various time lengths of AA-MD trajectories in the plane of 

residue-id pairs. Each panel from (A) to (H) corresponds to DCCM by using AA-MD trajectories for 

0.01 ns × 5, 0.5 ns × 5, 0.1 ns × 5, 1.0 ns × 5, 1.5 ns × 5, 2 ns × 5, 5 ns × 5, 10 ns × 5, and 50 ns × 5, 

respectively. 

 

 

  
Figure S3. Color maps of the assigned interaction strengths 𝐾𝐾𝑖𝑖𝑖𝑖: (𝐾𝐾𝐾𝐾,𝐾𝐾𝐾𝐾) = (10, 1.0) of the 

adaptive CG-ENM based on DCCM for ADK with various (Cs, Cw) sets and the corresponding time 



evolutions of RMSD from the apo-structure and Q-score based on apo-structure. (A, B, C) Color 

maps of the assigned interaction strengths in the residue pair plane with various (Cs, Cw) = (0.2, 

0.1), (1.0, 0.9), (0.8, 0.6). The strong springs (Ks = 10) are assigned for residue pairs at red points, 

whereas the weak springs (Kw = 1) are assigned for residue pairs at green points. (D, E, F) Time 

evolution of RMSD from the apo-structure and the Q-score (apo) for corresponding parameters.  

  



  
Figure S4. Color maps of the assigned interaction strengths 𝐾𝐾𝑖𝑖𝑖𝑖: (𝐾𝐾𝐾𝐾,𝐾𝐾𝐾𝐾) = (10, 8.0) of the 

adaptive CG-ENM based on DCCM for GBP with various (Cs, Cw) sets and the corresponding time 

evolutions of RMSD from the apo-structure and Q-score based on apo-structure. (A, B, C) Color 

maps of the assigned interaction strengths in the residue pair plane with various (Cs, Cw) = (0.2, 

0.1), (1.0, 0.9), (0.8, 0.6). The strong springs (Ks = 10) are assigned for residue pairs at the red 

points, whereas the weak springs (Kw = 8) are assigned for residue pairs at the green points. (D, E, 

F) Time evolutions of RMSD from the apo-structure and the Q-score (apo) for corresponding 

parameters.  

  



 
Figure S5. Contour plots of the score function: 𝐹𝐹𝐵𝐵𝐵𝐵  for ADK. (A) Contour plot of the score 

function on the (Cs, Cw) plane under the specific condition: (Ks, Kw) = (10, 1). (B) Contour plot of 

the score function on the (Ks, Kw) plane under the specific condition: (Cs, Cw) = (0.8, 0.6).  

 

 
Figure S6. Contour plots of the score function: 𝐹𝐹𝐵𝐵𝐵𝐵 for GBP. (A) Contour plot of the score function 

on the (Cs, Cw) plane under the specific condition: (Ks, Kw) = (10, 8). (B) Contour plot of the score 

function on the (Ks, Kw) plane under the specific condition: (Cs, Cw) = (0.8, 0.6).  

 

 

 
Figure S7. Sampling iteration number dependence of the averaged improvement score 〈𝐹𝐹𝐵𝐵𝐵𝐵

(𝑖𝑖) −
𝐹𝐹𝐵𝐵𝐵𝐵

(𝑖𝑖−1)〉 over 30 trials in exploring suitable parameter sets by Bayesian optimization (BO) and 
random sampling (RS). (A) Result for ADK; (B) result for GBP. The blue and orange lines in each 

panel correspond to the average improvement score by BO and RS, respectively. The condition, such 

as the initially selected parameter set, is the same as for Figure 3. 



 
Figure S8. Sampling iteration number dependence of the raw improvement of score 𝐹𝐹𝐵𝐵𝐵𝐵

(𝑖𝑖) −
𝐹𝐹𝐵𝐵𝐵𝐵

(𝑖𝑖−1) for every 30 trials in exploring suitable parameter sets by Bayesian optimization (BO). (A) 
Result for ADK; (B) result for GBP. In each panel, the different colored lines correspond to the result 

for different trials by BO. The condition, such as the initially selected parameter set, is the same as 

for Figure 3 and Figure S7. 

 

 
Figure S9. Comparison of the new adaptive-ENM with conventional ENM and AA-MD for ADK 

(A) and GBP (B). For adaptive CG-ENM, another suitable parameter set was utilized: (Ks, Kw, Cs, 

Cw) = (7.0, 5.0, 0.9, 0.6) and (8.0, 6.0, 0.7, 0.6) for ADK and GBP, respectively. Sampling points for 

adaptive-ENM, ENM(TREMD), and AA-MD (50 ns and 1 µs) are colored green, magenta, blue, and 

orange, respectively. Reference (apo) and target (holo) structures are colored light green (square) and 

red (triangle). (Sampling points are ploted in PCA plane, of which the PC1 and PC2 axes are defined 

by the ensemble via adaptive CG-MD.) 

 



  

Figure S10. Sampling performance comparison between the new adaptive CG-ENM and 

conventional CG-ENM with default and weaker spring. (A and C) Comparison of structural 

ensembles sampled by adaptive CG-ENM and conventional CG-ENM with default spring and 10-

fold weaker spring in the PCA plane, of which PC-12 axes are defined by the ensemble by adaptive 

CG-MD for ADK with (Ks, Kw, Cs, Cw) = (8.0, 7.0, 0.8, 0.6) and GBP with (Ks, Kw, Cs, Cw) = 

(10.0, 8.0, 0.8, 0.6), respectively. Sampling points for adaptive CG-ENM, conventional CG-

ENM(TREMD) with default spring, and conventional CG-ENM(TREMD) with weaker spring are 

colored green, magenta, and blue, respectively. Reference (apo) and target (holo) structures are 

colored light green (square) and red (triangle). (B and D) Time evolution of RMSD vs target: holo 

(upper panels) and Q-score based on apo-structure (lower panels) for adaptive-ENM, conventional 

ENM with default spring, and with 10-fold weaker spring for ADK and GBP, respectively. 

 

 



 
Figure S11. Comparison of structural ensembles sampled by adaptive-ENM, conventional ENM, 

and AA-MD (50 ns and 1 µs) in the PCA plane, of which the PC-1 and PC-2 axes are defined by the 

ensemble via adaptive CG-MD for ADK. As same in Figure 5A, sampling points for adaptive-ENM 

with (Ks, Kw, Cs, Cw) = (8.0, 7.0, 0.8, 0.6), ENM(TREMD), and AA-MD (50 ns and 1 µs) are 

colored green, magenta, blue, and orange, respectively. Green gradation for sampling points of 

adaptive-ENM depend on Q-score (holo) in panel (A), radius of gyration Rg in panel (B), RMSD vs 

holo in panel (C), and potential energy in panel (D), respectively. 



  

Figure S12. Comparison of structural ensembles sampled by adaptive-ENM, conventional ENM, 

and AA-MD (50 ns and 1 µs) in the PCA plane, of which the PC-1 and PC-2 axes are defined by the 

ensemble via adaptive CG-MD for GBP. As same in Figure 6A, sampling points for adaptive-ENM 

with (Ks, Kw, Cs, Cw) = (10.0, 8.0, 0.8, 0.6), ENM(TREMD), AA-MD (50 ns and 1µs) are colored 

green, magenta, blue, and orange, respectively. Green gradation for sampling points of adaptive-

ENM depend on Q-score (holo) in panel (A), the radius of gyration Rg in panel (B), RMSD vs holo 

in panel (C), and Potential energy in Panel (D), respectively. 



  
Figure S13. Detailed investigation of representative structure S1 sampled by adaptive CG-ENM 

and comparison with apo (initial) and holo (target) X-crystal structure for ADK. Model S1, of which 

RMSD to holo is significantly smaller among structural ensemble sampled by adaptive CG-ENM, is 

the same as the one shown in Figure 5. (A) Probability distributions of Cα pairwise distance for the 

whole of ADK in apo (initial), holo (target), and S1. (B) Cα distance matrix for all residue pairs. (C) 

Snapshot of apo, holo, and S1 structure. Black arrows indicate the Cα distance between 

representative residues resid:40 in NMP-domain and resid:149 in LID-domain. 

 



 

Figure S14. Detailed investigation of representative structure S1 sampled by adaptive CG-

ENM and comparison with apo(initial) and holo(target) X-crystal structure for GBP. Model S1, 

of which RMSD to holo is significantly smaller among structural ensemble sampled by adaptive CG-

ENM, is the same as the one shown in Figure 6. (A) Probability distributions of Cα pairwise distance 

for the whole of GBP in apo(initial), holo(target), and S1. (B) Cα distance matrix for all residue 



pairs. (C) Snapshot of apo, holo, and S1 structure. Black arrows indicate the Cα distance between 

two representative (ligand-binding) residues resid:50 in Large-domain and resid:118 in Small-

domain. (D) A limited Cα distance matrix only for ligand-binding-pocket residue pairs. The residues 

of the Ligand-binding pocket are colored red in panel (C). 

 

Figure S15. Detailed representative structures S1–5 sampled by adaptive CG-ENM for ADK. 

(A) Probability distributions of Cα pairwise distance for the whole of ADK in apo(initial), 

holo(target), and representative models S1-5. (B) Probability distributions of Cα pairwise distance 

for each intra-domain of ADK: core, LID, and NMP domain. (C) Snapshot of apo, holo, and S1-5 

model. RMSD vs holo and Q-score based on holo and Rg values are added to each snapshot. 



  

Figure S16. Detailed representative structures S1–5 sampled by adaptive CG-ENM for 

GBP. (A) Probability distributions of Cα pairwise distance for the whole of GBP in apo(initial), 
holo(target), and representative models S1-5. (B) Probability distributions of Cα pairwise 
distance for each intra-domain of GBP: Large and Small domain. (C) Snapshot of apo, holo, and 
S1-5 model. RMSD vs holo and Q-score based on holo and Rg values are added to each snapshot. 

 



  

Figure S17. Potential energy of ensemble structures sampled by adaptive CG-ENM and 

averaged structure “AV” and its neighborhood structures (V1, V2, V3, V4) around AV for 

ADK. The structure ensemble is same as one shown in Figure 5. (A) The distributions of the 

potential energy of structures by adaptive CG-ENM in the PC1-2 plane. The point of the average 

structure AV and its neighborhood structures (V1, V2, V3, V4) are also plotted at (PC1, PC2) = {(0, 

0), (-1, 0), (1, 0), (0, -1), (0, 1)} in the PC1-2 plane. (B) Probability distribution of potential energy 

for structural ensemble sampled by adaptive CG-ENM. (C) Comparison of potential energies for 

representative structures S1–5 sampled by adaptive CG-ENM with the ones for the modeled 



structures AV and V1–4. (D) Snapshot of representative sampled structures S1–5 and modeled 

structures AV and V1–4. 



  



Figure S18. Potential energy of ensemble structures sampled by adaptive CG-ENM and 

averaged structure “AV” and its neighborhood structures (V1, V2, V3, V4) around AV for 

GBP. The structure ensemble is the same as the one shown in Figure 6. (A) The distributions of the 

potential energy of structures by adaptive CG-ENM in the PC1-2 plane. The point of the average 

structure AV and its neighborhood structures (V1, V2, V3, V4) are also plotted at (PC1, PC2) = {(0, 

0), (-0.5, 0), (2, 0), (0, -2), (0, 0.5)} in the PC1-2 plane. (B) Probability distribution of potential 

energy for structural ensemble sampled by adaptive CG-ENM. (C) Comparison of potential energies 

for representative structures S1–5 sampled by adaptive CG-ENM with the ones for modeled 

structures AV and V1–4. (D) Snapshot of representative sampled structures S1–5 and modeled 

structures AV and V1–4. (E) Sideview of corresponding snapshots shown in panel-D. 

 

 

 



  

Figure S19. Sampling performance comparison for ADK between the new adaptive 
CG-ENM and tCONCOORD without using the Rg of the target (holo) as a constraint. 
(A) Time series for adaptive CG-ENM, sample-id dependence for tCONCOORD, and 
the corresponding probability distributions of Cα-distance between representative 
residues (residues 40–149) and radius of gyration Rg. The green and red dashed lines 
stand for the value of Cα-distance and Rg in the apo and holo state, respectively. 
Sampling with adaptive CG-ENM is conducted by (Ks, Kw, Cs, Cw) = (8.0, 7.0, 0.8, 
0.6), and sampling with tCONCOORD is conducted by default set. (The structural 
ensemble for adaptive CG-ENM is the same as the one shown in Figure 5) (B) 
Snapshots of structure for apo, holo, and T1 with tCONCOORD, and S1 with adaptive 



CG-ENM. RMSD of T1 to target (holo) is the smallest among the 5000 sampled 
structures by tCONCOORD, RMSD of S1 to target (holo) is significantly smaller 
among the 5000 sampled structures by adaptive CG-ENM. Sampling points for T1 and 
S1 are depicted in the time series of Cα-distance and Rg in panel A using a black “x”. 
RMSD vs holo, Cα-distance, and Rg values are added to each snapshot. 

 

  
Figure S20. Sampling performance comparison for GBP between the new adaptive CG-ENM and 

tCONCOORD without using the Rg of the target (holo) as a constraint. (A) Time series for adaptive 

CG-ENM, sample-id dependence for tCONCOORD, and the corresponding probability distributions 

of Cα-distance between representative residues (residues 50–118) in binding-pocket and radius of 



gyration Rg. The green and red dashed lines stand for the value of Cα-distance and Rg in apo ant 

holo state, respectively. Sampling with adaptive CG-ENM is conducted by (Ks, Kw, Cs, Cw) = (10.0, 

8.0, 0.8, 0.6), and sampling with tCONCOORD is conducted by default set. (The structural ensemble 

for adaptive CG-ENM is the same as the one shown in Figure 6) (B) Snapshots of structure for apo, 

holo, and T1 with tCONCOORD, and S1 with adaptive CG-ENM. RMSD of T1 to target (holo) is 

the smallest among the 5000 sampled structures by tCONCOORD, RMSD of S1 to target (holo) is 

significantly smaller among the 5000 sampled structures by adaptive CG-ENM. Sampling points for 

T1 and S1 are depicted in time series of Cα-distance and Rg in panel A by using a black “x”. RMSD 

vs holo, Cα-distance, and Rg values are added to each snapshot. 

 



   

Figure S21. Comparison of structural ensembles sampled by adaptive CG-ENM, conventional 

CG-ENM, and AA-MD (50 ns) in the PCA plane, of which the PC-1 and PC-2 axes are defined by 

the ensemble via adaptive CG-MD for integrin. As same in Figure 9A, sampling points for adaptive 

CG-ENM with (Ks, Kw, Cs, Cw) = (7.0, 1.0, 1.0, 0.8), conventional CG-ENM(TREMD), and AA-

MD (50 ns) are colored green, magenta, and blue, respectively. Green gradation for sampling points 

of adaptive-ENM depends on RMSD vs reference (inactive-state) in panel (A), the radius of gyration 

Rg in panel (B), Angle between two vectors that represent the direction of the long axis of Thigh-

domain by 𝜸𝜸𝟓𝟓𝟓𝟓𝟓𝟓 − 𝜸𝜸𝟒𝟒𝟒𝟒𝟒𝟒  and Calf-1 domain by 𝜸𝜸𝟔𝟔𝟔𝟔𝟔𝟔 − 𝜸𝜸𝟔𝟔𝟔𝟔𝟔𝟔  in panel (C), Cα distance between 

representative residues (residues 82–764) in β-propeller and Calf-2 domain in panel (D), potential 

energy in panel (E), and Q-score (ref) based on inactive structure in panel (F). 



  

Figure S22. Time step dependence of replica exchange for ADK (A), GBP (B), and integrin (C). 

Replica ID at 300.0 K in conventional CG-ENM using TREMD simulation are plotted as the 

function of steps. 

 

Supporting Information Table 

 

Table S1. Surface areas of the bounding boxes for structural ensemble points explored by each 

model (adaptive CG-ENM, conventional CG-ENM by TREMD, and AA-MD of 1 µs) in the PC12-

plane.  
 Adaptive 

CG-
ENM 

Conventional 
CG-ENM by 
TREMD 

AA-MD  
(1 µs) 

ADK 1.00 2.27 × 10−3 5.67 × 10−2 
GBP 1.00 3.58 × 10−4 1.04 × 10−2 

The PC-12 axis is defined by the eigenvector of PCA based on trajectory that is generated by 

concatenating three trajectories with adaptive CG-ENM, conventional CG-ENM by TREMD, and 



AA-MD of 1 µs. The surface areas of the bounding boxes for AA-MD and conventional CG-ENM 

by TREMD are normalized by that of adaptive CG-ENM. The trajectories of adaptive CG-ENM for 

ADK and GBP are reproduced via under-damped Langevin dynamics simulation with the respective 

suitable parameter (Ks, Kw, Cs, Cw) = (8.0, 7.0, 0.8, 0.6) and (10.0, 8.0, 0.8, 0.6) searched by BO. 

These parameter conditions are the same as used for Table 1. 

 

 

 

Table S2. Correlation coefficient of the probability distribution of Cα pairwise distance and Cα 

distance matrix between sampled-model: S1 and  (apo and holo) structures. 
 Probability 

distribution of Cα 
pairwise-distance 

Cα-distance matrix 
between all residue 
pairs 

Limited Cα-distance matrix between 
ligand binding residue pairs 

 S1 vs 
apo 

S1 vs holo S1 vs apo S1 vs 
holo 

S1 vs apo S1 vs holo 

ADK 0.93 0.99 0.86 0.91 - - 
GBP 0.99 0.99 0.96 0.95 0.85 0.90 
The correlation coefficient between S1 vs (apo, holo) structures are evaluated based on the 

probability distribution of Cα pairwise distance and Cα distance matrix shown in panels A and B of 

Figure S13 and S14 for ADK and GBP, respectively. In contrast, the correlation coefficient of the 

limited Cα-distance matrix between ligand binding residue pairs is evaluated based on the limited 

matrix shown in panel D of Figure S14. 
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