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Frequently Asked Questions (FAQs) 

This document provides information about the study:  

Okbay et al. (2022) “Polygenic prediction within and between families from a 3-million-person GWAS of 
educational attainment” Nature Genetics. 

The document was written by Daniel Benjamin, David Laibson, Michelle N. Meyer, and Patrick Turley. It 
draws from and builds on the FAQs for earlier SSGAC papers. It has the following sections:  

1. Background  

2. Study design and results 

3. Social and ethical implications of the study  

4. Appendices 

For clarifications or additional questions, please contact Daniel Benjamin (daniel.benjamin@gmail.com). 
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1 Background 

1.1 Who conducted this study? What are the group’s overarching goals? 

The authors of the study are members of the Social Science Genetic Association Consortium (SSGAC). 
The SSGAC is a multi-institutional, international research group that aims to identify statistically robust 
links between genetics and social-science-relevant outcomes. These outcomes include behavior, 
preferences, and personality. They are traditionally studied by social and behavioral scientists (e.g., 
economists, psychologists, sociologists) but are often also of interest to health and other researchers. 

The SSGAC was formed in 2011 to overcome a specific set of scientific challenges. Most social-scientific 
outcomes are associated with thousands of genetic differences called single-nucleotide polymorphisms 
(SNPs, pronounced “snips”).  A SNP is a place in the genome where people differ genetically from each 
other (see FAQ 1.3). Although when you add up thousands of SNPs, their collective predictive power can 
be meaningful (see FAQs 1.6 & 2.4), we now know that almost every one of these SNPs has an extremely 
weak association with a particular social-scientific outcome on its own. To identify specific SNPs with such 
weak associations, scientists must study at least hundreds of thousands of people (to separate weak signals 
from noise, and thereby avoid finding false positives). One promising strategy for doing this is for many 
investigators to pool their data into one large study. This approach has borne considerable fruit when used 
by medical geneticists interested in a range of medical conditions (Visscher et al., 2017). Most of these 
advances would not have been possible without large research collaborations between multiple research 
groups interested in similar questions. The SSGAC was formed in an attempt by social scientists to adopt 
this research model. 

The SSGAC is organized as a working group of the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE), a successful medical consortium. (In genetics research, “cohort” is a term that 
means “dataset.”) The SSGAC was founded by three social scientists—Daniel Benjamin (University of 
California, Los Angeles), David Cesarini (New York University), and Philipp Koellinger (Vrije Universiteit 
Amsterdam)—who believe that studying SNPs associated with social-scientific outcomes can have 
substantial positive impacts across many research fields (see FAQ 1.7).  

The Advisory Board for the SSGAC is composed of prominent researchers representing various disciplines: 
Dalton Conley (Sociology, Princeton University), George Davey Smith (Epidemiology, University of 
Bristol), Tõnu Esko (Molecular Biology and Human Genetics, University of Tartu and Estonian Genome 
Center), Albert Hofman (Epidemiology, Harvard University), Robert Krueger (Psychology, University of 
Minnesota), David Laibson (Economics, Harvard University), James Lee (Psychology, University of 
Minnesota), Sarah Medland (Genetic Epidemiology, QIMR Berghofer Medical Research Institute), 
Michelle Meyer (Bioethics and Law, Geisinger Health System), and Peter Visscher (Statistical Genetics, 
University of Queensland). 

The SSGAC is committed to the principles of reproducibility and transparency. Prior to conducting studies, 
power calculations are carried out to determine the necessary sample size for the analysis (assuming 
realistically small effect sizes associated with individual genetic variants). Whenever possible, we pre-
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register our analyses at OSF (formerly Open Science Framework). Major SSGAC publications are usually 
accompanied by a FAQ document (such as this one). The FAQ document is written to communicate what 
was found less tersely and technically than in the paper, as well as to emphasize what can and cannot be 
concluded from the research findings more broadly and how they should and shouldn’t be used. FAQ 
documents produced for SSGAC publications are available on the SSGAC website. 

In addition to educational attainment, SSGAC-affiliated papers have studied subjective well-being, 
reproductive behavior, risk tolerance, and dietary intake. The SSGAC website contains a list of our research 
publications, including papers in Science, Nature, Nature Genetics, Nature Human Behaviour, Proceedings 
of the National Academy of Sciences, Psychological Science, and Molecular Psychiatry. 

1.2 The current study focuses on an outcome called “educational attainment.” What is 
educational attainment? 

Educational attainment is the number of years of formal education a person has completed, starting with 
kindergarten or its equivalent. The vast majority of people in our sample are at least age 30; almost all of 
the people that we study have completed their formal education. Although educational attainment is most 
strongly influenced by social and other environmental factors (see FAQ 1.8), it is also influenced by 
thousands of genes. People vary considerably in how much education they complete. Education is 
recognized throughout the social and biomedical sciences as an important “predictor” (see FAQ 1.5) of 
many other life outcomes, such as income, occupation, health, and longevity (Ross and Wu, 1995; Cutler 
and Lleras-Muney, 2010). Educational attainment has also been among the relatively few social-scientific 
outcomes for which it is feasible to conduct a large-scale genome-wide study, because educational 
attainment is frequently measured in cohorts, including medical cohorts, due to its robust association with 
health. The current study is also based on a large sample of research participants of the personal genomics 
company 23andMe, which asks participants a survey question about educational attainment. A large-scale 
study is necessary (but not sufficient) to generate scientific findings that are reproducible.  

1.3 What is a GWAS? 

In a genome-wide association study (GWAS, pronounced JEE-wahs), scientists look across the entire 
human genome at genetic differences among people to see whether any of these differences are, on average, 
associated statistically with higher or lower levels of some outcome—for instance, more or less cancer, 
height, or risk tolerance. Typically, and in our studies, such analyses focus on places in the human genome 
where people commonly differ: so-called single-nucleotide polymorphisms (SNPs). At a given SNP located 
on a particular copy of a chromosome, each of us has one of the four genetic base pairs (A-T, T-A, C-G, or 
G-C), which is called an “allele.” We inherit one of each chromosome from our biological father and one 
from our biological mother, so at each SNP, we inherit one allele from each biological parent and hence 
have two alleles in total. In some cases, we inherit the same allele from each parent, and in other cases, we 
inherit one allele from one parent and a different allele from the other parent. In a GWAS, researchers look 
to see whether particular alleles are associated statistically with having more or less of some outcome.  

Although there are tens of millions of sites where SNPs are located in the human genome, GWASs typically 
investigate only SNPs that can be measured (or imputed) with a high level of accuracy. These days, such 
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procedures usually yield millions of SNPs that together capture most common genetic variation across 
people. 

When the SSGAC conducts a GWAS, every participating cohort uploads the (within-cohort) statistical 
associations between the outcome—for example, educational attainment—and each SNP that was measured 
in the genomes of the individuals in the cohort. The cohort-level results do not contain individual-level 
data—just summary statistics about these within-cohort statistical associations. The SSGAC then combines 
these cohort results to produce the overall GWAS results. By using existing datasets and combining cohort-
level results, we can study the genetics of ~3 million people at very low cost. The SSGAC publicly shares 
overall, aggregated results (subject to some Terms of Service; see FAQ 3.7) so that other scientists can 
build on this work. These publicly available data have already catalyzed many research projects and 
analyses across the social and biomedical sciences (see FAQ 1.7 for examples).  

GWASs have been a successful research strategy for identifying genetic variants associated with many 
outcomes and diseases, including body height (Wood et al., 2014) , BMI (Locke et al., 2015), Alzheimer’s 
disease (Lambert et al., 2013), and schizophrenia (Ripke et al., 2014). It has also recently been used to 
identify genetic variants associated with a variety of health-relevant social-science outcomes, such as the 
number of children a person has (Barban et al., 2016), happiness (Okbay, Baselmans, et al., 2016; Turley 
et al., 2018), and educational attainment (Rietveld et al., 2013; Okbay, Beauchamp, et al., 2016; Lee et al., 
2018). 

1.4 Are the SNPs identified in a GWAS “causal” (i.e., would a change in the SNPs someone has, 
if everything else stayed the same, cause a person’s life to change)? 

GWASs identify alleles that are associated with the outcome and cannot distinguish whether the 
associations are causal or not. While such an association can arise if a SNP causally influences the outcome, 
it is not necessarily the case that all associations between SNPs and outcomes are causal. Here are several 
non-causal reasons why a SNP may be associated statistically (i.e., correlated) with an outcome. First, SNPs 
are often highly correlated with other, nearby SNPs on the same chromosome. As a result, when one or 
more SNPs in a region causally influence an outcome (in that particular environment), many non-causal 
SNPs in that region may also be identified as statistically associated with the outcome. When GWAS results 
are analyzed, researchers typically report results for the SNP in a region that shows the strongest evidence 
of association. Even if there is a causal SNP, GWASs may not identify that particular SNP. In fact, the 
causal SNP may not have even been included among the SNPs that were originally measured directly for 
the study. For example, GWASs that focus on common SNPs would not be able to identify rare or structural 
genetic differences between people (e.g., deletions or insertions of an entire genetic region) that are causal, 
but GWASs may identify SNPs that are correlated with these unobserved sources of genetic variation. 

Second, at a particular SNP, the frequencies of different alleles might vary systematically across 
environments. If those environmental factors are not accounted for in the association analyses, some of the 
associations found may be spurious—that is, the result of coincidence or of a third factor. Consider the 
well-known example of a GWAS of chopstick use (Lander & Schork 1994; Hamer and Sirota, 2000). 
Because alleles are, by chance, more and less common in different populations, some alleles are more 
common in people with Asian genetic ancestries. At the same time, for cultural reasons, practices like 
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chopstick use are often more common in some populations than in others. Both alleles and social outcomes 
like chopstick use, then, are distributed unevenly among people with different genetic ancestries. As a 
result, a “chopstick GWAS” would almost certainly find some alleles that are associated statistically with 
chopstick use, but these associations would be coincidental, and the alleles would not cause chopstick use. 
This is the problem of “population stratification bias” discussed in FAQ 2.2. GWAS researchers have a 
number of strategies for addressing the challenges posed by population stratification bias (see FAQs 2.7 & 
3.5). 

Even in studies such as ours that attempt to account for diversity in genetic ancestry, allele frequencies may 
nonetheless vary systematically with social practices and other environmental factors even within a group 
of people of similar genetic ancestry. For example, an allele that is associated with improved educational 
outcomes in the parental generation may have downstream effects on parental income and other factors 
known to influence children’s educational opportunities and outcomes (such as neighborhood 
characteristics). This same allele is likely to be inherited by the children of these parents, creating a 
correlation between the presence of the allele in a child’s genome and the extent to which the child was 
reared in a specific kind of environment. A recent study of Icelandic families showed that the parental allele 
that is not passed on to the child is still associated with the child’s educational attainment, suggesting that 
GWAS results for educational attainment partly represent these intergenerational pathways (Kong et al., 
2018). Our family-based analyses yield results that are consistent with this conclusion (see FAQ 2.7).  

There are also cases where a SNP may indeed be causal, but not in the way that some people may think 
when they hear that genes “cause” an outcome. In these cases, SNPs’ effects on an outcome may be indirect, 
so a SNP that may be “causal” in one environment may have a diminished effect or no effect at all in other 
environments. For example, the nicotinic acetylcholine receptor gene cluster on chromosome 15 is 
associated with lung cancer (Amos et al., 2008; Hung et al., 2008; Thorgeirsson et al., 2008). From this 
observation alone we cannot conclude that these genetic variants cause lung cancer through some direct 
biological mechanism. In fact, it is likely that one version of this gene, which is part of the nicotinic 
acetylcholine receptor gene cluster that affects nicotine metabolism, increases lung cancer risk through 
effects on smoking behavior. In a tobacco-free environment, it is plausible that many of the associations 
would be substantially weaker and perhaps disappear altogether. Thus, even if we have credible evidence 
that a specific association is not spurious, it is entirely possible that the SNP in question influences the 
outcome through channels that most people would call environmental (e.g., smoking). Nearly forty years 
ago, the sociologist Christopher Jencks criticized the widespread tendency to mistakenly treat 
environmental and genetic sources of variation as mutually exclusive (see also Turkheimer, 2000). As the 
example of smoking illustrates, and as Jencks (1980) explains, it is often overly simplistic to assume that 
“genetic explanations of behavior are likely to be exclusively physical explanations while environmental 
explanations are likely to be social” (p.723).  

In general, a GWAS is just one step in a longer, often complex process of identifying causal pathways, but 
the results of a large-scale GWAS are a useful tool for that purpose and often lead to novel and important 
insights (Visscher et al., 2017). In other words, GWAS results provide important signals as to where 
scientists should invest future in-depth research to understand why the association exists (see also FAQ 
3.6). 
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1.5 In what sense do the SNPs identified in a GWAS “predict” the outcome of interest? What 
do you mean by “effect size”? 

When we and other scientists say that SNPs—and other variables, such as demographics or environmental 
factors—“predict” certain outcomes, we mean that people with particular alleles will tend—with some 
degree of likelihood, and only on average—to complete in the future or to have already completed more 
formal education, while people who carry other alleles will tend—again with some degree of likelihood, 
and only on average—to complete less formal education (see FAQ 1.8). 

Our use of “predict” in this sense differs in several important ways from how “predict” is sometimes used 
in standard language (e.g., outside of social science research papers). First, we do not mean that the presence 
of an allele guarantees an outcome with certainty, or even with a high degree of likelihood. Rather, we 
mean that the SNP is, on average across people, associated statistically with an outcome. In other words, 
on average, people with one allele at that SNP have a higher likelihood of the outcome compared to people 
with the other allele. Scientists describe a SNP as statistically “predictive” of an outcome even if it has only 
a weak association with the outcome—as is the case, for instance, with every SNP that we identify that is 
associated with educational attainment. 

Second, in standard language, “prediction” usually refers to the future. In contrast, when scientists say that 
SNPs “predict” an outcome, they mean that they expect to see the association in other data. “Other data” 
means data that aren’t part of the current study—regardless of whether those data will be collected in the 
future or have already been collected. In other words, in social science, it makes perfect sense to ask how 
well a SNP predicts an outcome that has already occurred, like how many years of education were attained 
by older adults. 

Finally, in standard language, a “prediction” is often an unconditional guess about what will happen. Instead 
of meaning it unconditionally, scientists mean that they expect to see an association in other data 
collected—but only if those data will be or were collected in an environment that is approximately the same 
as the environment in which the original data were collected. In the example given in FAQ 1.4, in which a 
SNP is associated with lung cancer due to its effect on smoking, we might not expect the SNP to be 
predictive of lung cancer in an environment where cigarettes and other smoked tobacco products are absent. 

“Effect size” is a scientific term that refers to the magnitude of the predicted difference in the outcome 
resulting from having one allele of a SNP as opposed to the other possible allele (see FAQ 2.3). For 
example, the average SNP identified in the current study is associated with only 1.4 more weeks of school 
on average. (Note that the association might average out to 1.4 weeks of school if, for example, one of the 
alleles is associated with an additional year of school for 3.5% of people and no additional school for 96.5% 
of people.) The use of the word “effect” is not intended to imply that the strength of the association between 
a SNP and educational attainment is necessarily a measure of the SNP’s causal effect on educational 
attainment (see FAQ 1.4). 
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1.6 What is a polygenic index? 

The results of a GWAS can be used to create a “polygenic index,” which sums up the net “effects” (see 
FAQ 1.5) of many SNPs from across an individual’s genome on the GWAS outcome. (We prefer the term 
“polygenic index” over the more common terms “polygenic score” and “polygenic risk score,” because the 
words “score” and “risk” can convey a value judgment where none is intended.) Because a polygenic index 
aggregates the information from many SNPs, it can “predict” (see FAQ 1.5) far more of the variation among 
individuals for the GWAS outcome than any single SNP. (Note, however, that even polygenic indexes are 
not good predictors of outcomes for one person; see FAQ 2.4.) Often, the polygenic indexes with the most 
predictive power are those created using all the (millions of) SNPs studied in a GWAS. The larger the 
GWAS sample size, the greater the predictive power (in other, independent samples) of a polygenic index 
constructed from the GWAS results. More precisely, the GWAS results are used to create a formula for 
constructing a polygenic index based on the effects on the outcome of having each allele. Using this 
formula, a polygenic index can then be constructed for any individual for whom there is genetic data that 
includes the SNPs that were used to construct the index. Indeed, some of the value of a GWAS is that the 
polygenic index it produces can be used in subsequent studies conducted in other samples.  

We do not refer to the association between a polygenic index and an outcome as “causal.” That is because 
the polygenic index is composed of many SNPs, and while some of these may be causal, some (or, in 
principle, all) may not be causal (see FAQ 1.4). Some of the analyses in our paper are designed to quantify 
how much of the predictive power of the polygenic index for educational attainment is due to causal effects 
of SNPs (see FAQ 2.1). 

1.7 Why conduct a GWAS of educational attainment? 

We are motivated to conduct this research because we believe it can be fruitful for the social sciences and 
health research. In addition to the specific findings of our paper, which are discussed in Section 2 of these 
FAQs, the results of a GWAS of educational attainment also provide inputs for other research. In our view, 
some of the most valuable uses of the results will be to improve our ability to study the effects of 
environments. Because this may be counterintuitive, we will give a few examples of what we mean 

One example is using a polygenic index to control for, or hold constant, genetic influences when studying 
the effect of an environment. Doing so can be important when the study is correlational, but it can be 
valuable even in a study where the environmental variable is randomly assigned. Suppose researchers are 
studying the effect of an educational intervention, such as providing free preschool to economically 
disadvantaged children, on subsequent school achievement. Because a year of preschool is expensive, the 
sample sizes of such studies have been small (e.g., Weikart and Perry Preschool Project, 1967). In a study 
where a year of free preschool is randomly given to half of the children participating in the study, control 
variables are not needed in order to get an estimate of the effect of preschool on average—but control 
variables, such as gender, age, and parental socioeconomic status, are typically included in order to make 
the estimate more precise (by removing some of the background “noise” that makes it harder to detect the 
effect of the intervention). In effect, using the polygenic index as an additional control variable can allow 
the researchers to learn more from the same-size sample. The value of using the polygenic index as a control 
depends on how much predictive power it has over the set of other control variables used. In our first GWAS 
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of educational attainment (Rietveld et al., 2013, Supplementary Materials section 8), we conducted 
calculations to quantify these gains. For the purposes of illustration, suppose control variables other than 
the polygenic index capture 10% of the variation in the outcome, and the polygenic index captures an 
additional 12% of the variation. Then to attain any given level of precision for the estimate of the effect of 
preschool, including the polygenic index as a control variable reduces the required sample size for the study 
by 13%. Relative to the cost of providing preschool to additional research participants—for instance, 
estimated to be $19,208.61 (in 2010 dollars) per child for the two-year Perry preschool study (Heckman et 
al., 2010)—genotyping participants can be highly cost effective. (Genotyping currently costs roughly 
$30/person, with this cost falling quickly over time.) There are currently only a few examples of polygenic 
indexes used in this way (e.g., Davies et al. 2018), because polygenic indexes have only recently attained 
enough predictive power to usefully serve as control variables. We anticipate that this type of application 
will become widespread in future social-scientific studies. 

Another example is using the results of a GWAS of educational attainment to study how parenting and 
other features of a child’s rearing environment influence his or her developmental outcomes. This idea was 
pioneered in a paper by Kong et al. (2018), who studied SNPs identified in one of our earlier GWASs of 
educational attainment (Okbay, Beauchamp, et al., 2016). Kong et al. showed that the alleles of the mother 
and father that are not transmitted to a child are nevertheless related to the child’s outcomes, including the 
child’s educational attainment. Because the child did not inherit these alleles, their association with the 
child’s outcomes cannot be due to genetic influences on the child. Instead, their association with the child’s 
outcomes must be due to their effects on the parents, which in turn affects the environment in which the 
child is reared. While Kong et al. did not pin down the specific pathways that account for these associations, 
there are many interesting possibilities that can be explored in future work; for instance, parents with these 
alleles are more likely to attend school longer and earn higher incomes, which may enable them to provide 
educational advantages to their children. Kong et al.’s methodology can also be used to address other 
questions, such as whether the non-transmitted alleles of the mother or father are more strongly with the 
child’s outcomes. 

Much more briefly, here are some other examples of how results from our earlier GWASs of educational 
attainment (Rietveld et al., 2013; Okbay, Beauchamp, et al., 2016; Lee et al., 2018) conducted in much 
smaller sample sizes (see also FAQ 1.8) have been used: 

• examine the genetic overlap between educational attainment and ADHD, schizophrenia, 
Alzheimer’s disease, intellectual disability, cognitive decline in the elderly, brain morphology, and 
longevity (Pickrell et al., 2016; Riccardo E. Marioni et al., 2016; Warrier et al., 2016; Anderson et 
al., 2017); 

• help us better identify possible genetic subtypes of schizophrenia (Bansal et al., 2017); 
• provide insights into the genetics of brain development and function (Lee et al., 2018); 
• explore why educational attainment appears to be protective against coronary artery disease 

(Tillmann et al., 2017) and obesity (van Kippersluis and Rietveld, 2018); 
• study why specific SNPs predict educational attainment. For example, it appears that some genetic 

effects on educational attainment operate through associations with cognitive performance and 
outcomes such as self-control (Belsky et al., 2016), which in turn affect educational attainment; 
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• study how the effects of genes on education differ across environmental contexts (Schmitz and 
Conley, 2017; Barcellos, Carvalho and Turley, 2018; Cheesman et al., 2020); and 

• determine the limits of genetic influences and debunk cultural myths about group differences (e.g., 
between men and women, see FAQs 2.9 & 3.7) (Houmark, Ronda and Rosholm, 2020). 

By making the results of our analyses publicly available at https://www.thessgac.org/data, we hope to 
facilitate this and other valuable work by other researchers. 

1.8 What was already known about the relationships between genes and educational 
attainment prior to this study? 

Educational attainment is strongly influenced by social and other environmental factors. For example, 
holding all other influences equal, those who live in communities where education (at least beyond a certain 
level) is relatively expensive are less likely to obtain a high level of educational attainment. Even when 
education is free or heavily subsidized, full-time education implies an opportunity cost that not everyone is 
equally able to bear: some individuals, due to a variety of family or economic circumstances, will face more 
pressure than others to leave school and enter the work force. More generally, educational outcomes are 
strongly influenced by environmental factors such as social norms, early-life educational experiences, 
economic opportunity, and many forms of bias and discrimination that make it harder for some people to 
succeed or stay in school. 

A variety of findings—from twin, family, and GWASs—suggest that genetic factors predict some of the 
differences across people in their educational attainment (Heath et al., 1985; Silventoinen et al., 2004; 
Branigan et al., 2013). Studies have found repeatedly that identical twins raised in the same home are 
substantially more similar to each other in their educational attainment than fraternal twins (or other full 
siblings) reared together. Full siblings reared together are, in turn, more similar than half siblings reared 
together who, in turn, are more similar than genetically unrelated siblings reared together (e.g., siblings 
who are conventionally unrelated, typically because at least one of them is adopted) (Sacerdote, 2007, 2011; 
Cesarini and Visscher, 2017). The studies have also provided strong evidence that the so-called “common 
environment” (the environmental factors shared by siblings raised in the same household) can have long-
lasting effects on educational outcomes. In Sweden, the educational outcomes of adopted (i.e., genetically 
unrelated) brothers reared in the same households are about as similar as the educational outcomes of full 
siblings reared in separate homes (Cesarini and Visscher, 2017). A study of Korean-American adoptees 
finds that adoptees assigned to households where both parents had college degrees were 16 percentage 
points more likely to attend college than children assigned to families in which neither parent completed 
college (Sacerdote, 2007). 

Research (like the current study) using molecular genetic data—data that measures each person’s DNA and 
can be used to identify differences among people at the molecular level—has similarly estimated that SNPs 
may jointly predict up to 20% of the variation in educational attainment across individuals (Rietveld et al., 
2013). Prior GWASs have begun to identify some of those SNPs. In the SSGAC’s first major publication 
(Rietveld et al., 2013), we conducted a GWAS in a sample of roughly 100,000 people and identified three 
SNPs that were statistically associated with educational attainment. In 2016, the SSGAC published another 
GWAS of educational attainment, this time in a sample of around 300,000 people (Okbay, Beauchamp, et 
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al., 2016). We found that 74 SNPs were associated with educational attainment. These included the three 
SNPs identified in our earlier study (Rietveld et al., 2013). In 2018, the SSGAC published its most recent 
GWAS of educational attainment in a sample of roughly 1.1 million people (Lee et al., 2018). We found 
1,271 SNPs associated with educational attainment, and earlier findings continued to replicate well. All 
three of these studies involved, at the time they were conducted, the largest sample sizes ever studied for 
genetic associations with a social-science outcome. 

Researchers don’t yet know why these SNPs are associated with differences in educational attainment. Their 
predictive power may derive from many different types of mechanisms, some of which would be quite 
indirect. For example, genetic variation may affect neural functions such as memory. Genetic variation may 
improve sleep quality (making it easier to subsequently stay awake in boring lectures). Genetic variation 
can affect personality traits, such as the willingness to listen politely to and follow the instructions of 
teachers (who aren’t always right but nevertheless dictate grades and other outcomes). There may also be 
even more convoluted pathways. For example, genetic variation can affect one’s sociability, which might 
draw someone into or drive someone out of the particular social environments that exist in higher education. 

There were three key takeaways from the SSGAC’s prior work:  

(1) A GWAS approach can identify specific SNPs statistically associated with socio-behavioral 
outcomes if the study is conducted in large enough samples (at least 100,000 people). 

(2) SNPs that are associated with a socio-behavioral outcome such as educational attainment are 
each likely to have less predictive power than are SNPs that are associated with a biomedical 
or other physical outcome (Chabris et al., 2015). For example, of the hundreds of SNPs found 
to be associated with height to date (Wood et al., 2014; Yengo, Sidorenko, et al., 2018), the 
SNP with the strongest association predicts 0.4% of the variation across individuals in height, 
whereas the SNP with the strongest association with educational attainment identified to date 
predicts less than one tenth (<0.04%) as much of the variation in educational attainment (Lee 
et al., 2018). (The SNPs that have not yet been identified will very likely explain even less 
variance than those that are currently known, since statistical power is greatest for those that 
explain the most variance; in other words, the largest effect-size SNPs are likely to have been 
the first ones to have been identified in earlier GWASs.) 

(3) In the samples studied, at least 20% of the variation in educational attainment can in principle 
be predicted by genetic differences (Rietveld et al., 2013), implying that the genetic 
associations with educational attainment result from the cumulative effects of at least thousands 
(and probably millions) of SNPs, not just a few.  

These findings from twin, family, and GWASs imply that individuals who carry an allele associated with 
greater educational attainment will on average complete slightly more formal education than other 
(similarly environmentally situated) individuals who carry a different allele of the same SNP. Put in 
population terms, these findings imply that people with particular alleles will tend on average to complete 
more formal education, while people who carry other alleles will tend on average to complete less formal 
education. It is important to emphasize that these associations represent average tendencies in a population. 
Women are, on average, shorter than men. But you likely know many tall women and many short men. 
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Similarly, many individuals with high polygenic indexes for educational attainment will not get a college 
degree, and vice-versa (see FAQ 3.4). It is also important to recall (from FAQ 1.5) that these average 
tendencies of alleles on educational outcomes may reflect indirect genetic influences on education that 
operate through environmental channels, such that a polygenic index that is moderately predictive in one 
environment may become less predictive or not at all predictive in a very different environment. Polygenic 
indexes for educational attainment are poor predictors of individual outcomes and sensitive to 
environments, but increasingly useful tools in social science research (see FAQ 2.4). 

2 Study design and results  

2.1 What did you do in this paper? How was the study designed? Why was the study designed 
in this way? 

We conducted a GWAS (see FAQ 1.3) of educational attainment (see FAQ 1.2) in a sample of over 3 
million people. The sample size we used in the current study is much larger than that used in previous 
GWAS of educational attainment (see FAQ 1.8). By constructing a sample of over 3 million, we expected 
to estimate genetic effects with much greater accuracy than previous studies (with smaller samples). As a 
result, we expected to identify many more specific SNPs that are associated with educational attainment 
and to build a more accurate polygenic index. 

To construct such a large sample, we started with the data analyzed in our most recent paper (Lee et al., 
2018): a GWAS of roughly 300,000 research participants from 69 datasets; a GWAS of roughly 440,000 
research participants from the UK Biobank, a large-scale biomedical database and research resource; and a 
GWAS of roughly 365,000 research participants from the personal genomics company 23andMe. We then 
replaced the earlier 23andMe sample with an updated GWAS based on roughly 2.3 million 23andMe 
research participants. This new data increased the combined sample size from about 1.1 million participants 
to about 3 million participants. All of these datasets have surveyed and genotyped their research 
participants. 

Our study was limited to only the most common type of genetic difference: SNPs (see FAQ 1.3). Like our 
most recent previous study (Lee et al., 2018) but unlike most other studies, which have analyzed only the 
autosomes (the non-sex chromosomes), our study also included SNPs on the X chromosome (see FAQ 2.9). 
Also unlike most other studies (including our own previous work), which have studied only the additive 
(i.e., linear) effects of SNPs, our study also studied their dominance (i.e., non-linear) effects (see FAQ 
2.10). In total, our analyses included approximately 10 million SNPs. 

As in other GWASs, our analyses included only individuals of primarily European genetic ancestries. (We 
say genetic ancestries because we are not talking about who someone identifies as their ancestors but, rather, 
the similarity between someone’s genome and the genome of a “reference sample” for a population from 
prior genetic studies. And throughout these FAQs we refer to European and African genetic ancestries, 
plural, because there is tremendous genetic diversity within each continent, especially Africa.) Such 
individuals are identified in different ways in different cohorts that participated in our study (depending on, 
for example, the demographic composition of the country where the individuals live). In all cohorts, though, 
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statistical summaries of the allele frequencies and allele correlation patterns in people’s genomes (see FAQ 
2.2), called principal components, are used as part of the procedure. In particular, individuals are only 
identified as having European genetic ancestries if their principal components are sufficiently similar to 
those of reference individuals recruited in prior genetic studies, whose ancestors over several generations 
were all born in a European country. The restriction to European genetic ancestries is needed in order to 
reduce statistical confounds that otherwise arise from studying populations that include people with 
different genetic ancestries (see the discussion of population stratification bias in FAQ 2.2; see also FAQs 
1.4, 2.7 & 3.5). 

In the remainder of the paper, we used the findings from the GWAS for a range of additional analyses that 
explored (among other things): 

• the predictive power of the polygenic index for educational attainment (FAQ 2.4), as well as 
cognitive performance and high school academic achievement; 

• why the polygenic index is less predictive in individuals of African genetic ancestries than in 
individuals of European genetic ancestries (FAQ 2.5); 

• the predictive power of the polygenic index for the risk of various diseases (FAQ 2.6); 

• the extent to which the polygenic index’s predictive power for educational attainment and other 
outcomes is due to its correlation with environmental factors rather than to genes, per se (see FAQ 
2.7);  

• assortative mating based on educational attainment (see FAQ 2.8); 

• the effects of SNPs on the X chromosome on educational attainment (FAQ 2.9); and 

• the magnitude of “dominance effects” for the effects of SNPs on educational attainment (see FAQ 
2.10).  

2.2 What are common pitfalls in GWASs? What precautions did you take against them? 

There are many potential pitfalls that can lead to spurious results in genome-wide association studies 
(GWASs). We took many precautions to guard against these pitfalls. 

One potential source of spurious results is incomplete “quality control” (QC) of the genetic data. To avoid 
this problem, we use QC protocols from medical genetics research (Winkler et al., 2014). We supplement 
these protocols by developing and applying additional, more stringent QC filters. 

Another potential source of spurious results is a confound known as “population stratification bias.” (We 
discuss a well-known illustration of this confound—a hypothetical GWAS of chopstick use—in FAQ 1.3.) 
In our study we correct for population stratification bias as much as possible. At the outset, we restrict the 
study to individuals of European genetic ancestries. As is standard in GWASs, we also control for “principal 
components” of the genetic data in the analysis; these principal components capture the small genetic 
differences across genetic ancestry groups within European populations, so controlling for them largely 
removes the spurious associations arising solely from these small differences. 
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After taking these steps to minimize bias stemming from population stratification, we conduct a standard 
analysis to assess how much population stratification bias still remains in our data after our efforts to 
minimize it, called LD Score regression (Bulik-Sullivan et al., 2015). The results of this analysis indicate 
that the biases in our results due to population stratification are small. 

The “direct effect” of the polygenic index from our within-family analysis, described in FAQ 2.7, is immune 
to any remaining population stratification bias. Population stratification bias can only arise when 
individuals are from different families with different genetic ancestries. By controlling for the polygenic 
indexes of an individual’s parents, we are also controlling for any differences in genetic ancestry across 
individuals. 

2.3 What did you find in the main GWAS of educational attainment? 

In our sample of roughly 3 million people, we found 3,952 SNPs that were associated with educational 
attainment (using the standard statistical threshold in GWAS, which adjusts for multiple hypothesis testing). 
This is a substantial increase from the 1,271 SNPs identified in our last GWAS of around 1 million 
individuals (Lee et al., 2018), further confirming the importance of large sample size for identifying SNPs 
associated with socio-behavioral outcomes.  

The current study further confirmed the finding from our earlier work that the effects of individual SNPs 
on educational attainment are each extremely small. The median effect size across the 3,952 SNPs was just 
1.4 weeks of schooling per allele; even the SNPs with the strongest associations only predicted around 3.5 
weeks of additional schooling per allele. Taken together, these 3,952 SNPs accounted for roughly 8% of 
the variation across individuals in years of education completed. 

Here is another way to think about this result. We could use the results for these 3,952 SNPs (not the ~1 
million SNPs across entire genome that we discuss in FAQ 2.4) to predict the educational attainment for a 
new group of people (separate from our discovery sample) whose educational attainment is unknown to us. 
We could then compare each individual’s predicted educational attainment to their actual educational 
attainment. If we did so, our results would show that if someone were predicted to complete an above 
average number of years of schooling (i.e., to be in the top half of educational attainment), that person 
would have about a 59% chance of actually being in the top half of educational attainment. 59% is better 
than the 50% odds of making a correct prediction that you would have if you used a coin flip to predict 
whether someone is in the top or bottom half of educational attainment—but only a bit better. By contrast, 
a prediction based on a polygenic index that combines the complete set of ~1 million SNPs that we studied 
(see FAQs 1.6 & 2.4) has more predictive power: about 13% of the variation across individuals. (Even this 
amount of predictive power still corresponds to having only a 62% chance of correctly guessing whether 
someone is in the top or bottom half of educational attainment.) 

The contrast between the 8% of the variation predicted by the 3,952 SNPs and the 20% estimated to be 
explained by common SNPs (see FAQ 1.8) implies that there are many other SNPs that have not yet been 
identified. Even larger sample sizes will be needed to identify them.  
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It is also important to keep in mind that educational attainment is a complex outcome, and our study focuses 
on only a tiny piece of the bigger picture. In this paper, we only examine one type of genetic difference 
(SNPs). Other genetic effects, environmental effects, and their interactions are important topics of active 
research and of future work by the SSGAC. Such work includes studies of associations between educational 
attainment and epigenetic marks, i.e., other molecules that attach to a person’s DNA over the course of their 
lifetime and tell their genes to switch “on” or “off” (Linnér et al., 2017). 

2.4 How predictive is the polygenic index developed in this study? 

As discussed in FAQ 1.6, we can create a polygenic index using the GWAS results from around ~1 million 
SNPs. The polygenic index we construct “predicts” (see FAQ 1.5) around 13% of the variation in education 
across individuals of European genetic ancestries (when tested in independent data that was not included in 
the GWAS). This ~1 million SNP polygenic index predicts much more of the variation than does the genetic 
predictor described in FAQ 2.2, which was based on only 3,952 SNPs. Including all ~1 million SNPs tends 
to add predictive power because the threshold for significance/inclusion that is used to identify the 3,952 
SNPs is very conservative (i.e., many of the other ~1 million SNPs are also associated with educational 
attainment but are not identified by our study, and on net, it turns out empirically that more signal than 
noise is added by including them). This study’s polygenic index has much more predictive power than 
polygenic indexes constructed from our earlier three GWASs of educational attainment, because all of those 
studies had much smaller sample sizes (~100,000, ~300,000, and ~1.1 million individuals, respectively, 
compared with ~3 million individuals in the current study). 

Individuals with high polygenic indexes have, on average, higher levels of education than those with lower 
polygenic indexes. In the present study, we found that among the individuals of European genetic ancestries 
from a U.S. sample of young adults (the National Longitudinal Study of Adolescent to Adult Health), 7% 
of those with the lowest 10% of polygenic indexes graduated from college, compared with 71% of those 
with the highest 10% of polygenic indexes. These results show both that polygenic indexes have some 
predictive power but also that polygenic indexes do not at all pin down individual outcomes: even when 
polygenic indexes are based on a GWAS of many more people and therefore have even greater predictive 
power than ours, there will always be many people whose polygenic indexes “predict” lower educational 
attainment who in fact attain relatively high amounts of education and vice-versa. 

As we discuss further in FAQ 3.4, an individual’s polygenic index for education (even a polygenic index 
based on ~1 million SNPs) is still not a very accurate prediction of that individual’s actual level of education 
attained. We emphasize that point using Figure 2c in the paper, reproduced here: 
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In the figure on the left, each point is an individual of European genetic ancestries from the U.S. sample of 
younger adults mentioned above (the National Longitudinal Study of Adolescent to Adult Health). In the 
figure on the right, each point is an individual of European genetic ancestries from a U.S. sample of older 
adults (the Health and Retirement Study). In both figures, the x-axis is the individual’s polygenic index, 
and the y-axis is the individual’s actual number of years of formal schooling (after converting the level of 
education to an internationally standardized scale and adjusting for age and sex). The points are jittered 
slightly from their actual values in order to ensure that points do not lie directly on top of each other. While 
the figures show that there is a relationship between the polygenic index and the actual amount of an 
individual’s education, they also show that people with the same polygenic index value—points with the 
same x-axis value—vary a great deal in how much education they have. For instance, in both samples, 
among those with a polygenic index that is one standard deviation below average, individuals range in their 
actual educational attainment from about 7 years of formal education to about 22 years. 

Despite the fact that polygenic indexes are not useful for predicting a particular individual’s educational 
attainment, they are useful for scientific studies (including social science, health research, etc.). Such studies 
are concerned with aggregate population trends and averages rather than with individual outcomes. In 
particular, because the polygenic index predicts about 13% of the variation across individuals, studies of its 
association with other variables can be well powered in sample sizes as small as 61 individuals (but not as 
small as 1 individual!). 

Through this lens, the fact that the current study’s polygenic index for educational attainment predicts 13% 
of the variation across individuals in education attained is quite meaningful and rivals the predictive power 
of other variables commonly used in research—none of which, taken alone, predicts a large amount of 
variation in a socio-behavioral outcome. For example, in our prior work (Lee et al., 2018) we estimated 
that household income predicts ~7% of variation in educational attainment and mother’s education predicts 
~15%. Thus, our index has approached the predictive power of important demographic variables and can 



17 

 

be used in similar ways (e.g., to control for genetics as an additional confound when evaluating the effects 
of environmental differences or interventions).  

With a relatively high level of population-level predictive power, the polygenic index we constructed 
enables other research that is of value to social scientists and health researchers. Such studies are already 
being conducted with the (less powerful) polygenic indexes from our earlier GWASs of educational 
attainment (see FAQ 1.7). Our new results will enable many additional applications, such as studies that 
use the polygenic index in relatively small samples that contain rich health and socio-behavioral data that 
is expensive to collect (e.g., a randomized controlled trial that studies the effects of subsidizing higher 
education and uses the polygenic index as a control variable). 

A major caveat to all of this is that polygenic indexes developed from GWASs of particular genetic ancestry 
populations are known to be less predictive when applied to people of any other genetic ancestry (for 
reasons we discuss in FAQ 2.5). (As noted above in FAQ 2.1, we say genetic ancestries because we are not 
talking about who someone identifies as their ancestors but, rather, the similarity between someone’s 
genome and the genome of a “reference sample” for a population from prior genetic studies. And throughout 
these FAQs we refer to European and African genetic ancestries, plural, because there is tremendous 
genetic diversity within each continent, especially Africa.) For example, studying polygenic indexes for 
various health outcomes derived from GWAS participants of European genetic ancestries, Martin et al., 
(2017) and Duncan et al. (2019) found that, on average across the polygenic indexes, the predictive power 
for the outcomes was roughly 20-30% as large in samples of African genetic ancestries as it was in samples 
of European genetic ancestries. 

Our educational attainment polygenic index, like most other polygenic indexes, was developed with 
participants of European genetic ancestries (because currently most genotyped people are of European 
genetic ancestries, and very large numbers of people are needed to create meaningful polygenic indexes). 
We illustrate and quantify the attenuation in predictive power for individuals of African genetic ancestries, 
populations for which previous work has found that the attenuation is especially large. Specifically, we 
examined the predictive power of our educational attainment polygenic index in the samples of African 
genetic ancestries of our two prediction datasets, HRS and Add Health. The polygenic score explained 
12.0% and 15.8% of the variance among the participants of European genetic ancestries in the HRS and in 
Add Health, respectively. By contrast, the polygenic index explained far less in the participants of African 
genetic ancestries: 1.3% and 2.3%, respectively. Thus, when applied to those of African genetic ancestries, 
the polygenic index has only 10-15% of the predictive power in has with those of European genetic 
ancestries. (In our previous GWAS of educational attainment, we also tested the predictive power of the 
polygenic index in a sample of HRS participants with African genetic ancestries (who may or may not have 
additional genetic ancestries). We similarly found that the earlier polygenic index had predictive power 
only 11% as large as the predictive power in the European genetic ancestries sample.) Thus, our results 
suggest that the drop-off in predictive power for the polygenic index for educational attainment is especially 
large, relative to polygenic indexes for other outcomes. 

Unfortunately, this attenuation of predictive power means that for most populations, many of the benefits 
of a polygenic index will be postponed until large GWAS studies are conducted using samples from these 
populations. Currently, most large, genotyped samples are of European genetic ancestries. We prioritize 
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GWASs of samples of other genetic ancestries, but cannot implement this analysis until large enough 
samples of these populations have been genotyped and are made available to the research community. 

2.5 Why is the polygenic index less predictive in samples of African genetic ancestries than in 
samples of European genetic ancestries? 

As noted above in FAQ 2.4, we expect attenuated predictive power when applying a polygenic index 
developed with participants from any particular genetic ancestry populations to people of any other genetic 
ancestry, and we illustrated this attenuation in samples of participants of African genetic ancestries. We 
conducted additional analysis in order to shed some light on why the polygenic index is less predictive in 
participants of African genetic ancestries than in samples of European genetic ancestries. We study the 
main potential reasons, which fall into two categories. 

The first category is primarily about environmental factors. In this category, there are two main explanations 
of the reduced predictive power in samples of African genetic ancestries. First, genetic factors as a whole 
might simply matter relatively less for predicting educational attainment in samples of African genetic 
ancestries because environmental factors matter relatively more. In that case, the polygenic index—which 
captures some of these genetic factors—would similarly predict less well in the samples of African genetic 
ancestries. Second, there are gene-environment interactions (see FAQ 3.2). Since the samples of African 
genetic ancestries face different environments on average than do the samples of European genetic 
ancestries—for instance, racist expectations for classroom performance, poorer access to educational 
resources, and other average socio-economic circumstances that can affect the ability to succeed or remain 
in school—the associations between SNPs and educational attainment could be different in those of African 
genetic ancestries than in those of European genetic ancestries. If so, the SNP weights that produce a 
predictive polygenic index in populations of European genetic ancestries will turn out to be suboptimal 
weights for prediction in African-genetic-ancestry populations. 

The second category can be thought of as purely genetic reasons. In this category, there are also two main 
explanations of the reduced predictive power in samples of African genetic ancestries (to use our example). 
First, purely by chance, particular alleles are more or less common in populations with different genetic 
ancestries. Much of the predictive power of the polygenic index comes from the (positive or negative) 
weights it puts on alleles that are relatively common in populations of European genetic ancestries. Because 
many of these alleles are not as common in populations of African genetic ancestries, the polygenic index 
will have less predictive power in those populations. Second, populations also differ from each other in 
their linkage disequilibrium (LD) patterns, i.e., their correlation structure across SNPs (see FAQs 2.2 & 
3.5). A given SNP may be associated with educational attainment because the SNP is in LD (i.e., correlated) 
with a SNP elsewhere in the genome that causally affects education (see FAQ 1.6). If the strength of the 
correlation is greater in one genetic ancestry group than in another, then the size of the association will be 
larger in that genetic ancestry group. The fact that there are differences across genetic ancestry groups in 
the set of associated SNPs and their effect sizes means that the weights for constructing polygenic indexes 
in individuals of European genetic ancestries (FAQ 1.4) would be the “wrong” weights for individuals of 
other genetic ancestries. 
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The first category of explanations is difficult for us to directly assess given the data we have, but in our 
paper, we directly evaluated the second category of explanations and used those results to indirectly assess 
the first category. Geneticists have conducted in-depth studies of the genetic differences across genetic 
ancestry groups in allele frequencies and LD. This makes it possible for us to assess how much the 
polygenic index’s predictive power would be expected to be reduced in samples of African genetic 
ancestries based on these factors alone. The paper that developed the methodology for this analysis applied 
it in the UK Biobank dataset and studied height, BMI, HDL and LDL cholesterol, triglycerides, asthma, 
type 2 diabetes, and hypertension (Wang et al., 2020). We also used the UK Biobank in order to enable us 
to compare educational attainment to these other phenotypes. 

We find that, based on the second category of explanations, we would expect the predictive power for 
educational attainment to be 35% as large in samples of African genetic ancestries than in samples of 
European genetic ancestries. This is much larger than the 10-15% we actually find in our U.S.-based 
samples (see FAQ 2.4). We conclude that the first category of explanations—the environmental factors—
is therefore likely to be important. Moreover, the discrepancy between the actual predictive power in 
samples of African genetic ancestries and the predictive power expected based on the second category of 
explanations is larger for educational attainment than for the phenotypes studied by Wang et al. (2020), 
suggesting that the environmental factors are more important for educational attainment. 

For a number of reasons, this analysis of ours is only suggestive. One reason is that the UK Biobank sample 
of African genetic ancestries likely includes a higher fraction of immigrants to the UK than does the sample 
of European genetic ancestries, and individuals who completed some or all of their schooling outside the 
UK education system are less comparable. However, we believe our analysis points toward one direction 
for future work to understand why the polygenic index is less predictive in people of different genetic 
ancestries. 

2.6 What did you find in the analysis of disease risk? 

In addition to studying how accurately the polygenic index predicts educational attainment, we also 
examined how accurately it could predict some common diseases. Prior work, including our own, has found 
that the SNPs that predict educational attainment overlap with those that predict health outcomes, including 
Alzheimer’s disease, bipolar disorder, ADHD, schizophrenia, coronary artery disease, and longevity 
(Okbay, Beauchamp, et al., 2016; Pickrell et al., 2016; Riccardo E Marioni et al., 2016; Warrier et al., 
2016; Anderson et al., 2017; Tillmann et al., 2017). However, the polygenic index for educational 
attainment has not been used as a predictor of such outcomes. 

We studied ten common diseases, including asthma, arthritis, migraine, depression, and several related to 
heart disease (such as Type 2 diabetes and heart attack). We chose diseases that themselves have been the 
focus of large-scale GWASs. Thus, we could compare the predictive accuracy of our polygenic index for 
educational attainment with disease-specific polygenic indexes from those GWASs. For these analyses, we 
used a sample of roughly 440,000 individuals from the UK Biobank (the number of individuals with each 
disease varied depending on the disease). 
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The main result from these analyses is that, on average across the diseases, predicting disease risk using 
both the polygenic index for educational attainment and the disease-specific polygenic index increases 
predictive accuracy by roughly 50%, relative to using only the disease-specific polygenic index. On 
average, a disease-specific polygenic index predicts roughly 1.2% of the variation across individuals, 
whereas a disease-specific polygenic index together with the polygenic index for educational attainment 
jointly predict roughly 1.8% of the variation. This finding points to the potential value of the polygenic 
index for educational attainment for medical and epidemiological research. However, we highlight that the 
actual amounts of predictive power are small, much smaller than the roughly 13% for predicting educational 
attainment itself (see FAQ 2.4). We also note that genes are estimated to have a stronger influence (relative 
to environmental influences) on many complex diseases than they do on educational attainment; the primary 
reason that the educational attainment polygenic index has much greater predictive power than these disease 
polygenic indexes is that the GWASs that created the disease polygenic indexes are to date much smaller 
than our educational attainment GWAS. 

2.7 What did you find in the family-based analyses? 

Our family-based analyses involve looking at how predictive the polygenic index for educational attainment 
is once we control for the educational attainment polygenic indexes of the individual’s parents. Doing this 
allows us to better understand some of the sources of the predictive power of the polygenic index. There 
are three categories of sources of predictive power, listed here along with conventional names for these 
sources used in the literature: 

• Direct genetic effects: Some SNPs (that are either included in the polygenic index or correlated 
with SNPs that are included) may have an effect on characteristics of an individual, such as 
cognitive skills and personality, that in turn may influence educational attainment. These effects 
may be mediated by environmental factors (e.g., a child who likes reading will be more likely to 
pursue that interest in school if the child lives in a society where reading is valued in school). 
 

• Gene-environment correlation: The polygenic index is correlated with environmental factors that 
affect educational attainment. For example, a person’s polygenic index is correlated with the 
polygenic indexes of that person’s biological parents. Rearing parents’ polygenic indexes affect the 
environment in which the person grows up. For example, if the parents are more educated, they are 
likely to earn higher incomes and live in a neighborhood with well-funded schools (where local 
funding matters), which may provide educational advantages to their child. (Another source of 
gene-environment correlation is “population stratification,” in which certain genetic variants are 
more common in certain genetic ancestries, e.g., English versus Scottish. This can generate 
“population stratification bias” if having those genetic ancestries is also associated with cultural 
influences that affect educational attainment. However, population stratification bias should be 
largely reduced by the “quality control” procedures of our GWAS; see FAQ 2.2.) 
 

• Assortative mating: Having a higher polygenic index is correlated with having other SNPs that are 
also associated with greater educational attainment. Assortative mating on educational attainment 
refers to the fact that, on average, there is a tendency for people to marry and have children with 
other people who have a similar amount of education (see FAQ 2.8). Consequently, people who 
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inherit SNPs associated with higher educational attainment from one of their parents are also more 
likely than average to inherit SNPs associated with higher educational attainment from their other 
parent. Thus, the SNPs included in the polygenic index are correlated with SNPs not included in 
the polygenic index in such a way that magnifies the index’s predictive power. 

The key idea of the family-based analyses is to study the predictive power of the polygenic index controlling 
for the polygenic indexes of an individuals’ parents. This allows us to control the second and third sources 
of a polygenic index’s predictive power from the bullet list above and isolate the first, which are commonly 
referred to as the “direct genetic effects.” (This terminology is used to distinguish effects of SNPs on one’s 
own outcome—the “direct effects” of a SNP—from effects on someone else’s outcome, which are called 
“indirect effects.” An example of indirect effects is in the second bullet list above: parents’ SNPs affecting 
someone else’s—the child’s—educational attainment.) When controlling for the polygenic indexes of a 
person’s parents, the association between the person’s polygenic index and that person’s outcomes captures 
only direct genetic effects. We therefore call it the “direct effect” of the polygenic index. 

While we have noted that the predictive power of the polygenic index as a whole does not necessarily reflect 
causal effects (see FAQ 1.6)—and indeed, the second and third categories above generate predictive power 
that is correlational but not causal—the component of the polygenic index’s predictive power that is due to 
“direct effects” does reflect the causal effects of some SNPs. Because of that, when we identify how much 
of the predictive power is due to direct effects, we interpret it as telling us how much is due to causal effects. 
However, we cannot infer that it is the SNPs included in the polygenic index that have those causal effects; 
the “direct effects” might be due to correlation between measured non-causal SNPs and unmeasured causal 
SNPs.   

Controlling for the polygenic indexes of a person’s parents requires having genetic information on the 
person’s parents. Such data is not available in most of the samples available to us, but we have it or can 
construct it in some of the samples. The Generation Scotland sample contains data on ~3,500 trios: 
individuals and both their parents. Two other samples—the UK Biobank and the Swedish Twin Registry 
(where we use only the fraternal twins)—contain large numbers of siblings, ~53,000 individuals in total. 
From the sibling data, we use a recently developed method (Young et al., 2020) to impute (i.e., statistically 
partially reconstruct) parental genetic data. These are the samples we use for our family-based analyses. 

In our analyses, we compare the direct effect of the polygenic index (i.e., controlling for the polygenic 
indexes of an individual’s parents) with the “population effect,” which is the term we use for the association 
between the polygenic index and an outcome when we do not control for the polygenic indexes of an 
individual’s parents. In contrast to the direct effect of the polygenic index, which captures only the source 
of predictive power in the first bullet point above, the population effect captures all three sources of 
predictive power in the bullet list above. Our analyses estimate the ratio of the direct effect of a polygenic 
index to its population effect. This ratio tells us what fraction of a polygenic index’s association with some 
outcome is due to direct genetic effects. 

When the educational attainment polygenic index is used to predict educational attainment itself, we 
estimate that this ratio is 0.556. That is, we estimate that 56% of the association between the polygenic 
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index and educational attainment is due to direct genetic effects, and the remainder—44%—is due to the 
other sources of predictive power representing the second and third bullets above. 

Next, we sought to determine this ratio when using the educational attainment polygenic index to predict 
other outcomes, such as the diseases we analyzed in the paper, including Alzheimer’s disease, bipolar 
disorder, ADHD, schizophrenia, coronary artery disease, and longevity (see FAQ 2.6). However, we cannot 
study this same set of diseases in our family-based analyses because our trio and sibling samples either do 
not contain data on the diseases or (in the case of the UK Biobank siblings) do not contain a sufficient 
number of individuals that have one of the diseases. Instead, to estimate the fraction of the educational 
attainment polygenic index’s association with complex diseases that is due to direct genetic effects, we 
study a set of 22 health, cognitive, and socioeconomic outcomes. These include several biomarkers related 
to disease risk, such as BMI, blood pressure, and cholesterol. The set of outcomes also includes height, 
cognitive performance, smoking, alcohol use, income, and depression. For each of these 22 outcomes, we 
estimate both the direct effect and the population effect of the polygenic index for educational attainment. 

On average across the 22 outcomes, we estimate that the ratio of direct to population effects is 0.588. This 
is very similar to the ratio when the outcome is educational attainment, and the conclusion is 
correspondingly similar: we estimate that 59% of the association between the polygenic index and these 
other outcomes is due to direct genetic effects, and the remaining roughly 41% is due to the other sources 
of predictive power. 

In summary, our family-based analyses find that a substantial part of the predictive power of the polygenic 
index is due to direct effects, and a substantial part is not. This is true both when using the educational 
attainment polygenic index to predict educational attainment itself, and when using it to predict other 
outcomes. 

The finding that much of the predictive power is due to direct effects is important for at least three reasons. 
First, it shows that biases in the GWAS, such as unaccounted-for “population stratification bias” (see FAQs 
1.4 & 2.2), are not entirely responsible for the predictive power that we find. This had been shown 
previously for predicting educational attainment but not for using the educational attainment polygenic 
index to predict other outcomes.  

Second, the finding is a preliminary step toward unpacking the reasons why the genetic influences on 
educational attainment also matter for other outcomes. One possibility is that SNPs influence an outcome 
that in turn separately influences both education and health. For example, it could be that genetic influences 
on conscientiousness partially affect both how much education a person gets and also health-promoting 
behaviors that reduce disease risk. Another possibility is that SNPs influence educational attainment and 
there is something about formal schooling that, in turn, causes people to engage in more health-promoting 
behaviors. While our paper does not distinguish between these and other possibilities, our results are 
informative about the overall strength of the relationship between genetic influences on educational 
attainment and on certain other outcomes. 
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Third, the finding that much of the polygenic index’s predictive power is not due to direct effects—either 
for educational attainment or for the disease-related biomarkers and outcomes we investigated—is also 
important. It reinforces the importance of interpreting genetic associations with caution. Our finding implies 
that a substantial part of the predictive power of the polygenic index is due to some mix of assortative 
mating and gene-environment correlation. For this and other reasons, we believe it is misleading to use 
phrases such as “innate ability” or “genetic endowments” to describe what is measured by polygenic 
indexes based on our GWAS estimates. These phrases incorrectly imply that the polygenic index is entirely 
capturing direct effects, and they further ignore the potentially important role that environmental factors 
play in mediating direct effects.   

2.8 What did you find in the analysis of assortative mating? 

Assortative mating refers to the idea that people tend to have children with people who are similar to 
themselves in particular ways. Assortative mating is a research topic in the social sciences and also in the 
field of genomics.  

Much prior research has found that there is assortative mating on educational attainment: i.e., the available 
data reveals a tendency for people to have children with people who have similar educational attainment as 
themselves (e.g., Mare, 1991). For example, in the UK Biobank, we estimate that the correlation between 
the educational attainments of mates (i.e., biological mothers and fathers) is roughly 0.4. That is a 
moderately sized correlation. In recent decades in Western countries, educational attainment is one of the 
outcomes with the strongest assortative mating. In our analysis of assortative mating, we use height as an 
outcome to compare with educational attainment because it is another outcome for which assortative mating 
is relatively strong. In the UK Biobank, we estimate that the correlation between mates’ heights is roughly 
0.3. 

In our paper, we study assortative mating using polygenic indexes, which has also been done in some prior 
research (e.g. Conley et al., 2016; Hugh-Jones et al., 2016; Robinson et al., 2017 and Yengo, Robinson, et 
al., 2018). In each of the datasets we use, we identify mate pairs based on the genetic data: we find pairs of 
individuals who share a child in common. We identify 894 mate pairs in the UK Biobank and 2,964 mate 
pairs in Generation Scotland. Averaging across these data sources, we find that the mate correlation in the 
polygenic index for educational attainment is roughly 0.17. We again compare with height, this time using 
a polygenic index for height constructed using the largest published height GWAS that was not based on 
the datasets we study (Wood et al., 2014). We find that the mate correlation in the polygenic index for 
height is roughly 0.10. 

What is new in our paper is that we use these correlations to test a model of assortative mating that is often 
assumed in the genetics literature, called the “phenotypic assortment model.” When applied to educational 
attainment, this model states that the mate-pair correlation in the polygenic index for educational attainment 
is entirely due to the mate-pair correlation in educational attainment. Given the predictive power of the 
polygenic index, which we estimated (see FAQ 2.4), this model makes a precise prediction about how the 
mate-pair correlation in an outcome should be related to the mate-pair correlation in the polygenic index 
for that outcome. 
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For height, that prediction comes close to what we observe. That is, for height, it does appear that the mate-
pair correlation in the polygenic index for height is entirely due to the people tending to marry others with 
similar height. However, for educational attainment, the prediction of the phenotypic assortment model is 
far off: the mate-pair correlation in the polygenic index for educational attainment is too high. Thus, for 
educational attainment, our results provide strong evidence against the phenotypic assortment model. 
Instead, our results imply that people are marrying other people who are similar to them based on some 
factor or factors other than educational attainment (perhaps in addition to educational attainment itself) but 
which is correlated with the polygenic index for educational attainment. 

We conduct additional analyses to shed light on what these other factors might be. One possible factor is 
genetic ancestry, which in our data might reflect, for example, people being more likely to marry others 
from the same city or region of the UK. Another possible factor is cognitive performance. However, we 
find that assortative mating on both of these factors, added to the effect of assortative mating on educational 
attainment itself, are not together sufficient to fully account for the mate-pair correlation in the polygenic 
index for educational attainment. While our results raise the question of what else explains the high mate-
pair correlation in the polygenic index, we cannot fully answer the question with the data we have. 

In addition to helping us better understand assortative mating, our results also relate to a common theme 
across several of our analyses (see FAQs 2.4, 2.6 & 2.7): helping us better understand the sources of the 
polygenic index’s predictive power. Specifically, we draw two conclusions about the polygenic index’s 
predictive power from our analysis of assortative mating. First, there are factors besides educational 
attainment on which people assortatively mate that contribute to the mate-pair correlation in the polygenic 
index for educational attainment—and these factors in turn likely contribute to the predictive power of the 
polygenic index for a range of outcomes. Suppose one of these factors is the region where a person grew 
up. In order to be a factor that contributes to the mate-pair correlation, the region where a person grew up 
must be associated with the polygenic index. Moreover, the region where a person grew up is likely to be 
associated with many other things that relate to educational, socioeconomic, and health outcomes, such as 
quality of local schools, local economic opportunities, air quality, and so on. If the region where a person 
grew up is correlated with both the polygenic index for educational attainment and these various outcomes, 
then it is one component of the gene-environment correlation that helps explain the polygenic index’s 
predictive power (see FAQ 2.4). Thus, the results of our assortative mating analysis provide evidence that 
there is substantial gene-environment correlation that likely contributes to the polygenic index’s predictive 
power. 

Second, if people assortatively mate on factors that are correlated with the educational attainment polygenic 
index—as our results imply that they do—then this increases the variation of the polygenic index in the 
population and thereby magnifies its predictive power. To continue the example from above, imagine an 
extreme scenario of exact assortative mating on where a person grew up. That is, everyone has a mother 
and a father who are from the same region. In this scenario, there will be more people with very high and 
very low educational attainment polygenic indexes compared to a scenario where people marry at random 
across regions. That is because people from regions with high average polygenic indexes are marrying other 
people from the same region and having offspring that are relatively more likely to also have a high 
polygenic index. Similarly, people from regions with low polygenic indexes are marrying other people from 
their same region and having offspring that are relatively more likely to also have a low polygenic index. 
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Thus, relative to the scenario of people marrying at random across regions, there is more variation of the 
polygenic index across people in the scenario with assortative mating. Consequently, variation in the 
polygenic index across people will be associated with (and hence “statistically predict”) more of the 
variation in educational attainment across people. 

2.9 What did you find in the analysis of the X chromosome?  

Like our most recent GWAS of educational attainment (Lee et al., 2018)—but unlike most GWASs—this 
study also examined genetic variants on the X chromosome. In addition to the 3,952 variants identified on 
the autosomes (the non-sex chromosomes), we identified 57 variants associated with educational attainment 
on the X chromosome. 

The results of our analysis of the X chromosome in this study are fully consistent with the results from the 
previous GWAS of educational attainment (but our confidence in these results is even greater in the current 
study because of our larger sample size). For example, as in the previous study, we found fewer SNPs 
associated with educational attainment on the X chromosome than on other chromosomes of similar length. 
Also as in the previous study, in separate GWASs of men and women, we found that, in aggregate, SNPs 
on the X chromosome predict similar amounts of variation in educational attainment in men and in women. 
Some researchers had hypothesized that genetic influences on the X chromosome are an important source 
of differences in the variance in cognitive performance across men and women. While there were 
compelling scientific reasons to view such claims skeptically even prior to the publication of our earlier 
study, the results of both of our studies provide further evidence against the hypothesis. 

2.10 What did you do in the “dominance GWAS” of educational attainment? What did you find? 

In addition to our standard GWAS of educational attainment on the autosomes (i.e., the non-sex 
chromosomes) described in FAQ 1.3 above, we also conducted a “dominance GWAS” of educational 
attainment on the autosomes. As in a standard GWAS, in a dominance GWAS we test each SNP for its 
association with educational attainment. The only difference is that, unlike in a standard GWAS, in a 
dominance GWAS, we allow for the possibility that each SNP has a non-linear relationship with educational 
attainment. A linear relationship is one where an increase in one variable is associated with a 
correspondingly-sized increase or decrease in another variable. Specifically, suppose (as is typical) there 
are three possible combinations of alleles at a given SNP: let’s call them AA, AB, and BB. And let’s assume 
that the B allele is associated with greater educational attainment. A standard GWAS assumes the “additive 
model,” according to which the effect of going from zero to one B allele (i.e., AA to AB) is assumed to be 
equal to the effect of going from one to two B alleles (i.e., AB to BB). In contrast, a dominance GWAS 
separately estimates each of these two effects and thereby allows us to test whether or not they are equal.  

(In this context, the term “dominance” originally comes from the idea of “dominant” and “recessive” alleles. 
In the classical usage, often called “complete dominance,” an organism has a trait—for example, a pea is 
smooth rather than wrinkled—if there are any B alleles. In that case, AB and BB would both yield the 
dominant trait of a smooth pea, and only AA would yield the recessive trait of a wrinkled pea. A dominance 
GWAS allows for this possibility: a large effect of going from AA to AB but no effect of going from AB 
to BB. It also allows for other, more common possibilities. For example, in “incomplete dominance,” the 
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effect of going from AA to AB is larger than the effect of going from AB to BB, but both effects are non-
zero. Another possibility is “overdominance,” where an organism with the AB combination of alleles has 
more of the trait than an organism with AA or BB.) 

To many researchers, it seems natural to expect that relationships between SNPs and outcomes like 
educational attainment would be non-linear—that is, that there might be less of an effect, or no effect at all, 
of going from one B allele to two B alleles. Indeed, there is a long tradition in behavior genetics research 
(much of which compares outcomes across identical and fraternal twins) of assuming that non-linear 
relationships between SNPs and socio-behavioral outcomes account for a non-trivial fraction of the 
variation in such outcomes across individuals (e.g. Jinks and Eaves, 1974). 

Perhaps surprisingly, there is an equally long tradition in a field of research called quantitative genetics 
showing that, theoretically, for outcomes like educational attainment that are influenced by many SNPs, 
deviation from linear relationships are likely to be small and account only for a small fraction of the 
variation in outcomes across individuals (e.g. Hill, Goddard and Visscher, 2008). There are a variety of 
theoretical arguments, which stem from both biological and statistical considerations. Based on other kinds 
of studies that are not dominance GWAS, for many outcomes (but not educational attainment), there is also 
evidence that dominance deviations account for only a small fraction of the variation across individuals 
(e.g. Pazokitoroudi et al., 2020; Hivert et al., 2021). 

Thus, researchers are divided about whether the relationship between SNPs and socio-behavioral outcomes 
are likely to be largely linear or to have significant dominance effects. Partly because a dominance GWAS 
needed to answer that question is more complex than a standard GWAS, ours is one of the first large-scale 
dominance GWAS conducted for any outcome. We conducted our dominance GWAS in a sample of 
individuals from 23andMe and the UK Biobank. It was a slightly smaller sample than our standard GWAS, 
but still a very large sample: ~2.6 million individuals. 

Our results strongly support the view of those researchers who believe that with respect to educational 
attainment, deviations from linear relationships are likely to be small and account only for a small fraction 
of the variation in outcomes across individuals. We cannot identify any SNPs with such a non-linear 
relationship to educational attainment, despite our very large sample size. While some non-linear 
relationships between SNPs and educational attainment probably exist, our results indicate that such SNPs 
must be at least an order of magnitude smaller than the (already very small) linear effects of SNPs on 
educational attainment.  

Even though we cannot identify any dominance effects of specific SNPs, we can use the aggregate results 
of our dominance GWAS to estimate how much of the variation in educational attainment is explained by 
the dominance effects that do exist among SNPs in our analysis. Our results suggest that, taken altogether, 
dominance effects of the SNPs included in our GWAS account for only roughly 0.02% (two hundredths of 
one percent) of the variation in educational attainment across individuals. 

We note two important qualifications about how our findings should be interpreted. First, our results leave 
open the possibility that there are rare SNPs that have large non-linear relationships with educational 
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attainment. The data included in our GWAS, as in almost all GWASs, are common SNPs (see FAQ 2.1). 
These common SNPs capture most of the information about common ways in which people vary genetically 
(e.g., at least 1% of the population has a different genotype than the remainder of the population). However, 
these common SNPs do not capture information about rare SNPs (e.g., over 99% of the population has the 
same genotype, but a small percentage of people differ). Our results are therefore silent about whether these 
rare SNPs may have substantial non-linear relationships with educational attainment. 

Second, although the dominance effects of SNPs included in our GWAS account for only a tiny fraction of 
the variation across individuals, the combined effect of dominance across many SNPs on a particular 
individual can nonetheless be substantial. In particular, when two close relatives have offspring, the 
offspring will have an unusually large number of AA and BB SNPs and an unusually small number of AB 
SNPs (because the parents are more likely than unrelated individuals to both have the same allele, either A 
or B). While there is a lot of variation across SNPs and outcomes, on average, having the same two alleles 
at a SNP, i.e., having AA or BB rather than AB, is known to be harmful to an organism. When an 
individual’s recent genetic ancestors are closely genetically related, there can be a noticeably harmful effect 
on certain outcomes due to the unusually large number of AA and BB genetic variants. Using our 
dominance GWAS results, we estimate that the offspring of first cousins will have, on average, roughly 1 
fewer month of formal schooling than the offspring of unrelated individuals. 

3 Ethical and social implications of the study 

3.1 Did you find “the gene for” educational attainment? 

No. 

We did not find “the gene for” educational attainment or anything else. We identified many SNPs that are 
associated with educational attainment. Although it was once believed that scientists would discover a few 
strong associations between genes and outcomes, we have known for a number of years that the vast 
majority of human outcomes are complex and influenced by many thousands of genes, each of which alone 
tends to have a small influence on the relevant outcome. 

Furthermore, many complex outcomes are also influenced by parts of the genome that are not genes at all 
but instead serve to regulate genes (e.g., sequences of DNA that influence when a gene is turned on or off). 
Genes typically contain many SNPs (often dozens or hundreds, and in some cases thousands), and there are 
even more SNPs outside of genes than inside genes. Complex outcomes are often influenced by millions of 
SNPs. 

3.2 Well, then, did you find “the genes for” educational attainment? 

Although we did find many SNPs that are associated with educational attainment, we believe that 
characterizing these as “genes for educational attainment” is still likely to mislead, for many reasons.  
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First, most of the variation in people’s educational attainment is accounted for by social and other 
environmental factors, not by additive genetic effects (see FAQ 1.8). “Genes for educational attainment” 
might be read to imply, incorrectly, that genes are the strongest predictor of variation in educational 
attainment. 

Second, the SNPs that are associated with educational attainment are also associated with many other things 
(only some of which we identify in this study; see FAQs 2.6. & 2.7). These SNPs are no more “for” 
educational attainment than for the other outcomes with which they are associated. 

Third, the “predictive” power (see FAQ 1.5) of each individual SNP that we identify is very small. Our 
results show that genetic associations with educational attainment are comprised of thousands, or even 
millions, of SNPs, each of which has a tiny effect size. Each SNP is therefore weakly associated with, rather 
than a strong influence on, educational attainment. “Genes for educational attainment” might misleadingly 
imply the latter.   

Fourth, environmental factors can increase or decrease the impact of specific SNPs. Put differently, even if 
a SNP is associated with higher or lower levels of educational attainment on average, it may have a much 
larger or smaller effect depending on environmental conditions. Indeed, in our most recent previous large-
scale GWAS of educational attainment (Lee et al., 2018), we report exploratory analyses that provide 
evidence of such gene-environment interactions. Educational attainment couldn’t even exist as a 
meaningful object of measurement if we didn’t have schools, and having schools introduces societal 
mechanisms that influence who spends the most years attending them. Accordingly, genetic associations 
with educational attainment necessarily will be mediated by societal systems and therefore genetic variation 
should often be expected to interact with environmental factors when it influences social phenomena, such 
as educational attainment. “Genes for educational attainment” suggests a stability in the relationship 
between these genes and the outcome of educational attainment that does not exist. 

Finally, genes do not affect educational attainment directly (see FAQ 1.4), although we don’t know exactly 
why the SNPs we identify are associated with educational attainment. We found in our most recent previous 
large-scale GWAS of educational attainment (Lee et al., 2018) that the genes identified as associated with 
educational attainment tend to be especially active in the brain and involved in neural development and 
neuron-to-neuron communication. The “predictive” power (see FAQ 1.5) of genes on educational 
attainment might therefore partly depend on a long process starting with brain development, followed by 
the emergence of particular psychological outcomes (e.g., cognitive performance and personality). These 
outcomes might then lead to behavioral tendencies as well as experiences and treatment by parents, peers, 
and teachers. All of these factors may additionally interact with the environment in which a person lives. 
Eventually these outcomes, behaviors, and experiences might influence (but not completely determine) 
educational attainment. Much more research is needed to explore these and other possible explanations for 
the relationship between SNPs and educational attainment. 
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3.3 Does this study show that an individual’s level of educational attainment (or any other 
outcome) is determined, or fixed, at conception? Do genes determine the choices we make and 
who we become? 

No and no. 

Genes and genetic variation do not determine our choices or who we become. If they did, identical twins 
would make all of the same decisions, have the same interests, etc. Years of twin studies have shown that, 
while identical twins tend to be more similar than fraternal twins—including with respect to the years of 
formal schooling they complete—they are nevertheless different (see FAQ 1.8). This implies that 
environmental factors also play a large role in our outcomes. In the case of educational attainment, social 
and other environmental factors account for most variation among people. 

But even if it were true that genetic factors accounted for all of the differences among individuals in 
educational attainment, it would still not follow that an individual’s number of years of formal schooling is 
“determined” at conception. There are at least three reasons for this. 

First, some genetic effects operate through environmental channels (Jencks, 1980). When this is the case, 
SNPs that are associated with an outcome in one setting might not be associated with it in another setting. 
As an illustrative example, suppose—hypothetically—that the SNPs we identified are associated with 
educational attainment because they help students to memorize and, as a result, to become better at taking 
tests that rely on memorization (in fact, we do not know why the SNPs we identified are associated with 
educational attainment; see FAQ 3.2). In this example, changes to the intermediate environmental 
channels—the type of tests administered in schools—could have drastic effects on individuals’ educational 
attainment, even though individuals’ DNA would not have changed. A genetic association with educational 
attainment might not be found at all if schools did not use tests that rely on memorization. More generally, 
the genetic associations that we found might not apply as strongly if the education system were organized 
differently than it is at present (see also FAQ 1.4). 

Second, even if the genetic associations with educational attainment operated entirely through non-
environmental mechanisms that are difficult to modify (such as direct influences on the formation of 
neurons in the brain and the biochemical interactions among them), there could still exist powerful 
environmental interventions that could cancel out what would have been the effect of SNPs. Consider a 
famous example suggested by the economist Arthur Goldberger. Genes influence eyesight at least partly 
through biological mechanisms that themselves are hard to change. Yet even if all variation in unaided 
eyesight were due to genes, there would still be enormous benefits from introducing eyeglasses, which can 
erase the contribution of genes to that outcome (Goldberger, 1979). Conversely, someone genetically 
predisposed towards being taller than average might end up being shorter than average if they lacked 
adequate nutrition during childhood. In the context of educational attainment, policies such as a required 
minimum number of years of education and dedicated resources for individuals with learning disabilities 
can increase educational attainment in the entire population and/or reduce differences among individuals—
all without, of course, changing anyone’s DNA.  
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Third, even if the genetic effects on educational attainment were not influenced by changes in the 
environment, those environmental changes themselves could still have a major impact on the educational 
attainment of the population as a whole. For example, if young children were given more nutritious diets, 
then everyone’s school performance might improve, and college graduation rates might increase. By 
analogy, 80%-90% of the variation across individuals in height is due to genetic factors. Yet the current 
generation of people is much taller than past generations due to changes in the environment such as 
improved nutrition. 

3.4 Can the polygenic index from this paper be used to accurately predict a particular person’s 
educational attainment? 

No. While the “predictive” power (see FAQ 1.5) of our polygenic index is substantial—it predicts 13% of 
variation in educational attainment across individuals with European genetic ancestries—and useful for 
some purposes (see FAQ 1.7), it is important to keep in mind that the score fails to predict the vast majority 
(87%) of variation in years of education across individuals. Many of those with low polygenic indexes go 
on to achieve high levels of education, and a large proportion of those with high polygenic indexes do not 
complete college. 

Thus, an important message of this paper and our earlier papers is that DNA does not “determine” an 
individual’s level of education, for multiple reasons: First, it is estimated that, at least in the environments 
in which we have been measuring it, the additive effects of common SNPs will only ever predict about 20% 
of the variance in educational attainment across individuals. Second, today’s polygenic index is only able 
to predict about two-thirds of that 20% (i.e., 13 percentage points). Third, since SNPs matter more or less 
depending on environmental context (see FAQ 2.7), a polygenic index might be less (or more) predictive 
for individuals in some environments than for individuals in others. Fourth, polygenic indexes are most 
predictive when the individuals used to make the index have the same genetic ancestries as the people 
whose outcomes you would like to predict. For example, because the research in this paper is almost entirely 
based on individuals with European genetic ancestries, the polygenic index predicts only about 2% of the 
variance in individuals with African genetic ancestries (see FAQ 3.5). Finally, polygenic predictions only 
hold for as long as the environment in which they were developed remains substantially the same: if the 
laws or pedagogy underlying a population’s educational system changes substantially, then so, too, might 
the optimized polygenic index. Just as eyeglasses allow those genetically predisposed to poor vision to have 
nearly perfect vision, innovations in education (say, an innovation that makes education irresistibly 
engaging, thus mitigating the risk to those with SNPs associated with lower propensity to pay attention or 
avoid distraction) might result in those with lower polygenic indexes to actually achieve just as much 
education, on average, as those with higher polygenic indexes (see also FAQs 3.2 and 3.3). 

As sample sizes for GWASs continue to grow, it will likely be possible to construct a polygenic index for 
educational attainment whose predictive power comes closer to 20% of the variance in educational 
attainment across individuals (Rietveld et al., 2013). Even this level of predictive power would pale in 
comparison to some other scientific predictors. For example, professional weather forecasts correctly 
predict about 95% of the variation in day-to-day temperatures.  
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The results of SSGAC studies have sometimes been used by online platforms, including some companies, 
to predict individual outcomes. We recognize that returning individual genomic “results” can be a fun way 
to engage people in research and other projects and to feed or stoke their interest in genomics. But it is 
important that participants/users understand that these individual results are not meaningful predictions and 
should be regarded essentially as entertainment. Failure to make this point clear risks sowing confusion and 
undermining trust in genetics research. 

3.5 Can your polygenic index be used for research studies in diverse genetic ancestry 
populations? 

Only in a limited way. As a practical matter, it is possible to calculate a polygenic index for any individual 
for whom genome-wide data is available, but the polygenic index will be most “predictive” (see FAQ 1.5) 
in populations of European genetic ancestries. 

Our study was conducted only using samples of individuals of European genetic ancestries (see Appendix 
1). The set of SNPs that are associated with educational attainment in people of European genetic ancestries 
is unlikely to overlap perfectly with the set of SNPs associated with educational attainment in people of 
other genetic ancestries. And even if a given SNP is associated in both genetic ancestry groups, the effect 
size—in other words, the strength of the association—will likely differ. This is partly because linkage 
disequilibrium (LD) patterns (i.e., the correlation structure of the genome) vary by genetic ancestry. This 
means that some variant may be associated with educational attainment because the variant is in LD (i.e., 
correlated) with a variant elsewhere in the genome that causally affects education (see FAQ 1.4). If the 
strength of the correlation is greater in one genetic ancestry group than in another, then the size of the 
association will be larger in that genetic ancestry group. Moreover, even if LD patterns were similar in each 
genetic ancestry group, the association may differ in different groups because environmental conditions 
differ (see FAQ 1.4, 3.2 & 3.3). The fact that there are differences across genetic ancestry groups in the set 
of associated SNPs and their effect sizes has two important implications. 

First, it means that polygenic indexes of individuals from different genetic ancestry groups cannot be 
meaningfully compared. A recent paper (Martin et al., 2017) illustrated this point in the context of polygenic 
indexes for predicting height; in the sample analyzed in that paper, polygenic indexes for height predict that 
individuals of European genetic ancestries would be taller than those of South Asian genetic ancestries, 
who in turn would be taller than those of African genetic ancestries. In actuality, however, populations of 
African genetic ancestries represented by the sample have similar height to populations of European genetic 
ancestries, and populations of both African and European genetic ancestries tend to be taller than 
populations of South Asian genetic ancestries. 

Second, while polygenic indexes can be used to predict differences across individuals within a sample of 
people of non-European genetic ancestries, the amount of predictive power will be much smaller than in a 
sample of people of European genetic ancestries. Such an attenuation of predictive power has been 
repeatedly found in prior work (Belsky et al., 2013; Domingue et al., 2015, 2017; Vassos et al., 2017). 
Unfortunately, this attenuation means that for non-European genetic-ancestry populations, many of the 
benefits of having a polygenic index available will have to wait until large GWASs are conducted using 
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samples from these populations. (Currently, most large genotyped samples are of European genetic 
ancestries.) 

For a more extensive, excellent discussion of these and related issues, see Graham Coop’s blog post 
“Polygenic scores and tea drinking”: https://gcbias.org/2018/03/14/polygenic-scores-and-tea-drinking/. 

For more on population stratification bias, see FAQs 1.4 & 2.2. 

3.6 Should practitioners (e.g., in education or other domains) use the results of this study to 
make decisions? 

No. Doing so would be extremely premature and unsupported by the science. As explained in FAQ 3.4, our 
polygenic index is only weakly “predictive” (see FAQ 1.5) of educational and health outcomes for 
individuals. Guessing whether a person has above- or below-average years of education using their 
polygenic index would only be slightly better than a coin flip: that will be unacceptable in most practice 
contexts. Nor can our results immediately be used to develop an intervention (say, to improve graduation 
rates by changing pedagogy) because we don’t know why the SNPs we identified are associated with 
educational attainment; much more research is needed to investigate that before any such interventions 
would be evidence-based.  

In this respect, our study is no different from GWASs of complex medical outcomes. There, as here, GWAS 
associations alone are not actionable for decisions being made by practitioners. They are only an important 
first step in basic science research that might someday be useful in helping practitioners make decisions. 
GWAS can help identify SNPs associated with an outcome of interest. Subsequent studies of those SNPs 
would then be needed to confirm their relationship to the outcome.  

When the outcome in question is socio-behavioral rather than clinical, there are additional questions about 
whether polygenic indexes might stigmatize, whether there are sufficient legal and other protections to 
prevent discrimination on the basis of polygenic indexes, and whether the expected benefits of using 
polygenic indexes in a particular practice setting would justify these risks. Addressing these questions 
would involve a great deal of multidisciplinary empirical and normative research.    

Although the results of our study are not immediately useful in practice, they are useful to social scientists 
(e.g., by allowing them to construct polygenic indexes that can be used as control variables in randomized 
controlled trials or in studies of gene-by-environment interactions, see FAQ 1.7). 

3.7 Could this kind of research lead to discrimination against, or stigmatization of, people with 
the relevant genetic variants? What has been done to help avert the potential harms of this 
research? 

Unfortunately, like much research, the results of our study and of research that builds on it could be 
misunderstood, misapplied in ways that are inconsistent with the science, and applied in ways that are 
unethical.  
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Genetics research in particular has a long history of being used to harm people, especially on the basis of 
racist and classist inferences. Indeed, the term “eugenics” was coined in the late 1800s by one of the most 
prominent early researchers of heredity, Francis Galton. In the first half of the 20th century, many prominent 
scientists, politicians, clergymen, and other influential individuals across the political spectrum were active 
proponents of the belief that socioeconomic disparities in society were primarily or exclusively caused by 
genetic factors and that existing social disparities simply reflected the natural order and were both inevitable 
and justified. These ideas, and their active development and endorsement by many in the scientific 
community, laid the groundwork for 20th century forced sterilizations, anti-miscegenation laws, eugenics-
based immigration restrictions, and genocide. Today, racist individuals and groups continue to misinterpret 
and misuse the results of genetics research to give unjustified support for their agenda. 

Acknowledging the harm done to certain groups in the name of science reminds us of the importance of 
careful communication of the implications of scientific research and the need for intense vigilance to ensure 
that disadvantaged groups are not further harmed by this and related work. Nevertheless, for a variety of 
reasons, in this instance, we do not think that the best response to the possibility that useful knowledge 
might be misused is to refrain from producing the knowledge. Here, we briefly discuss some of the broad 
potential benefits of this research. We then describe what we take to be our ethical obligation as researchers 
conducting this work.  

First, one benefit of conducting social-science genetics research in ever larger samples is that doing so 
allows us to correct the scientific record. An important theme in our earlier work has been to point out that 
most existing studies in social-science genetics that report genetic associations with behavioral outcomes 
have serious methodological limitations, fail to replicate, and are likely to be false-positive findings 
(Benjamin et al., 2012; Chabris et al., 2012, 2015). This same point was made in an editorial in Behavior 
Genetics (the leading journal for the genetics of behavioral outcomes), which stated that “it now seems 
likely that many of the published [behavior genetics] findings of the last decade are wrong or misleading 
and have not contributed to real advances in knowledge” (Hewitt, 2012). One of the most important reasons 
why earlier work generated unreliable results is that the sample sizes were far too small, given that the true 
effects of individual genetic variants on behavioral outcomes are tiny. Pre-existing claims of genetic 
associations with complex social-science outcomes have reported widely varying effect sizes, many of them 
purporting to “predict” (see FAQ 1.5) ten to one hundred times as much of the variation across individuals 
as did the genetic variants we found in this study and in our other studies.  

Second, behavioral genetics research also has the potential to correct the social record and thereby to help 
combat discrimination and stigmatization. For instance, at various times and places throughout human 
history (unfortunately, including the present day), girls and women have been discouraged or even 
prevented from pursuing as much education as their male counterparts. There are of course many reasons 
why that argument has been made and sometimes prevailed, but to the extent that it is rooted in a belief in 
genetically-based differences between males and females, our current study’s (and our previous study’s) 
analysis of the X chromosome finds no such evidence (see FAQ 2.9). Similarly, overestimating the role of 
genetics can be damaging, and the present work can help debunk this myth, too. Of the 20% of the variance 
in educational attainment that is related to the additive effects of common SNPs, we (Lee et al., 2018)  and 
others have found that the relationship to educational attainment depends importantly on environmental 
factors. By clarifying the limits of deterministic views of complex outcomes, recent behavioral genetics 
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research—if communicated responsibly—could make appeals to genetic justifications for discrimination 
and stigmatization less persuasive to the public in the future.  

Third, behavioral genetics research has the potential to yield many other benefits, especially as sample sizes 
continue to increase—as briefly summarized in FAQ 1.7. Foregoing this research necessarily entails 
foregoing these and any other possible benefits, some of which will likely be the result of serendipity rather 
than being foreseeable. For instance, because educational attainment is measured in far larger genotyped 
samples than brain function, large-scale GWASs of educational attainment have provided better insights 
into brain function than GWASs to date that directly examine brain function, since the latter have 
necessarily been conducted in much smaller samples. 

In sum, we agree with the U.K. Nuffield Council on Bioethics, which concluded in a report (Nuffield 
Council on Bioethics, 2002, p. 114) that “research in behavioural genetics has the potential to advance our 
understanding of human behaviour and that the research can therefore be justified,” but that “researchers 
and those who report research have a duty to communicate findings in a responsible manner.” In our view, 
responsible behavioral genetics research includes sound methodology and analysis of data; a commitment 
to publish all results, including any negative results; and transparent, complete reporting of methodology 
and findings in publications, presentations, and communications with the media and the public, including 
particular vigilance regarding what the results do—and do not—show and how they should—and should 
not—be used (hence, this FAQ document). In addition, we are developing a Terms of Use for researchers 
who would like to use our results in their own research. Researchers will agree to “conduct research that 
strictly adheres to the principles articulated by the American Society of Human Genetics (ASHG) position 
statement: ‘ASHG Denounces Attempts to Link Genetics and Racial Supremacy.’ (See also International 
Genetic Epidemiological Society Statement on Racism and Genetic Epidemiology.).” Data-users also will 
agree to “not use these data to make comparisons across ancestral groups” (see FAQ 3.5). 
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