
Supplementary Note 

 

Estimating the influence of germline-encoded sequences 

The aim of our cdr3-QTL analysis is to detect whether HLA allelic variation influences amino acid usage 

in the randomly recombined region of TCR that contacts antigenic peptides. These residues localize to 

complementary determining region 3 (CDR3), which is the product of V, D, and J gene joining during 

random recombination. Though most CDR3 residues arise from random nucleotide additions between V 

and J genes, flanking CDR3 residues are clearly influenced by these germline segments (Extended 

Data Figure 1). 

To estimate the potential bias in our cdr3-QTL results from these germline-encoded sequences, 

we compared our initial linear regression model (LM) results to those from two linear mixed models 

(LMM; one for the V gene and one for the J gene). Notably, this “initial” LM analysis does not exclude 

germline-encoded amino acids and is not the main results in our manuscript. For these LMMs, instead of 

calculating CDR3 amino acid frequencies within each donor, we calculated CDR3 amino acid 

frequencies within the subset of TCRs expressing each V gene (or J gene) within each donor (Extended 

Data Figure 2). For each group of TCRs, we included the V gene (or J gene) as a fixed effect, and the 

donor ID as a random effect, since there were multiple observations per donor in this design. We 

restricted our analysis to the 435 CDR3 phenotypes (length-position-amino acid combinations) which had 

at least one significant association in the initial linear regression (LM) analysis (P < 0.05/1,262,664 total 

tests). For each CDR3 phenotype, we used the HLA amino acid allele that had the lowest P value for that 

phenotype in the LM analysis. 

Among 435 CDR3 phenotypes, we observed some discordant effects between the initial LM and 

the subsequent LMM: four phenotypes had significant heterogeneities (Phet < 0.05/total tests; 

Supplementary Figure 1a). Discrepancies were enriched at CDR3 positions 107 and 108 

(Supplementary Figure 1b), where amino acids are moderately correlated with V genes (Extended 

Data Figure 1d). We observed the strongest heterogeneity for serine at position 107 of CDR3 length 12 

(L12:P107:S). To better understand this heterogeneity, we conducted cdr3-QTL analyses of L12:P107:S 



stratified by V gene. These results confirmed that cdr3-QTL signals for L12:P107:S are highly dependent 

on the V gene used by the TCR: we observed large effects on serine usage for TCRs with certain V 

genes, and small effects for TCRs with others (Supplementary Figure 1b). 

  We next conducted the same analyses for J genes (Supplementary Figure 2), comparing the 

initial LM results to those from the LMM conditioned on J genes. As in the V gene analysis, we observed 

some discordant effects between LMM and LM: four phenotypes had significant heterogeneities (Phet < 

0.05/all tests). Discrepancies were enriched at CDR3 positions ≧ 113, where amino acids are 

moderately correlated with J genes (Extended Data Figure 1d). 

These analyses revealed that a small subset of cdr3-QTL signals, mostly in the flanking positions 

of CDR3, were dependent on the V/J gene usage. HLA-V gene associations1 have been previously 

reported, and could possibly mediate the cdr3-QTL signals of interest in our study. Of note, the discovery 

dataset does not distinguish V and J gene alleles, and so analysis of V/J allelic effects was not possible. 

Thus, to filter out these V/J gene-dependent cdr3-QTL signals, we excluded germline-encoded 

amino acids from each of the individual CDR3 sequences in our main analysis. Our strategy is illustrated 

in Supplementary Figure 3. Most signal within the CDR3 region was unchanged, but many of the 

initially significant associations in CDR3 flanking positions lost significance (Supplementary Figure 4). 

Moreover, this exclusion resolved the discrepancies between the LMM that conditioned on V/J gene 

usage and the LM that did not (Supplementary Figure 1c and 2c). Thus, our reported cdr3-QTL 

associations that exclude germline-encoded sequences are independent of V/J gene usage and 

orthogonal to HLA-V gene associations. 

 

Replication analysis using a multivariate multiple linear regression model 

To reproduce the results from the discovery dataset, we obtained a replication data set of 169 healthy 

individuals consisting of RNA-seq data from sorted naïve CD4+ T cells (Table1)2. This dataset offered 

several advantages: 1) a pure CD4+ T cell population, 2) the exclusion of antigen-experienced memory T 

cells, 3) homogenous continental ancestry (European) and 4) genome-wide genotyping. Therefore, in 

this analysis we were able to strictly control for the effects of population stratification using principal 



components of genome-wide genotype data. For this dataset, we inferred TCRs from bulk RNA-seq, and 

hence there were fewer CDR3 sequences per individual than in the discovery dataset (around 0.7% of 

those observed in the discovery dataset; Table 1). The lower number of observations reduced power, 

particularly in our ability to study low-frequency CDR3 amino acids. We applied the same analysis to the 

replication dataset, testing only HLA class II genes for these CD4+ data. From 24,360 tests in the 

discovery dataset, 11,620 tests localized to HLA class II genes, and among these the majority (n= 9,735) 

were frequent enough to test for association (see Methods). We observed that the variance explained by 

each HLA site was similar in the replication dataset and the discovery dataset (Pearson’s r = 0.65). We 

again observed the strongest association between HLA-DRB1 site 13 and L13-CDR3 position 109 

(largest variance explained, Extended Data Figure 5). 

 

Replication analysis using a linear regression model 

In our replication data, we sought to test the replicability of the strongest HLA association for each of the 

388 significant CDR3 phenotypes (length-position-amino acid combinations, P < 0.05/1,249,742 total 

tests). Out of these 388 phenotypes, a total of 375 phenotypes were testable in the replication dataset 

(some HLA alleles and CDR3 phenotypes were missing due to low frequencies in the replication 

dataset). Because the replication dataset consisted of CD4+ TCRs, we tested the 369 of these 388 CDR3 

phenotypes whose lead associations localized to class II HLA genes. The effect sizes in the discovery 

and replication datasets were significantly correlated (r = 0.76; P = 5.4 x 10-70; Extended Data Figure 5; 

Supplementary Table 7); 314 of 369 phenotypes replicated in the same allelic direction (sign test P 

value = 3.5 x 10-45). When we restricted this analysis to the 85 phenotypes for which we found nominally 

significant associations in the replication dataset (P < 0.05), 84 of them replicated in the same allelic 

direction (sign test P value = 4.4 x 10-24). Thus, we suspect that the majority of replication failures are 

due to insufficient statistical power from the fewer number of observations in the replication dataset. 

 

cdr3-QTL signals for TCR alpha chains 



Using the replication dataset, we also tested cdr3-QTL signals for TCR alpha chains. Since the 

sequencing depth was very shallow, this analysis was underpowered. However, we did find some cdr3-

QTL signals; intriguingly, the HLA site that explained the most variance in CDR3 amino acid 

compositions was again HLA-DRB1 site 13 (Extended Data Figure 5). 

 

Strategy of handling CDR3 length in this study 

Our primary strategy in defining CDR3 phenotypes was to stratify by CDR3 length, such that every 

length-position pair is evaluated separately (the length-position model). CDR3 phenotypes at the same 

position are correlated across CDR3 lengths, however, and the alternative strategy of aligning CDR3s of 

different lengths produced generally stronger associations with the same HLA alleles (the position model; 

Supplementary Figure 19a). However, the length-position model detected several length-specific 

associations (Supplementary Figure 19b-e) and revealed that cdr3-QTLs were generally stronger in 

shorter CDR3 lengths (Extended Data Figure 6b, Supplementary Figure 6, and Supplementary 

Figure 19f). Thus, we found the length-position model to be more comprehensive. 

 

Thymic selection may drive HLA-CDR3 associations 

Since we observed consistent cdr3-QTL signals in PBMCs (including naïve and memory T cells) and 

sorted naïve T cells, we hypothesized that cdr3-QTL effects might be driven by thymic selection. 

Alternative possibilities included that cdr3-QTLs were driven by genetic mechanisms prior to thymic 

selection (phase 1 in Figure 1a), or by antigen presentation in the periphery by HLA alleles (phase 4 in 

Figure 1a). 

 To investigate the possibility of a genetic mechanism prior to thymic selection, we analyzed non-

productive CDR3 sequences. Although they are generated by the same random recombination process 

as productive CDR3s, they are not expressed on T cell surfaces and thus are not subjected to thymic 

selection. If thymic selection is driving cdr3-QTLs, we should not observe HLA-CDR3 associations in 

non-productive sequences. Indeed, when we tested individual HLA sites to assess if they explained 

variance in CDR3 amino acid frequencies at each position (MMLM analysis), we observed no significant 



signals in non-productive sequences (minimum P = 3.8 x 10-5 > 0.05/24,360 total tests; Figure 4a). Since 

non-productive sequences were only 17.9% of all unique CDR3 sequences, we considered the possibility 

that the lack of signal was due to reduced power. Thus, we down-sampled the productive sequences to 

match the number of non-productive sequences and repeated the analysis. We observed that productive 

CDR3s still had substantial evidence of cdr3-QTL (Figure 4a). Consistent with these findings, effect size 

directions from the non-productive CDR3 analysis were randomly distributed rather than concordant with 

those from the productive CDR3 analysis (Figure 4b).  

If peripheral antigen presentation by MHC and memory formation drives the observed cdr3-QTL 

effects, then T cells with CDR3 favored by specific HLA alleles should be expanded due to proliferation. 

Weighting each unique CDR3 sequence by its expansion level should then augment cdr3-QTL signals, 

relative to our primary analysis in which we treated each unique sequence equally. To test this 

possibility, we reanalyzed the discovery data, weighting each unique CDR3 sequence by its read count 

to emphasize clonally expanded cells. We still observed evidence of cdr3-QTL effects but with a 

substantially lower magnitude (Figure 4c-d). Consistent with the strong replication in naïve T cells, these 

results suggest that our cdr3-QTL results reflect thymic selection favoring individual CDR3 sequences, 

and that these signals are mitigated (rather than augmented) by peripheral clonal expansion. 

 

The influence of correlations between HLA alleles in our analysis 

Although we kept all the correlated HLA alleles, our strategy using a Bonferroni corrected P value cutoff 

stringently controlled type I error rate, which was confirmed by extensive permutation analyses 

(Extended Data Figure 3 and Supplementary Figure 10). Due to correlated genotypes, some TCR 

phenotypes were associated with multiple HLA alleles. This is a common characteristic in QTL analyses: 

multiple alleles are usually associated with a given gene3–5. To mitigate potential problems resulting from 

this issue, we only used the most significantly associated allele for each TCR phenotype in many parts of 

our manuscript (e.g., Figure 4 and Supplementary Figure 1-2). 

 

Explained variance in a five-fold cross validation 



To confirm that there was no overfitting in our analysis, we performed five-fold cross validation. We used 

the HLA site and CDR3 position pair that showed the strongest association in the MMLM analysis 

(variance explained = 0.093): alleles at HLA-DRB1 site 13 were explanatory variables and CDR3 amino 

acid frequencies at position 109 of L13-CDR3 were response variables. In each round of cross 

validation, we conducted a linear regression for each CDR3 amino acid using training samples (80% of 

all samples) to prepare a predictive model. Then, we applied this model to the validation samples (the 

remaining 20%) and compared the predicted and observed frequencies of the target amino acid. Mean r2 

in each round of cross validation was comparable to the expected value estimated from the MMLM 

analysis (explained variance = 0.093; Supplementary Figure 20). Thus, we confirmed that the strong 

association at HLA-DRB1 site 13 was not due to overfitting. 

 

Public clonotypes and cdr3-QTL signals 

Previous studies have reported HLA-allele-associated public clonotypes (a pair of V gene and CDR3 

observed in multiple individuals), which represent a small fraction of the entire repertoire. Their 

associations were enriched in the clonally expanded and pathogen-experienced T cell populations6,7.  In 

contrast, our study analyzed the entire repertoire, and detected robust associations in naïve T cells that 

were attenuated by the inclusion of clonally expanded TCRs. To confirm that our cdr3-QTL signals are 

independent from public clonotypes, we excluded all public clonotypes and repeated our same analyses. 

We observed almost identical results, suggesting that the signal is not driven by the public repertoire 

(Supplementary Figure 21). Evidently, our approach to detecting HLA-TCR associations has captured 

novel biology in non-public clonotypes. 

 

Identifying cdr3-QTL loci outside of the MHC regions 

The moderate correlation between V/J gene usage and CDR3 amino acids raises the possibility that cis-

regulatory variants of V/J genes within the TCR locus indirectly affect CDR3 amino acid composition. In 

the replication dataset for which genome-wide genotype data was available, we searched for the cis-

regulatory variants of V/J genes and CDR3 amino acid compositions of beta chains among the 940 



variants in the TCR locus (Chr. 7:141,998,851-142,510,972 in the GRCh37 genomic coordinates). 

Among 48 V and 13 J genes we detected, we observed significant associations for 22 V genes and nine 

J genes (P < 8.7 x 10-7 = 0.05 / (940 x (48 + 13)); Supplementary Table 2 and Supplementary Figure 

5). Among 915 CDR3 phenotypes (length-position-amino acid combinations; potentially 7 x 10 x 20 = 

1,400 phenotypes but we could not detect rare amino acid in the replication dataset), we observed 

significant associations only for five phenotypes (P < 5.8 x 10-8 = 0.05 / (940 x 915); Supplementary 

Table 3 and Supplementary Figure 5). Accounting for nine J genes with significant cis-regulatory 

variants completely obviated associations with CDR3 amino acid composition (Supplementary Figure 

5). Of note, we might have failed to detect some variants within the TCR locus and thereby 

underestimated these cis-regulatory effects. In summary, these results suggest that cis-regulatory effects 

for CDR3 amino acid compositions are mainly driven by their correlation with J genes.  

 

CDR3 risk score 

Our CDR3 risk score is analogous to the well-known polygenic risk score (PRS). For a given CDR3 

sequence, the CDR3 risk score is the sum of HLA risk score effect sizes (analysis summarized in Figure 

6b) for which the target amino acid exists in the CDR3 sequence (Supplementary Figure 17). The P 

value threshold for including effect sizes is flexible and should be optimized for downstream analysis. We 

defined the performance of the CDR3 risk score by the correlation between the HLA risk score and the 

average CDR3 risk score for each individual. Using five-fold cross validation in the discovery dataset, we 

tested nine different P value thresholds; 0.05, 0.01, 0.001, 1 x 10-4, 3.6 x 10-5 (= 0.05/1,354 total tests, 

Bonferroni corrected P value), 1 x 10-5, 1 x 10-7, 1 x 10-8, and 1 x 10-10. We decided to use the P value 

threshold of 3.6 x 10-5 since this threshold had the best performance in the cross validation 

(Supplementary Figure 17). 

 

Embedding of the 3-D TCR structure 

In order to embed points into a two-dimensional space, we obtained protein structure data on TCR, HLA-

DR, and antigen structures (1J8H, 1YMM, 2IAM, 2IAN, and 4E41). Using the centroids of each amino 



acid residue, we calculated distances, di,j, between amino acid residues i and j, between HLA-DRB1 

residues and antigenic peptide residues, between antigenic peptide residues and CDR3 residues, and 

between HLA-DRB1 residues and CDR3 residues. We examined only polymorphic HLA residues. We 

averaged distances across all five structures. 

To focus on nearby structures, we excluded residue centroids with an averaged pairwise distance 

>20 angstroms for all measured distances. For the remaining points, we sought to embed the centroids 

into a two-dimensional plot by assigning x and y coordinates that minimized the difference between 

distances in embedded space and distances in three-dimensional structural space. For each pairwise 

distance, we used a weight wij to emphasize certain distances, and de-emphasize others. We sought to 

minimize the following objective function: 
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To emphasize short distances (d<6 angstroms) and de-emphasize longer distances, we defined wij as 

follows: 
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To keep residues from collapsing in on themselves, we made certain arbitrary assignments. If i,j were 

from two residues of the same molecule, or were from two residues >20 angstroms apart, we assigned 

di,j to be 50 angstroms, and w(i,j) to be 0.01.  

To identify the best fit, we used random start positions and optimized the fit of the points by using 

both gradient descent and Newton’s method. For initialization, each point was randomly assigned to 

twenty points. Newton’s method needs more computational time per iteration, since the Jacobian of F 

needs to be calculated. Therefore, we applied 90 iterations of gradient descent first: 
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Here ∇𝐹  is the gradient of F. For s, we tried values ranging from 2^(1-h), where h ranged from 1 to 21, 

and hence s ranged from 1 to 9e-7. We selected the value of h that resulted in the lowest value of F. 

Next, we applied 20 iterations of Newton’s method after gradient descent to quickly find local minima: 
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Here J(F) is the Jacobian of F. For s, we tried values ranging from 2^(1-h), where h ranged from 1 to 21. 

We selected the value of h that resulted in the lowest value of F. To calculate the gradient, we calculate 

the derivative of the objective function at x and y for each point: 
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Here di=j is the Dirac delta function which is 1 if i and j are equal to each other, and 0 otherwise. Similarly, 

di≠k is 1 if i and k are equal to each other, and 0 otherwise. To calculate the Jacobian, we calculate each 

of the second derivatives empirically setting delta = 0.0000001: 
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We calculate other partial derivatives for all pairs i and j for both x and y coordinates similarly. 
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Supplementary Figures 

 

 

Supplementary Figure 1. The effect of germline-encoded V gene sequences on cdr3-QTL 
analysis. 
(a,b) Germline-encoded sequences were included in this analysis. We compared the effect sizes from 
the linear regression model (LM) that did not adjust for V gene usage to the effect sizes from the linear 
mixed regression model (LMM) that did model the effect of the V gene. The analysis was restricted to the 
435 CDR3 phenotypes (length-position-amino acid combinations) that had at least one significant 
association in LM analysis (P < 0.05/1,262,664 total tests). For each CDR3 phenotype, we used the HLA 
amino acid allele that had the lowest P value for that phenotype in the LM analysis. We used P values 
from two-sided linear regression test. The error bar indicates +/- 2 x S.E.   
(a) Effect sizes for non-transformed phenotype are provided.   
(b) Left panel: the same plot as in (a) but stratified by CDR3 position. Right panel: LM association test 
results for serine (S) at position 107 of length 12 CDR3, stratified by V gene usage for the ten most 
frequent V genes. 
(c) Germline-encoded sequences were excluded in this analysis (the primary analysis in the manuscript). 
The analysis was restricted to the 388 CDR3 phenotypes (length-position-amino acid combinations) that 
had at least one significant association in LM analysis (P < 0.05/1,249,742 total tests). For each CDR3 
phenotype, we used the HLA amino acid allele that had the lowest P value for that phenotype in the LM 
analysis. Effect sizes for non-transformed phenotypes are provided. The error bar indicates +/- 2 x S.E. 
We used P values from two-sided linear regression test. 
 



 

Supplementary Figure 2. The effect of germline-encoded J gene sequences on cdr3-QTL analysis. 
(a,b) Germline-encoded sequences were included in this analysis. We compared the effect sizes from 
the linear regression model (LM) that did not adjust for J gene usage to the effect sizes from the linear 
mixed regression model (LMM) that did model the effect of the J gene. The analysis was restricted to the 
435 CDR3 phenotypes (length-position-amino acid combinations) that had at least one significant 
association in LM analysis (P < 0.05/1,262,664 total tests). For each CDR3 phenotype, we used the HLA 
amino acid allele that had the lowest P value for that phenotype in the LM analysis. We used P values 
from two-sided linear regression test. The error bar indicates +/- 2 x S.E.  
(a) Effect sizes for non-transformed phenotype are provided.  
(b) The same plot as in (a) but stratified by CDR3 position. 
(c) Germline-encoded sequences were excluded in this analysis (the primary analysis in the manuscript). 
The analysis was restricted to the 388 CDR3 phenotypes (length-position-amino acid combinations) that 
had at least one significant association in LM analysis (P < 0.05/1,249,742 total tests). For each CDR3 
phenotype, we used the HLA amino acid allele that had the lowest P value for that phenotype in the LM 
analysis. Effect sizes for non-transformed phenotypes are provided. The error bar indicates +/- 2 x S.E. 
We used P values from two-sided linear regression test. 
 
 



 

Supplementary Figure 3. The strategy to exclude germline-encoded amino acids from each CDR3 
sequence. 
This is a schematic figure of TCR data with two V genes (TRBV2-1 and TRBV4-1); their germline-
encoded sequences in the CDR3 region (positions 104-108) are provided above the table. When a 
clonotype had an encoded amino acid at a CDR3 position, we excluded that amino acid from our 
analysis (erased with a horizontal line). We included non-encoded amino acids (highlighted by red), even 
when they localized to positions that were germline-encoded in other TCRs. Then, we calculated amino 
acid frequencies at each position; examples for aspartate (D) at position 107 and glutamate (E) at 
position 108 are provided. 
  



 

Supplementary Figure 4. The effect of germline-encoded V and J gene sequences on cdr3-QTL 
analysis. 
The effect size estimates from the linear regression model (LM) are compared between two conditions: 
the analyses including germline-encoded amino acids and those excluding them. The analysis was 
restricted to the 435 CDR3 phenotypes (length-position-amino acid combinations) which had at least one 
significant association in LM analysis including germline-encoded amino acids (P < 0.05/1,262,664 total 
tests), and we used the HLA amino acid allele that had the lowest P value for each phenotype. Effect 
sizes for non-transformed phenotype are provided. The CDR3 middle positions are positions 109-112; 
the flanking positions are positions 107, 108, and 113-116. We used P values from two-sided linear 
regression test. The error bar indicates +/- 2 x S.E. 
 

  



 

Supplementary Figure 5. Cis-regulatory effects of V/J genes and CDR3 amino acid compositions. 
Using the replication dataset (n = 169), we tested associations between the allelic dosages of TCR locus 
variants and V/J usage or CDR3 amino acid composition. We used P values from two-sided linear 
regression test. For CDR3 amino acid composition, we conducted a second analysis that included the 
nine J genes with significant cis-regulatory effects as covariates. 
  



 

 

Supplementary Figure 6. Variance explained in cdr3-QTL analysis for each length of CDR3. 
Variance explained in the MMLM analysis for different lengths of CDR3 (n=628; the discovery dataset). 
The results for HLA-DRB1 are provided.  
 

  



 

 

Supplementary Figure 7. Evaluation of the confounders in cdr3-QTL analysis (MMLM analysis). 
To evaluate the effect of potential confounders in the MMLM analysis, we tested the variance explained 
in three different conditions. In each plot, the X-axis corresponds to the variance explained in the primary 
analysis (n=628; the discovery dataset) and the Y-axis corresponds to the variance explained in one of 
the three conditions. First, we conducted the analysis only using European ancestry samples (n=348) to 
test potential bias driven by ancestry. Second, we conducted analyses modeling age and sex as 
covariates (n=520; sample size decreased due to missing data in covariates) to test potential bias driven 
by age or sex. Third, to test potential bias driven by cytomegalovirus infection status, we restricted the 
analysis to non-infected samples (n=334). For each condition, we analyzed all tests in the primary 
analysis (24,360 total tests). 
   



 

Supplementary Figure 8. cdr3-QTL results using four-digit classical allele genotypes. 
QQ plot of the MMLM analysis comparing two different methods (n = 628; the discovery dataset): 
associations with HLA amino acid alleles and those with four-digit classical HLA alleles. We used 
MANOVA test P values. 
  



 

 

 
Supplementary Figure 9. Observed and embedded pair-wise distances of amino acids in MHC-
peptide-TCR complexes. 
(a) The shortest distances between each HLA-DRB1 site and all positions of the antigen (X-axis) and 
those between each HLA-DRB1 site and all positions of the CDR3 (Y-axis) are provided for each protein 
structure. The sites with independently significant cdr3-QTL effects are highlighted in magenta. 
(b) We embedded all pairwise distances in the pMHC-TCR complex into a two-dimensional space, down-
weighting the distances between HLA and TCR to highlight antigen-related interaction. Embedding pair-
wise distances (Y-axis) compared with those observed in structural data (X-axis). Visualized are 
averaged values across the five structures. Pearson’s correlation coefficients are provided. 
  



 
Supplementary Figure 10. Permutation analyses using the linear regression model and the linear 
mixed model. 
QQ plots for the real dataset and the permuted dataset using three different conditions: (a) the LM using 
HLA amino acid alleles (1,249,742 total tests), (b) the LM using RA-HLA risk score (1,354 total tests), 
and (c) the LMM using HLA amino acid alleles (388 tests total tests). For the LMM, we restricted our 
analysis to 388 CDR3 phenotypes (CDR3 length, position, amino acid combinations) that had at least 
one significant association in the linear regression analysis (P < 0.05/1,249,742 total tests) and used 
HLA amino acid alleles that had the lowest P value for each phenotype (Methods). For all plots, we used 
P values from two-sided linear regression test. 
  



 
Supplementary Figure 11. CDR3 modification patterns associated with HLA-DRB1 amino acid 
alleles. 
We conducted the LM analysis using the HLA-DRB1 amino acid alleles at sites 13, 71, 32, 74, 86, and 
30 (n=628; the discovery dataset). These six positions within HLA-DRB1 showed independent 
associations in the MMLM analysis (Extended Data Figure 5). To create a sequence logo for each 
allele, the effect sizes of significant (P < 0.05/1,249,742 total tests) associations for each amino acid at a 
given position were summed across L12-L18 CDR3s. We used P values from two-sided linear regression 
test. 
  



 

Supplementary Figure 12. Evaluation of the confounders in the LM analysis. 
The analysis was restricted to the 388 CDR3 phenotypes (length-position-amino acid combinations) 
which had at least one significant association in the primary analysis (P < 0.05/1,249,742 total tests; the 
discovery dataset), and we used the HLA amino acid allele that had the lowest P value for each 
phenotype. We used P values from two-sided linear regression test. The error bar indicates +/- 2 x S.E.  
(a) Effect sizes from the LM analysis in which all samples were used (n=628; the primary analysis) 
compared to those from the analysis restricted to European ancestry samples (n=348).  
(b) Effect sizes from the LM analysis that did not adjust for age or sex effects (n=628; the primary 
analysis) compared to those from the LM analysis that did adjust for age and sex effects (n=520). 
Including these covariates in the model decreased the sample size due to missing values in covariate 
data.  
(c) Effect sizes from the LM analysis in which all samples were used (n=628; the primary analysis) 
compared to those from the analysis restricted to donors not infected by cytomegalovirus (n=334).  
 
  



 

Supplementary Figure 13. cdr3-QTL analysis using productive CDR3s with a nonfunctional V 
gene. 
QQ plots comparing the P value distribution from the LM analysis with all productive sequences (red) to 
the LM analysis restricted to productive sequences with TRBV21-1, a pseudogene that renders the TCR 
nonfunctional. We used P values from two-sided linear regression test. 
  



 
Supplementary Figure 14. cdr3-QTL signals are not enriched in clonally expanded cells. 
We used the read count of each clonotype as an index of its clonal expansion. Within each donor, we 
sorted clonotypes based on read count. We considered the top 1,000 clonotypes to be clonally 
expanded. We randomly selected 1,000 clonotypes as a control population. 
(a) Within each donor, we calculated a ratio of the total read counts between the top and the random 
1,000 clonotypes. The ratios of all donors are shown in a histogram. On average, these top 1000 clones 
had 12-times more sequencing reads compared with the randomly selected TCRs, indicating that the top 
1000 clones are substantially expanded and thus appropriate for this analysis. 
(b) The variance explained in the MMLM analysis using the top 1,000 (X-axis) and the random 1,000 (X-
axis) clonotypes. 
(c) Effect size estimates in the LM analysis using the top 1,000 and the random 1,000 clonotypes. We 
used 388 CDR3 phenotypes (CDR3 length, position, amino acid combinations) that had at least one 
significant association in the LM analysis (P < 0.05/1,249,742 total tests) and used the HLA amino acid 
alleles that had the lowest P value for each phenotype. We used P values from two-sided linear 
regression test. The error bar indicates +/- 2 x S.E.  



 

Supplementary Figure 15. The influence of HLA-DRB1 site 13 amino acid alleles on CDR3 position 
110. 
We used the linear regression model (LM) with six possible amino acid alleles at HLA-DRB1 site 13. 
Their cdr3-QTL effect sizes for aspartic acid (D) and lysine (K) usage at position 110 of CDR3 with 
different lengths (X-axis; n=628; the discovery dataset) are plotted against their effect size in RA-GWAS 
(Y-axis). The error bar indicates +/- 2 x S.E. CDR3s of length 12 were excluded from this analysis 
because position 110 does not exist in L12 CDR3. 
  



 

Supplementary Figure 16. QQ plot of cdr3-QTL, V/J gene association based on HLA-risk scores. 
We provide QQ plots from the LM analysis with HLA-risk scores. The identity line is provided with the 
95% confidence interval. We used P values from two-sided linear regression test. 
 
  



 

Supplementary Figure 17. CDR3 risk score calculation. 
(a) Schematic explanation of our strategy to calculate the CDR3 risk score. The table shows effect size 
estimates from the LM analysis based on HLA risk scores. Effect sizes for corresponding amino acid 
positions are summed to calculate the CDR3 risk score. Only the effects that passed the Bonferroni P 
value threshold were used (0.05/1,354 total tests). 
(b, c) We conducted five-fold cross validation in the discovery dataset to evaluate the performance of 
RA-CDR3 risk score. A representative plot of the correlation between RA-HLA risk score and RA-CDR3 
risk score in a round of cross validation b, using real data. c, using permuted data. We used a P value 
threshold of 0.05/1,354 total tests to include effect sizes in CDR3 risk calculation. The error bands 
indicate 95% confidence interval for predictions from a fitted linear model. Pearson’s r is provided. 
(d) Pearson’s correlation coefficient between RA-HLA risk score and RA-CDR3 risk score in the five-fold 
cross validation using nine different P value thresholds. Within each boxplot, the horizontal line reflects 
the median, the top and bottom of each box reflect the interquartile range (IQR), and the whiskers reflect 
the maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. 



 
 
Supplementary Figure 18. Our strategy to define HLA amino acid alleles. 
(a) At a given HLA site that has m possible amino acid residues, we partitioned the four-digit alleles into 
m groups with identical residues at the given site. We then calculated the allele count of each group. This 
is an example of HLA-DRB1 site 71 with four possible amino acid residues. 
(b) At a given HLA site that has m amino acid residues, we considered all possible combinations of 
amino acids and calculated the allele counts for each group. This is an example of HLA-DRB1 site 71 
with four possible amino acids. 
  



 

Supplementary Figure 19. CDR3 length affects cdr3-QTL signals. 
(a) QQ plot in the MMLM analysis showing MANOVA test P values from the length-position model (the 
primary analysis) and the position model (n=628; the discovery dataset).  
(b-e) We used 106,145 CDR3 phenotypes (position and amino acid combinations) that were testable in 
CDR3 lengths 12-18. For each phenotype, we tested for heterogeneity in effect size estimates from the 
LM analysis across CDR3 lengths using Cochran's Q test (Phet). b, QQ plot of all Phet values. We provide 
effect size estimates of linear regression tests from three examples: signals with no (c), modest (d) and 
strong (e) heterogeneity across different CDR3 lengths. The error bar indicates +/- 2 x S.E. 
(f) Comparison of effect size estimates from the LM analysis between the length-position model (the 
primary analysis, X-axis) and the position model (Y-axis). The error bar indicates +/- 2 x S.E. We used 
the 388 CDR3 phenotypes (CDR3 length, position, amino acid combinations) that had at least one 
significant association in the LM analysis (P < 0.05/1,249,742 total tests) and used the HLA amino acid 
alleles that had the lowest P value for each phenotype. The blue line indicates a fitted linear regression 
using the datapoints in each panel (the error bands indicate 95% confidence interval for predictions). The 
red line is the identity line. For shorter CDR3 lengths, effect sizes from the length-position model tend to 
be larger than those from the position model; however, the opposite is the case for longer CDR3 lengths. 
We used P values from two-sided linear regression test.  
 



 

Supplementary Figure 20. Explained variance in a five-fold cross validation. 
To confirm that there was no overfitting in our analysis, we performed five-fold cross validation. We used 
the HLA site and CDR3 position pair that showed the strongest association in the MMLM analysis: alleles 
at HLA-DRB1 site 13 were explanatory variables and CDR3 amino acid frequencies at position 109 of 
L13-CDR3 were response variables. In each round of cross validation, we conducted a linear regression 
for each CDR3 amino acid using training samples (80% of all samples: n=503) to prepare a predictive 
model. Then, we applied this model to the validation samples (the remaining 20%: n=125) and compared 
the predicted and observed frequencies of the target amino acid. 
(a) an exemplar plot showing the predicted and observed frequencies of lysine (K) in a round of cross 
validation. 
(b) Pearson’s r for all amino acids in each round of cross validation. Within each boxplot, the horizontal 
lines reflect the median, the top and bottom of each box reflect the interquartile range (IQR), and the 
whiskers reflect the maximum and minimum values within each grouping no further than 1.5 x IQR from 
the hinge. 
(c) Mean r2 in each round of cross validation. The expected value that was estimated from the MMLM 
analysis (explained variance = 0.093) is shown with a dashed line. 
  



 

 
Supplementary Figure 21. The influence of public clonotypes on cdr3-QTL signals. 
Effect size estimates from the linear regression model (LM) compared across three conditions: the 
analyses with all clonotypes (X-axis, both plots), the analysis with non-public clonotypes (Y-axis, left), 
and the analysis with public clonotypes (Y-axis, right). We used the 388 CDR3 phenotypes (length-
position-amino acid combinations) that had at least one significant association in the LM analysis using 
all clonotypes (P < 0.05/1,249,742 total tests), and the HLA amino acid alleles that had the lowest P 
value for each phenotype. The error bar indicates +/- 2 x S.E. We used P values from two-sided linear 
regression test. 
 


