## Membrane marker selection for segmenting single cell spatial proteomics data: Supplementary Information

Monica T. Dayao<sup>1,2</sup>, Maigan Brusko<sup>3</sup>, Clive Wasserfall<sup>3</sup>, and Ziv Bar-Joseph<sup>2,4,\*</sup>

<sup>1</sup>Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology

<sup>2</sup>Computational Biology Department, School of Computer Science, Carnegie Mellon University

<sup>3</sup>Department of Pathology, Immunology and Laboratory Medicine, University of Florida

<sup>4</sup>Machine Learning Department, School of Computer Science, Carnegie Mellon University

\*Correspondence: Ziv Bar-Joseph, zivbj@cs.cmu.edu

| Detect  |                 | Tiaguo        | No. Tilor | No.      | No. Distinct      | Training/    | Fuel         |  |
|---------|-----------------|---------------|-----------|----------|-------------------|--------------|--------------|--|
| Dataset | HUDWAI ID       | 1 issue       | NO. Thes  | Z-planes | Z-planes Proteins |              | Evai         |  |
| 1       | N/A  (from [1]) | murine spleen | 63        | 15       | 31                | $\checkmark$ |              |  |
| 2       | HBM869.VZJM.366 | lymph node    | 25        | 20       | 19                | $\checkmark$ |              |  |
| 3       | HBM432.LLCF.677 | spleen        | 63        | 12       | 19                | $\checkmark$ |              |  |
| 4       | HBM588.FHDS.363 | thymus        | 81        | 13       | 19                | $\checkmark$ |              |  |
| 5       | HBM279.TQRS.775 | lymph node    | 25        | 10       | 19                |              | $\checkmark$ |  |
| 6       | HBM337.FSXL.564 | spleen        | 63        | 17       | 19                |              | $\checkmark$ |  |
| 7       | HBM376.QCCJ.269 | thymus        | 117       | 12       | 19                |              | $\checkmark$ |  |
| 8       | HBM754.WKLP.262 | lymph node    | 63        | 12       | 29                |              | $\checkmark$ |  |
| 9       | HBM556.KSFB.592 | spleen        | 63        | 17       | 29                |              | $\checkmark$ |  |
| 10      | HBM288.XSQZ.633 | thymus        | 63        | 12       | 29                |              | $\checkmark$ |  |
| 11      | N/A [2]         | bone marrow   | 1         | N/A      | 55                |              | $\checkmark$ |  |

Supplementary Table 1: Datasets used for training and evaluation of the RAMCES CNN model. 'Training/Cross-val' refers to datasets used to train the model for cross-validation. 'Eval' refers to datasets used for the rest of the results. Datasets from HuBMAP can be found from the HuBMAP data portal, along with the respective donor demographic information. The source data for dataset 11 from [2] was from the 'Multi-tumor TMA' data, region 4. This data was already pre-processed with its optimal z-plane selected.

|    |         |            | Datas       | ets           |                        |
|----|---------|------------|-------------|---------------|------------------------|
|    | 1       | 2-7        | 8-10        |               | 11                     |
| 1  | DAPI    | DAPI       | DAPI        | DRAQ5         | Pan-Cytokeratin        |
| 2  | CD45    | CD31       | CD31        | CD79a         | CD68                   |
| 3  | Ly6C    | CD8        | CD8         | FOXP3         | CD3                    |
| 4  | TCR     | CD45       | CD20        | CDX2          | $\operatorname{SMA}$   |
| 5  | Ly6G    | CD20       | Ki67        | CD8           | CD34                   |
| 6  | CD19    | Ki67       | CD3e        | p53           | $\operatorname{EpCAM}$ |
| 7  | CD169   | CD3e       | SMActin     | GATA3         | CollagenIV             |
| 8  | CD106   | Actin      | Podoplanin  | CD21          | CD45RO                 |
| 9  | CD3     | Podoplanin | CD68        | PD-L1         | Podoplanin             |
| 10 | CD16/32 | CD68       | PAN-CK      | Ki67          | CD15                   |
| 11 | CD8a    | PAN-CK     | CD21        | CD45          | CD7                    |
| 12 | CD90    | CD21       | CD4         | CD30          | CD163                  |
| 13 | F4/80   | CD4        | Lyve1       | PAX5          | ChromograninA          |
| 14 | CD11c   | CD45R0     | CD45R0      | HLA-DR        | CD31                   |
| 15 | TER-119 | CD11c      | CD11c       | CD5           | CD123                  |
| 16 | CD11b   | ECAD       | CD35        | CD2           | MMP9                   |
| 17 | IgD     | CD107a     | ECAD        | CD45RA        | CD138                  |
| 18 | CD27    | CD44       | CD107a      | CD4           | CD38                   |
| 19 | CD5     | Histone H3 | CD34        | PD-1          | Hyaluronan             |
| 20 | CD79b   |            | CD44        | MUC-1         |                        |
| 21 | CD71    |            | HLA-DR      | BCL2          |                        |
| 22 | CD31    |            | FoxP3       | CD56          |                        |
| 23 | CD4     |            | CD163       | Cytokeratin7  |                        |
| 24 | IgM     |            | Collagen IV | CD25          |                        |
| 25 | B220    |            | Vimentin    | VISTA         |                        |
| 26 | ER-TR7  |            | CD15        | Hep-Par-1     |                        |
| 27 | HMCII   |            | CD45        | CD11c         |                        |
| 28 | CD35    |            | CD5         | IRF4          |                        |
| 29 | CD21/35 |            | CD1c        | CD20          |                        |
| 30 | CD44    |            |             | EGFR          |                        |
| 31 | NKp46   |            |             | IDO-1         |                        |
| 32 |         |            |             | GranzymeB     |                        |
| 33 |         |            |             | MelanA        |                        |
| 34 |         |            |             | OX-40         |                        |
| 35 |         |            |             | Vimentin      |                        |
| 36 |         |            |             | Synaptophysin |                        |
| 37 |         |            |             | CD117         |                        |
| 38 |         |            |             | Na-K-ATPase   |                        |
| 39 |         |            |             | CD194         |                        |
| 40 |         |            |             | CD57          |                        |

Supplementary Table 2: List of markers profiled in each CODEX dataset. The dataset number refers to the number in Supplementary Table 1. For antibody information for datasets 2-10, see Supplementary Table 10.

| Dataset 1      |       | Datasets 2-4   | 2 | 3   | 4  |
|----------------|-------|----------------|---|-----|----|
| Protein/Marker | Label | Protein/Marker | L | abe | ls |
| DAPI           | 0     | DAPI           | 0 | 0   | 0  |
| CD45           | 1     | CD31           | 0 | 0   | 0  |
| Ly6C           | 0     | CD8            | 0 | 0   | 1  |
| TCR            | 1     | CD45           | 1 | 1   | 0  |
| Ly6G           | 0     | CD20           | 0 | 1   | 0  |
| CD19           | 0     | Ki67           | 0 | 0   | 0  |
| CD169          | 0     | CD3e           | 1 | 1   | 1  |
| CD106          | 0     | Actin          | 0 | 0   | 0  |
| CD3            | 1     | Podoplanin     | 0 | 0   | 0  |
| CD16/32        | 0     | CD68           | 0 | 0   | 0  |
| CD8a           | 1     | PAN-CK         | 0 | 0   | 0  |
| CD90           | 1     | CD21           | 0 | 1   | 0  |
| F4/80          | 0     | CD4            | 1 | 1   | 1  |
| CD11c          | 1     | CD45R0         | 0 | 1   | 0  |
| TER-119        | 0     | CD11c          | 0 | 0   | 0  |
| CD11b          | 0     | ECAD           | 0 | 1   | 0  |
| IgD            | 1     | CD107a         | 0 | 0   | 0  |
| CD27           | 0     | CD44           | 0 | 1   | 0  |
| CD5            | 1     | Histone H3     | 0 | 0   | 0  |
| $\rm CD79b$    | 1     |                |   |     |    |
| CD71           | 0     |                |   |     |    |
| CD31           | 1     |                |   |     |    |
| CD4            | 1     |                |   |     |    |
| IgM            | 0     |                |   |     |    |
| B220           | 0     |                |   |     |    |
| ER-TR7         | 0     |                |   |     |    |
| HMCII          | 0     |                |   |     |    |
| CD35           | 0     |                |   |     |    |
| CD21/35        | 0     |                |   |     |    |
| CD44           | 0     |                |   |     |    |
| NKp46          | 0     |                |   |     |    |

Supplementary Table 3: Labeling of each marker in the training datasets. 1 indicates a that the marker labeled membranes well in the specified dataset, and 0 indicates that the marker labeled other cellular/extra-cellular components.



Supplementary Figure 1: ROC and PR curves for CNN models trained on 100 different bootstrap samples from datasets 1-4 (Supplementary Table 1). The gray lines show the curves for each individual bootstrap model. The mean ROC and PR curves (green) are presented with error bands representing  $\pm$  standard deviation (n = 100 bootstrap models). The purple dashed lines represent the ROC and PRC baselines.

|      |                 | Lymph node |       |          |       |       | Spleen         |       |       |          |       |       |
|------|-----------------|------------|-------|----------|-------|-------|----------------|-------|-------|----------|-------|-------|
| Rank | Da              | taset 5    |       |          | 8     |       | 6              |       |       | 9        |       |       |
| 1    | $CD4^*$         | 0.747      | 0.817 | $CD8^*$  | 0.964 | 0.223 | $CD45^*$       | 0.995 | 0.048 | CD20*    | 0.787 | 0.747 |
| 2    | $CD45^*$        | 0.711      | 0.868 | $CD4^*$  | 0.963 | 0.227 | $CD45R0^*$     | 0.994 | 0.053 | Vimentin | 0.625 | 0.955 |
| 3    | $CD20^*$        | 0.683      | 0.901 | $CD3e^*$ | 0.963 | 0.228 | $CD3e^*$       | 0.993 | 0.060 | SMActin  | 0.376 | 0.956 |
| 4    | $\mathbf{CD3e}$ | 0.668      | 0.917 | CD20     | 0.958 | 0.250 | $\mathbf{CD4}$ | 0.990 | 0.082 | CD107a   | 0.252 | 0.815 |
| 5    | CD45R0          | 0.661      | 0.924 | CD45     | 0.899 | 0.471 | CD20           | 0.989 | 0.088 | CD163    | 0.228 | 0.775 |
|      |                 |            | Thyn  | nus      |       |       | Bone marrow    |       |       |          |       |       |
| Rank |                 | 7          |       |          | 10    |       |                | 11    |       |          |       |       |
| 1    | $CD3e^*$        | 0.993      | 0.060 | $CD3e^*$ | 0.935 | 0.347 | $CD8^*$        | 0.934 | 0.352 |          |       |       |
| 2    | $CD8^*$         | 0.963      | 0.230 | $CD8^*$  | 0.924 | 0.386 | $CD34^*$       | 0.793 | 0.735 |          |       |       |
| 3    | $CD4^*$         | 0.945      | 0.308 | $CD45^*$ | 0.899 | 0.471 | $HLA-DR^*$     | 0.736 | 0.832 |          |       |       |
| 4    | CD20            | 0.862      | 0.579 | CD4      | 0.886 | 0.512 | CD57           | 0.718 | 0.859 |          |       |       |
| 5    | ECAD            | 0.697      | 0.884 | CD1c     | 0.872 | 0.551 | CD45RA         | 0.699 | 0.883 |          |       |       |

Supplementary Table 4: Top 5 ranked proteins for datasets 5-11 using the CNN model trained on datasets 2-4 (Supplementary Table 1). Bolded protein name means that it is labeled as a membrane protein by the Human Protein Atlas [3]. An asterisk (\*) means that it was selected to use for segmentation. For each protein, there are two numbers in the same row. The first number is the score output by RAMCES for that protein. The second number is the Shannon entropy, which can be interpreted as the uncertainty of the RAMCES model (Methods).



Supplementary Figure 2: An example field of view for the top 5 ranked proteins for spleen dataset 9. Visually, only CD20 labels cell membranes well.



Supplementary Figure 3: Reciever operating characteristic (ROC) and precision-recall (PR) curves comparing CNN performance with and without using the DWT. This evaluation was performed on the Goltsev et al. dataset [1].

| Tiggue (dataget ID) | Tatal no colla  | CD3+,CD4+ $CD3+,$ |         |          | CD8+    | CD4+,0   | CD4+,CD8+   CD68+,CD4-,CD8- |          |         |  |
|---------------------|-----------------|-------------------|---------|----------|---------|----------|-----------------------------|----------|---------|--|
| Tissue (dataset ID) | Total no. cells | Nucl-ext          | Top $3$ | Nucl-ext | Top $3$ | Nucl-ext | Top $3$                     | Nucl-ext | Top $3$ |  |
| Lymph node<br>(5)   | 46840           | 15.2%             | 21.9%   | 7.3%     | 9.0%    | 3.2%     | 4.2%                        | 1.5%     | 3.3%    |  |
| Spleen<br>(6)       | 123202          | 1.7%              | 2.8%    | 0.8%     | 1.3%    | 0.4%     | 0.9%                        | 0.4%     | 0.7%    |  |
| Thymus<br>(7)       | 264898          | -                 | -       | -        | -       | 1.5%     | 1.6%                        | -        | -       |  |

Supplementary Table 5: Percentages of cells coexpressing proteins using different segmentations. 'Nucl-ext' refers to the default Cytokit [4] nucleus extension method, and 'Top 3' refers to our method with the top 3 proteins combined as the membrane marker.

| Tissue (dataset ID)      | Lymph N | Node $(5)$ | Spleer  | n (6)  | Thymus (7) |        |
|--------------------------|---------|------------|---------|--------|------------|--------|
| Comparison               | Jaccard | Dice       | Jaccard | Dice   | Jaccard    | Dice   |
| Top3 (combined) vs rank1 | 0.8809  | 0.9362     | 0.9081  | 0.9511 | 0.8456     | 0.9144 |
| Top3 (combined) vs rank2 | 0.9167  | 0.9564     | 0.9651  | 0.9821 | 0.9444     | 0.9711 |
| Top3 (combined) vs rank3 | 0.8213  | 0.9011     | 0.9105  | 0.9529 | 0.8636     | 0.9252 |
| Avg top3 vs rank#        | 0.8730  | 0.9312     | 0.9279  | 0.9620 | 0.8845     | 0.9369 |
| Rank1 vs rank2           | 0.8434  | 0.9148     | 0.8878  | 0.9396 | 0.8203     | 0.8989 |
| Rank1 vs rank3           | 0.7458  | 0.8539     | 0.8800  | 0.9356 | 0.8521     | 0.9179 |
| Rank2 vs rank3           | 0.8237  | 0.9026     | 0.8871  | 0.9396 | 0.8265     | 0.9025 |
| Avg rank# vs rank #      | 0.8043  | 0.8904     | 0.8850  | 0.9383 | 0.8329     | 0.9064 |

Supplementary Table 6: Cell segmentation mask overlap (calculated by the Jaccard index and Dice coefficient) between different segmentation methods for datasets 5-7 (Supplementary Table 1). Top3 corresponds to the RAMCES segmentation using the top 3 combined membrane markers. Rank1, rank2 and rank3 correspond to the segmentation using the first, second and third-ranked individual (not combined) protein channels, respectively. The 'Avg top3 vs rank#' row is the average of the Top3 segmentation overlapping with the individual channel segmentations. The 'Avg rank# vs rank #' row shows the average pairwise overlaps between the individual channel segmentations.

|                                   | Ja     | ccard Ind | lex    | Dice Coefficient |        |        |  |
|-----------------------------------|--------|-----------|--------|------------------|--------|--------|--|
| Comparison w/ manual segmentation | Tile 1 | Tile 2    | Avg    | Tile 1           | Tile 2 | Avg    |  |
| Top2 (combined)                   | 0.6035 | 0.6985    | 0.6510 | 0.7527           | 0.8225 | 0.7876 |  |
| Top3 (combined)                   | 0.6043 | 0.6930    | 0.6487 | 0.7533           | 0.8187 | 0.7860 |  |
| Top4 (combined)                   | 0.6037 | 0.6972    | 0.6505 | 0.7529           | 0.8216 | 0.7873 |  |
| Rank1                             | 0.5917 | 0.6592    | 0.6255 | 0.7434           | 0.7946 | 0.7690 |  |
| Rank2                             | 0.6152 | 0.7095    | 0.6624 | 0.7618           | 0.8301 | 0.7951 |  |
| Rank3                             | 0.5607 | 0.6743    | 0.6175 | 0.7185           | 0.8054 | 0.7611 |  |
| Avg rank#                         | 0.5892 | 0.6810    | 0.6351 | 0.7412           | 0.8100 | 0.7756 |  |
| Nucl-ext                          | 0.5434 | 0.6569    | 0.6002 | 0.7042           | 0.7922 | 0.7482 |  |

Supplementary Table 7: Cell segmentation mask overlap (calculated by the Jaccard index and Dice coefficient) with the first expert manual annotation of two image tiles from dataset 5 (Supplementary Table 1). Top2, top3 and top4 correspond to the RAMCES segmentation using the top 2,3,4 combined membrane markers, respectively. The Top3 segmentation was used for the analysis in the main text. Rank1, rank2 and rank3 correspond to the segmentation using the first, second and third-ranked individual (not combined) protein channels. The 'Avg rank#' row is the average value for those individual protein segmentations. The 'Nucl-ext' row corresponds to the default nucleus extension segmentation method from Cytokit.

|                                   | Ja     | ccard Ind | ex     | Dice Coefficient |        |        |  |
|-----------------------------------|--------|-----------|--------|------------------|--------|--------|--|
| Comparison w/ manual segmentation | Tile 1 | Tile 2    | Avg    | Tile 1           | Tile 2 | Avg    |  |
| Top2 (combined)                   | 0.5110 | 0.4752    | 0.4931 | 0.6764           | 0.6442 | 0.6603 |  |
| Top3 (combined)                   | 0.5110 | 0.4926    | 0.5018 | 0.6764           | 0.6600 | 0.6682 |  |
| Top4 (combined)                   | 0.5099 | 0.4837    | 0.4968 | 0.6752           | 0.6520 | 0.6636 |  |
| Rank1                             | 0.5019 | 0.4711    | 0.4865 | 0.6683           | 0.6405 | 0.6544 |  |
| Rank2                             | 0.5184 | 0.4926    | 0.5055 | 0.6828           | 0.6600 | 0.6714 |  |
| Rank3                             | 0.4932 | 0.4661    | 0.4797 | 0.6606           | 0.6358 | 0.6482 |  |
| Avg rank#                         | 0.5045 | 0.4766    | 0.4906 | 0.6706           | 0.6454 | 0.6580 |  |
| Nucl-ext                          | 0.4347 | 0.3956    | 0.4152 | 0.6060           | 0.5669 | 0.5865 |  |

Supplementary Table 8: Cell segmentation mask overlap with the second expert manual annotation of two image tiles from dataset 5 (Supplementary Table 1). Format is the same as in Supplementary Table 7.

|                                           | Ja     | ccard Ind | lex    | Dice Coefficient |        |        |  |
|-------------------------------------------|--------|-----------|--------|------------------|--------|--------|--|
|                                           | Tile 1 | Tile 2    | Avg    | Tile 1           | Tile 2 | Avg    |  |
| Agreement between<br>manual segmentations | 0.5570 | 0.5174    | 0.5372 | 0.7155           | 0.6819 | 0.6987 |  |

Supplementary Table 9: Cell segmentation mask overlap between the two expert annotations of two tiles in dataset 5 (Supplementary Table 1), measured by the Jaccard Index and Dice Coefficient.



Supplementary Figure 4: Visualization of agreement and disagreement areas for two different segmentation methods. Let  $A \cup C$  be the segmentation area for method #1. Let  $B \cup C$  be the segmentation area for method #2. C is referred to as the agreement in the foreground between methods #1 and #2. D is referred to as the agreement in the background. A is the area where method #1 assigns to inside of cells and method #2 assigns to background, and vice versa for B. If method #1 is the more accurate segmentation method, we would expect that the average biomarker distribution for area A would be more similar to the distribution for area C than the distribution for area B is to C's distribution. We would also expect that B's distribution is more similar to the distribution for area D, the background.



Supplementary Figure 5: Agreements and disagreements between the RAMCES segmentations (using the RAM-CES combined output with the top 3 ranked markers) and the default nucleus extension segmentations for dataset 5 (Supplementary Table 1). The blue bars show the average pixel intensity in the areas where the two segmentation methods agree in the foreground (fg, inside of the cells). The orange bars show the segmentation agreement between the two segmentation methods in the background (bg, outside of the cells). The green bars show the segmentation disagreement.



Biomarker intensities disagreements between nuclext and ramces segmentations

Supplementary Figure 6: Agreements and disagreements between the RAMCES segmentations (using the RAM-CES combined output with the top 3 ranked markers) and the default nucleus extension segmentations for dataset 5 (Supplementary Table 1). The purple bars show average pixel intensity of biomarkers where RAM-CES segmentations label a cell and the nucleus extension segmentations do not ('disagree ramces=1'), and the pink bars show where the nucleus extension segmentations label a cell and RAMCES segmentations do not ('disagree nuclext=1'). The blue and orange bars are the same as in Supplementary Figure 5.



Supplementary Figure 7: Agreements and disagreements between the RAMCES segmentations (using the RAM-CES combined output with the top 3 ranked markers) and the expert #1 annotations for the two manually annotated tiles from dataset 5 (Supplementary Table 1). The purple bars show average pixel intensity of biomarkers where RAMCES segmentations label a cell and the manual segmentations do not ('disagree ramces=1'), and the yellow bars show where the manual segmentations label a cell and RAMCES segmentations do not ('disagree manual=1'). The blue bars show the average biomarker intensities in areas where the two segmentation methods agree inside of cells, and the orange bars show average intensities where they agree in the background.



Supplementary Figure 8: Gating strategy for the percentage values in Supplementary Table 5. Thresholds are calculated using the  $\mu + 2\sigma$  of the background intensity values for each specified channel (Methods). The legend on the bottom right indicates which dataset (Supplementary Table 1) and segmentation type each of the plots correspond to.



Supplementary Figure 9: Spatial assignment of cell types. UMAP embeddings and color legend indicating cell types and stitched tiles containing segmented cells from a) lymph node dataset 8 and b) spleen dataset 9 (Supplementary Table 1).



Supplementary Figure 10: Spatial assignment of cell types. UMAP embeddings and color legend indicating cell types and stitched tiles containing segmented cells from cancerous bone marrow dataset 11 (Supplementary Table 1).



Supplementary Figure 11: UMAP cell embeddings showing key protein markers in the thymus dataset 10 (Supplementary Table 1), colored by marker abundance. Plots produced with the Cellar tool [5].



Supplementary Figure 12: UMAP cell embeddings showing key protein markers in the lymph node dataset 8 (Supplementary Table 1), colored by marker abundance. Plots produced with the Cellar tool [5].



Supplementary Figure 13: UMAP cell embeddings showing key protein markers in the spleen dataset 9 (Supplementary Table 1), colored by marker abundance. Plots produced with the Cellar tool [5].



Supplementary Figure 14: UMAP cell embeddings showing key protein markers in the bone marrow dataset 11 (Supplementary Table 1), colored by marker abundance. Plots produced with the Cellar tool [5].

а b С

Supplementary Figure 15: CODEX images colored by select protein channels (left) with corresponding segmentation tiles colored by assigned cell type (right). a) Thymus dataset 10 showing CD4 and CD8 (green and blue, respectively, with cyan as the overlap, left), indicating presence of CD4+CD8+ T cells (green, right). b) Lymph node dataset 8 showing CD20 (green, left), indicating presence of CD20+ B cells (blue, right). c) Spleen dataset 9 showing CD20 (green, left), indicating presence of CD20+ B cells (blue, right).

| channel_id  | antibody_name            | rr_id       | uniprot_accession<br>_number | $lot_number$ | dilution | conjugated_cat<br>_number | $conjugated_tag$            | vendor         |
|-------------|--------------------------|-------------|------------------------------|--------------|----------|---------------------------|-----------------------------|----------------|
| Cycle2_CH2  | Anti-CD31 antibody       | AB_1267039  | P16284                       | B310793      | 1/200    | Akoya 4450017             | Akoya BX001-Alexa Fluor 750 | Akoya          |
| Cycle2_CH3  | Anti-CD8a antibody       | AB_2650657  | P01732                       | B304054      | 1/200    | Akoya 4250012             | Akoya BX026-Atto 550        | Akoya          |
| Cycle3_CH2  | Anti-CD20 antibody       | AB_10734340 | P11836                       | B310936      | 1/200    | Akoya 4450018             | Akoya BX007-Alexa Fluor 750 | Akoya          |
| Cycle3_CH3  | Anti-Ki67 antibody       | AB_396287   | P46013                       | B305585      | 1/200    | Akoya 4250019             | Akoya BX047-Atto 550        | Akoya          |
| Cycle3_CH4  | Anti-CD3e antibody       | AB_764498   | P07766                       | B320435      | 1/200    | Akoya 4450030             | Akoya BX045-Cy5             | Akoya          |
| Cycle4_CH2  | Anti-SMA antibody        | AB_2223019  | P62736                       | UF-31Jul2020 | 1/200    | ab240654                  | Akoya BX013-Alexa Fluor 750 | Abcam          |
| Cycle4_CH3  | Anti-Podoplanin antibody | AB_1595616  | Q86YL7                       | B319036      | 1/200    | Akoya 4250004             | Akoya BX023-Atto 550        | Akoya          |
| Cycle4_CH4  | Anti-CD68 antibody       | AB_11151139 | P34810                       | B319545      | 1/200    | Akoya 4350019             | Akoya BX015-Cy5             | Akoya          |
| Cycle5_CH2  | Anti-PanCK antibody      | AB_2616960  | P04264                       | B304089      | 1/200    | Akoya 4450020             | Akoya BX019-Alexa Fluor 750 | Akoya          |
| Cycle5_CH3  | Anti-CD21 antibody       | AB_1267035  | P20023                       | UF-21Oct2020 | 1/200    | ab193554                  | Akoya BX032-Atto 550        | Abcam          |
| Cycle5_CH4  | Anti-CD4 antibody        | AB_2750883  | P01730                       | B320436      | 1/200    | Akoya 4350018             | Akoya BX004-Cy5             | Akoya          |
| Cycle6_CH2  | Anti-Lyve1 antibody      | AB_2884014  | Q9Y5Y7                       | UF-12Feb2020 | 1/50     | ab232935                  | Akoya BX004-Alexa Fluor 750 | Abcam          |
| Cycle6_CH3  | Anti-CD45RO antibody     | AB_314418   | P08575                       | B311690      | 1/200    | Akoya 4250023             | Akoya BX017-Atto 550        | Akoya          |
| Cycle6_CH4  | Anti-CD11c antibody      | AB_2572997  | P20702                       | B304058      | 1/200    | Akoya 4350020             | Akoya BX024-Cy5             | Akoya          |
| Cycle7_CH2  | Anti-CD35 antibody       | AB_2884017  | P17927                       | UF-14Oct2020 | 1/100    | ab240961                  | Akoya BX016-Alexa Fluor 750 | Abcam          |
| Cycle7_CH3  | Anti-eCAD antibody       | AB_2533118  | P12830                       | B317026      | 1/200    | Akoya 4250021             | Akoya BX014-Atto 550        | Akoya          |
| Cycle7_CH4  | Anti-CD107a antibody     | AB_1134260  | P11279                       | B319036      | 1/200    | Akoya 4350001             | Akoya BX006-Cy5             | Akoya          |
| Cycle8_CH2  | Anti-CD34 antibody       | AB_2861355  | P28906                       | UF-14Oct2020 | 1/100    | NBP2-32932                | Akoya BX022-Alexa Fluor 750 | Novus Bio      |
| Cycle8_CH3  | Anti-CD44 antibody       | AB_312952   | P16070                       | B315320      | 1/200    | Akoya 4250002             | Akoya BX005-Atto 550        | Akoya          |
| Cycle8_CH4  | Anti-HLADR antibody      | AB_10563656 | P04233                       | B292265      | 1/200    | Akoya 4450029             | Akoya BX033-Cy5             | Akoya          |
| Cycle9_CH3  | Anti-Foxp3 antibody      | AB_467556   | Q9BZS1                       | UF-12Feb2020 | 1/50     | 14-4777-82                | Akoya BX020-Atto 550        | eBioscience    |
| Cycle9_CH4  | Anti-CD163 antibody      | AB_714951   | Q86VB7                       | UF-03Aug2020 | 1/200    | NBI10-40686               | Akoya BX036-Cy5             | Novus Bio      |
| Cycle10_CH3 | Anti-COL4 antibody       | AB_2801511  | P02462                       | UF-03Aug2020 | 1/200    | ab226485                  | Akoya BX029-Atto 550        | Abcam          |
| Cycle10_CH4 | Anti-Vimentin antibody   | AB_306907   | P08670                       | UF-31Jul2020 | 1/400    | ab8978                    | Akoya BX042-Cy5             | Abcam          |
| Cycle11_CH3 | Anti-CD15 antibody       | AB_397181   | P22083                       | UF-14Oct2020 | 1/200    | 559045                    | Akoya BX035-Atto 550        | BD Biosciences |
| Cycle11_CH4 | Anti-CD45 antibody       | AB_11063696 | P08575                       | UF-13Oct2020 | 1/100    | 14-9457-82                | Akoya BX027-Cy5             | eBioscience    |
| Cycle12_CH3 | Anti-CD5 antibody        | AB_2884016  | P06127                       | UF-13Oct2020 | 1/200    | ab213003                  | Akoya BX041-Atto 550        | Abcam          |
| Cycle12_CH4 | Anti-CD1c antibody       | AB_2884015  | P29017                       | UF-21Oct2020 | 1/100    | ab270797                  | Akoya BX-30-Cy5             | Abcam          |

Supplementary Table 10: Antibody information for University of Florida CODEX datasets. channel\_id: structure of channel\_id depends on assay type. antibody\_name: anti-(target name) antibody. Not validated or used down-stream. rr\_id: a unique antibody identifier that comes from the Antibody Registry (https://antibodyregistry.org). uniprot\_accession\_number: a unique identifier for proteins in the UniProt database (https://www.uniprot.org). lot\_number: specific to the vendor. (e.g. Abcam lot# GR3238979-1). dilution: antibody solutions may be diluted according to the experimental protocol. conjugated\_cat\_number: an antibody may be conjugated to a fluorescent tag or metal tag for detection. Conjugated antibodies may be purchased from commercial providers. conjugated\_tag: the name of the entity conjugated to the antibody.

## Supplementary References

- [1] Goltsev, Y. *et al.* Deep profiling of mouse splenic architecture with codex multiplexed imaging. *Cell* **174**, 968–981 (2018).
- [2] Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359 (2020).
- [3] Uhlén, M. et al. Tissue-based map of the human proteome. Science 347 (2015).
- [4] Czech, E., Aksoy, B. A., Aksoy, P. & Hammerbacher, J. Cytokit: A single-cell analysis toolkit for high dimensional fluorescent microscopy imaging. *BMC bioinformatics* 20, 1–13 (2019).
- [5] Hasanaj, E., Wang, J., Sarathi, A., Ding, J. & Bar-Joseph, Z. Cellar: Interactive single cell data annotation tool. Preprint at https://doi.org/10.1101/2021.03.19.436162 (2021).