1	Functional capacity and quality of life following septal
2	myectomy in patients with obstructive hypertrophic
3	cardiomyopathy
4	
5	
6	
7	
8	Principal Investigator:
9	Milind Desai, MD
10	
11	
12	Amendment 1 version: October 10, 2017
13	Original Version: January 25, 2017
14	
15	
16	
17	

18		SIGNATURE PAGE	
19 20 21 22	the necess protocol, ir	ure below constitutes the approval of this protocol and the sary assurances that this trial will be conducted according including all statements regarding confidentiality, and acco requirements and applicable US federal regulations and I	to all stipulations of the rding to local legal and
23			
24			
25			
26			
27			
28	Signed:	nvestigator	Date:
		Name Title	

Table of Contents

			pa	ige
30	Signature Page			
31	List c	of Abbre	eviations	iii
32	Proto	ocol Su	mmary	. iv
33				
34	1	Key R	oles	5
35	2	Backg	round Information and Scientific Rationale	6
36		2.1	Background Information	6
37		2.2	Rationale	
38		2.3	Potential Risks and Benefits	7
39			2.3.1 Potential Risks	7
40			2.3.2 Known Potential Benefits	7
41	3	Object	ives	8
42	4	Study	Design	9
43		4.1	Selection of the Study Population	9
44		4.2	Inclusion/Exclusion Criteria	9
45	5	Study	Procedures/Evaluations	10
46		5.1	Study Procedures	10
47		5.2	Subject Compensation	10
48	6	Study	Schedule	11
49		6.1	Screening	11
50		6.2	Baseline visit	11
51		6.3	Follow-up Visit	11
52	7	Asses	sment of Outcome Measures	12
53		7.1	Specification of the Appropriate Outcome Measures	12
54			7.1.1 Primary Outcome Measures	12
55			7.1.2 Secondary Outcome Measures	12
56	8	Statist	ical Considerations	
57		8.1	Study Outcome Measures	13
58		8.2	Sample Size Considerations	13
59		8.3	Participant Enrollment and Follow-Up	13
60		8.4	Analysis Plan	13
61	9	Data H	landling and Record Keeping	15
62		9.1	Data Capture Methods	15
63		9.2	Types of Data	15
64				
65	Litera	ature		17

List of Abbreviations

DASI	Duke Activity Status Index
ECG	Electrocardiogram
EF	Ejection Fraction
НСМ	Hypertrophic Cardiomyopathy
HF	Heart Failure
ICD	Implantable Cardioverter-Defibrillator
ICF	Informed Consent Form
KCCQ	Kansas City Cardiomyopathy Questionnaire
LV	Left Ventricle
LVAD	Left Ventricular Assist Device
LVH	Left Ventricular Hypertrophy
LVOT	Left Ventricular Outflow Tract
METS	Metabolic Equivalents
NSVT	Nonsustained Ventricular Tachycardia
NYHA	New York Heart Association
PI	Principal Investigator
PROMIS	Patient-Reported Outcomes Measurement Information System
SAM	Systolic Anterior Motion
SCD	Sudden Cardiac Death
VO2	Oxygen Uptake
VT	Ventricular Tachycardia
VF	Ventricular Fibrillation

67 68

Protocol Summary

69		
70	Title:	Functional capacity and quality of life following septal myectomy in
71		patients with obstructive hypertrophic cardiomyopathy
72		
73	Population:	175 patients, male and female, age 18-65, diagnosed with hypertrophic
74		cardiomyopathy
75		
76	Number of Sites:	1
77		
78	Study Duration:	3 years
79		
80	Subject Duration:	One visit prior to septal myectomy and one follow-up visit approximately
81		12±6 months following surgery per subject.
82		
83	Objectives:	The primary aim of this study is to examine change in quality of life as
84		measured by the KCCQ following septal myectomy in patients with
85		obstructive hypertrophic cardiomyopathy as compared to prior to surgery.
86		Secondary aims include the assessing change in functional capacity
87		utilizing six-minute walk test distance, and quality of life as measured by
88		the PROMIS and DASI following septal myectomy in patients with
89		obstructive hypertrophic cardiomyopathy as compared to prior to surgery.
90		The aim of the substudy is to examine change in exercise capacity by
91		cardiometabolic exercise testing in a subset of patients who underwent
92		cardiometabolic exercise testing prior to septal myectomy as part of their
93		routine clinical care.
94		

95 1 KEY ROLES

96 Individuals:

97	Prin	cipal Investigator	Milind Desai, MD
98	Add	litional Investigators	Albree Tower-Rader, MD
99			Harry Lever, MD
100			Nicholas Smedira, MD
101			Maran Thamilarasan, MD
102			Zoran Popovic, MD
103			
104			
105 106	Recruiting Site:	Cleveland Clinic Mai	n Campus

1072BACKGROUND INFORMATION AND SCIENTIFIC108RATIONALE

109 2.1 Background Information

110 Hypertrophic cardiomyopathy is a common inherited cardiac condition with an incidence 111 estimated to be approximately 1 in 500 and variable phenotypes (1). Symptoms of palpitations, 112 chest pain, shortness of breath, heart failure and pre-syncope or syncope have been attributed 113 to multiple aspects of the disease including left ventricular outflow tract (LVOT) obstruction, 114 mitral regurgitation, diastolic dysfunction and atrial fibrillation. Approximately 70% of patients 115 with HCM have either resting or provocable LVOT obstruction (2-4). Treatment for patients who 116 are refractory to medical therapy has focused on the relief of LVOT obstruction either by septal 117 myectomy or alcohol septal ablation (5-10).

118 Several reports of outcomes following septal myectomy have demonstrated 119 improvements in symptoms. Additionally in one cohort, patients were shown to have similar 120 mortality to the general population matched for age and gender (11). However, studies 121 examining improvement following surgery have been limited to description of mortality rates and 122 change in LVOT gradients and severity of mitral regurgitation. Symptoms have been 123 gualitatively studied either as patients reporting yes/no to the presence of specific symptoms, or 124 physician assessment of functional capacity as measured by New York Heart Association 125 (NYHA) functional class (7,10,12-17). More recent studies evaluating the efficacy of alternative 126 treatments like ventricular pacing have demonstrated qualitative improvements in symptoms 127 (NYHA functional class, Minnesota Living with Heart Failure Questionnaire scores) as well as 128 quantitatively with walk distances on six minute walk tests and peak oxygen uptake (VO2) by 129 cardiometabolic exercise testing (18,19). One small study compared walk distance and peak 130 oxygen uptake (VO2) in 20 patients with obstructive HCM who underwent septal myectomy and 131 19 patients who underwent pacemaker implantation and found improvement in the septal 132 myectomy group, though this was a small study (20).

133 Quality of Life assessment tools have gained traction in their use more recently as an 134 additional outcome metric. KCCQ is a disease-specific quality of life questionnaire which was 135 designed and validated in the heart failure population (21-23), though it has been validated for 136 use in patients with aortic stenosis (24). There is one study of a cohort of patients with HCM and 137 been shown to correlate with peak oxygen uptake and inversely correlate with NYHA functional 138 class at a cross-section in time (25). Though the Patient-Reported Outcomes Measurement 139 Information System (PROMIS) has not been studied in a population with hypertrophic 140 cardiomyopathy specifically, it was designed as a general health-related quality of life 141 assessment tool and tested in a large patient cohort including patients with cardiac conditions, 142 and shown to correlate well with other general health-related guality of life assessment tools like 143 the EuroQol five dimensions (EQ-5D) questionnaire (26,27). Additionally the Duke Activity 144 Status Index has been shown to correlate well with functional capacity and yield prognostic

value in patients with heart failure (28-30). Based on their prior use in patients with heart failure
we chose to use these health-related quality of life metrics since patients who are symptomatic
from LVOT obstruction in HCM often have symptoms found in heart failure such as functional
limitation, dyspnea on exertion and heart failure.

149 **2.2 Rationale**

150 Currently septal myectomy is the preferred treatment for patients with LVOT obstruction 151 and symptoms despite medical therapy though there have been few large studies evaluating 152 quantitative improvements in functional capacity and quality of life following septal myectomy. 153 This prospective cohort will address what quantitative improvements in functional capacity and 154 quality of life may be seen following septal myectomy, and more importantly may serve to 155 identify a cohort of patients whom do not benefit from surgery.

156

159

157 2.3 Potential Risks and Benefits

158 2.3.1 Potential Risks

160 Six-minute Walk Test

161 The risk of a six minute walk test are equivalent to those of normal walking.

162163 Quality of Life Surveys

- 164 Questions composing these surveys may at times make patients feel embarrassed.
- 165

166 Cardiometabolic Stress Testing

167 During cardiometabolic stress testing patients breathe through a tube designed to quantify 168 oxygen and carbon dioxide exchange. This portion of the test may make patients feel 169 uncomfortable or claustrophobic. Additionally the process of exercising to peak exercise stress 170 may make patients symptomatic or cause them distress.

171

172 **2.3.2 Known Potential Benefits**

173 There are no specific benefits to the patient.

174 **3 OBJECTIVES**

175 The primary aim of this study is to examine change in quality of life as measured by the 176 KCCQ following septal myectomy in patients with obstructive hypertrophic cardiomyopathy as 177 compared to prior to surgery. Secondary aims include the assessing change in functional 178 capacity utilizing six-minute walk test distance, and quality of life as measured by the PROMIS 179 and DASI following septal myectomy in patients with obstructive hypertrophic cardiomyopathy 180 as compared to prior to surgery. The aim of the substudy is to examine change in exercise 181 capacity by cardiometabolic exercise testing in a subset of patients who underwent 182 cardiometabolic exercise testing prior to septal myectomy as part of their routine clinical care.

183 The study will be powered to detect a mild change in Kansas City Cardiomyopathy 184 Questionnaire summary score since this disease-specific health-related quality of life 185 assessment tool has been well studied and changes in clinical status have been validated within 186 a heart failure population. A substudy will also be powered to detect an absolute increase in 187 peak oxygen uptake on cardiometabolic exercise testing. Additional secondary end-points will 188 include change in score on the Patient-Reported Outcomes Measurement Information System 189 (PROMIS) global health questionnaire and Duke Activity Status Index (DASI), distance walked 190 on six-minute walk test, and rate of atrial fibrillation, stroke, hospitalization for heart failure, 191 repeat septal myectomy, left ventricular assist device or heart transplant, aborted sudden death 192 including appropriate internal cardioverter defibrillator, or death by follow up visit.

193

195 4 STUDY DESIGN

196	4.1	Selection of the Study Population
197		
198	Patien	t characteristics:
199		175 patients will be recruited
200		
201	Recrui	ting locations:
202		Outpatient setting from Cleveland Clinic Main Campus
203		
204	Eligibil	ity criteria:
205		Patients aged 18-65 with an established diagnosis of obstructive HCM defined as LVH
206	define	d as any segment ≥15mm thick, without a predisposing cause, and left ventricular outflow
207	tract g	radient ≥50mmHg at rest or with provocation scheduled to undergo septal myectomy
208	within	90 days following the baseline encounter.
209		Patients are eligibile to take part in the substudy if they have a Cardiometabolic
210	Stress	Testing done within 6 months of their scheduled surgery.
211	4.2	Inclusion/Exclusion Criteria

212

222

213 Inclusion criteria:

- Patients aged 18-65 with an established diagnosis of obstructive HCM defined as
 LVH defined as any segment ≥15mm thick, without a predisposing cause, and left
 ventricular outflow tract gradient ≥50mmHg at rest or with provocation scheduled to
 undergo septal myectomy within 90 days following the baseline encounter.
- A subset of patients who underwent cardiometabolic exercise testing as part of their
 testing within 6 months prior to their scheduled septal myectomy, will be eligible for a
 substudy examining improvements in performance on cardiometabolic exercise
 testing following septal myectomy

223 Exclusion criteria:

- 1) Prior septal myectomy or alcohol septal ablation
- 225 2) Prior myocardial infarction
- 226 3) Uncontrolled arrhythmias including ventricular tachycardia and atrial fibrillation
- 227 4) Uncontrolled hypertension
- 5) Angiographically documented coronary stenosis >50%, if available at time of screening
- 229 6) Inability to provide informed consent
- 230 7) Inability to walk without assistive devices
- 231 8) Peripheral artery disease with claudication

5 STUDY PROCEDURES/EVALUATIONS

233 **5.1 Study Procedures**

234	 Intake history, physical, and recording of prior test results
235	Per routine clinical care at baseline and follow up visits:
236	A medical history will be obtained including a complete family history
237	A limited physical examination will be performed including heart rate and blood pressure
238 239	• Results of testing prior to septal myectomy available at the baseline visit will be recorded including ECG, exercise testing, Holter monitoring, and echocardiography.
240	ECG and echocardiography per standard of care at follow up visits
241	
242	Study-specific Testing
243	Six-minute walk test at baseline and follow-up visit
244	Quality of Life Assessments (KCCQ, PROMIS, and DASI) at baseline and follow-up visit
245 246 247	Cardiometabolic exercise testing at follow up in the substudy patients who had undergone cardiometabolic exercise testing prior to septal myectomy as part of their routine care

248 **5.2 Subject Compensation**

Compensation for parking for required visits for the study protocol will be compensated.
Patients enrolled in the substudy may also receive compensation for a meal on the day
of the cardiometabolic stress test. Testing performed outside of the scope of normal
clinical practice including 6-minute walk test and quality of life assessments (KCCQ,
PROMIS and DASI) at baseline and follow up visit, and cardiometabolic exercise testing
at follow up visit in the substudy will be covered in full by the study.

255 6 STUDY SCHEDULE

256 6.1 Screening

Informed consent must be obtained by a member of the study team prior to any study-related
procedures. Patient's medical records will be reviewed to be certain of diagnosis and eligibility.
Patients will be identified for eligibility for the substudy evaluating change in performance on
cardiometabolic exercise testing simultaneously.

261

262 6.2 Baseline visit

263

Initial encounter for the research protocol will involve a six-minute walk test and quality of life
 assessments prior to septal myectomy. Clinical data regarding the baseline visit (history,
 physical exam, echocardiogram, cardiometabolic stress test, etc) will be obtained by the

267 individual physician per standard of care.

268 6.3 Follow-up Visit

Follow up visit will be scheduled at a mean of 12±6 months post-septal myectomy for a sixminute walk test and quality of life assessments will be administered for a second time. For the subset of patients who underwent cardiometabolic exercise testing prior to septal myectomy who are enrolled in the substudy, they will undergo repeat cardiometabolic exercise testing again at this point. Post-operative clinical follow up data will be obtained from the outpatient visit per standard of care, and data collection regarding outcomes (atrial fibrillation, stroke, ICD discharge etc.) will terminate at the time of the follow up visit.

276	7 ASSESSMENT OF OUTCOME MEASURES
277	7.1 Specification of the Appropriate Outcome Measures
278	7.1.1 Primary Outcome Measures
279	Primary outcome measure is improvement in:
280	Kansas City Cardiomyopathy Questionnaire (KCCQ) summary score
281	
282	7.1.2 Secondary Outcome Measures
283	Secondary outcome measures will include:
284	Kansas City Cardiomyopathy Questionnaire (KCCQ) summary score
285 286	 Patient-Reported Outcomes Measurement Information System (PROMIS) global health score
287	Duke Activity Status Index (DASI) score
288	Distance walked with 6-minute walk test
289	Peak oxygen uptake on cardiometabolic exercise testing
290	Death
291 292	 Aborted sudden cardiac death including appropriate internal cardioverter defibrillator discharge
293	Need for left ventricular assist device or heart transplantation
294	Need for repeat septal myectomy
295	Atrial fibrillation
296	Stroke
297	Hospitalization for heart failure
298	Cardiac Rehabilitation post-surgery

299 8 STATISTICAL CONSIDERATIONS

300 8.1 Study Outcome Measures

301

The primary endpoint of this prospective study is a mild improvement in Kansas City Cardiomyopathy summary score (increase in 5).

304 Secondary endpoints include improvement in Kansas City Cardiomyopathy Questionnaire

305 (KCCQ) summary score, Patient-Reported Outcomes Measurement Information System

306 (PROMIS) global health score, Duke Activity Status Index (DASI) score, Distance walked with 6-

307 minute walk test, all-cause mortality, ventricular tachyarrhythmias, left ventricular assist device

308 placement, heart transplantation, repeat septal myectomy, hospitalization for heart failure, atrial

- 309 fibrillation, and stroke.
- 310 These will be assessed at patient follow up visit.

311 8.2 Sample Size Considerations

Assuming an average KCCQ summary score of 76±20 in patients with hypertrophic cardiomyopathy based on previously published literature (25) and an alpha error rate of 5%, 133 patients provides over 90% power to detect a mild change in KCCQ summary score defined as an absolute change of 5 points. An additional 42 patients (175 total) will be enrolled to compensate for a projected dropout rate of 10% per year over three years.

For the substudy, assuming an average maximal oxygen uptake (peak VO2) of 19.4 ± 6.4 ml/kg/min based on prior studies in patients with obstructive hypertrophic cardiomyopathy prior to septal myectomy (20) and an alpha error rate of 5%, 32 patients provides over 90% power to detect an absolute change of 2 ml/kg/min. An additional 3 patients (35 total) will be enrolled in the substudy to compensate for an absolute dropout rate of 10%.

322 8.3 Participant Enrollment and Follow-Up

175 patients will be followed through follow up visit at 12±6 months post-septal myectomy.

324 8.4 Analysis Plan

Overall statistical analysis should be straightforward and involve paired t-tests comparing the change in scores on quality of life assessments, and distance walked on six-minute walk tests. Additionally the incidence of other outcomes including atrial fibrillation, hospitalization for heart failure, repeat septal myectomy, sudden cardiac death or appropriate ICD discharge will be noted. For patients in the substudy, paired t-tests will also be used to compare peak oxygen uptake prior to and following septal myectomy. Additional analyses examining the correlation of
 scores on various quality of life assessments to performance on exercise testing as measured
 by distance walked on six-minute walk test and peak oxygen uptake in the substudy patients
 may also yield valuable information regarding the performance of these assessments in the
 HCM population.

9 DATA HANDLING AND RECORD KEEPING

337 9.1 Data Capture Methods

338 All clinical and intake data will be captured on electronic data collection forms (RedCap).

339 9.2 Types of Data

- 340 4 types of data will be collected:
- 341 Clinical intake and follow-up data
- 342 Six-minute walk test data
- 343 Quality of Life Assessments (KCCQ, PROMIS and DASI) data
- Cardiometabolic exercise testing data (for substudy)

246		Literature
346		Literature
347		
348		
349	1.	Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of
350		hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic
351		analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in
352	~	(Young) Adults. Circulation 1995;92:785-9.
353	2.	Maron MS, Olivotto I, Betocchi S et al. Effect of left ventricular outflow tract obstruction
354		on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 2003;348:295-303.
355	3.	Maron MS, Olivotto I, Zenovich AG et al. Hypertrophic cardiomyopathy is predominantly
356		a disease of left ventricular outflow tract obstruction. Circulation 2006;114:2232-9.
357	4.	Elliott PM, Gimeno JR, Tome MT et al. Left ventricular outflow tract obstruction and
358		sudden death risk in patients with hypertrophic cardiomyopathy. Eur Heart J
359		2006;27:1933-41.
360	5.	Maron BJ. Hypertrophic cardiomyopathy: a systematic review. Jama 2002;287:1308-20.
361	6.	Spirito P, Seidman CE, McKenna WJ, Maron BJ. The management of hypertrophic
362		cardiomyopathy. N Engl J Med 1997;336:775-85.
363	7.	McCully RB, Nishimura RA, Tajik AJ, Schaff HV, Danielson GK. Extent of clinical
364		improvement after surgical treatment of hypertrophic obstructive cardiomyopathy.
365		Circulation 1996;94:467-71.
366	8.	Yu EH, Omran AS, Wigle ED, Williams WG, Siu SC, Rakowski H. Mitral regurgitation in
367		hypertrophic obstructive cardiomyopathy: relationship to obstruction and relief with
368	_	myectomy. J Am Coll Cardiol 2000;36:2219-25.
369	9.	Sigwart U. Non-surgical myocardial reduction for hypertrophic obstructive
370		cardiomyopathy. Lancet 1995;346:211-4.
371	10.	Qin JX, Shiota T, Lever HM et al. Outcome of patients with hypertrophic obstructive
372		cardiomyopathy after percutaneous transluminal septal myocardial ablation and septal
373		myectomy surgery. J Am Coll Cardiol 2001;38:1994-2000.
374	11.	Ommen SR, Maron BJ, Olivotto I et al. Long-term effects of surgical septal myectomy on
375		survival in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol
376	4.0	2005;46:470-6.
377	12.	ten Berg JM, Suttorp MJ, Knaepen PJ, Ernst SM, Vermeulen FE, Jaarsma W.
378		Hypertrophic obstructive cardiomyopathy. Initial results and long-term follow-up after
379	40	Morrow septal myectomy. Circulation 1994;90:1781-5.
380	13.	Cohn LH, Trehan H, Collins JJ, Jr. Long-term follow-up of patients undergoing
381		myotomy/myectomy for obstructive hypertrophic cardiomyopathy. Am J Cardiol
382		1992;70:657-60.
383	14.	Robbins RC, Stinson EB. Long-term results of left ventricular myotomy and myectomy
384		for obstructive hypertrophic cardiomyopathy. J Thorac Cardiovasc Surg 1996;111:586-
385	4 5	
386	15.	Heric B, Lytle BW, Miller DP, Rosenkranz ER, Lever HM, Cosgrove DM. Surgical
387		management of hypertrophic obstructive cardiomyopathy. Early and late results. J
388	40	Thorac Cardiovasc Surg 1995;110:195-206; discussion 206-8.
389	16.	Williams WG, Wigle ED, Rakowski H, Smallhorn J, LeBlanc J, Trusler GA. Results of
390	47	surgery for hypertrophic obstructive cardiomyopathy. Circulation 1987;76:V104-8.
391	17.	Maron BJ, Merrill WH, Freier PA, Kent KM, Epstein SE, Morrow AG. Long-term clinical
392		course and symptomatic status of patients after operation for hypertrophic subaortic
393		stenosis. Circulation 1978;57:1205-13.

- Lenarczyk R, Wozniak A, Kowalski O et al. Effect of cardiac resynchronization on
 gradient reduction in patients with obstructive hypertrophic cardiomyopathy: preliminary
 study. Pacing Clin Electrophysiol 2011;34:1544-52.
- 39719.Berruezo A, Vatasescu R, Mont L et al. Biventricular pacing in hypertrophic obstructive398cardiomyopathy: a pilot study. Heart Rhythm 2011;8:221-7.
- 399 20. Ommen SR, Nishimura RA, Squires RW, Schaff HV, Danielson GK, Tajik AJ.
 400 Comparison of dual-chamber pacing versus septal myectomy for the treatment of 401 patients with hypertrophic obstructive cardiomyopathy: a comparison of objective 402 hemodynamic and exercise end points. J Am Coll Cardiol 1999;34:191-6.
- 403 21. Green CP, Porter CB, Bresnahan DR, Spertus JA. Development and evaluation of the
 404 Kansas City Cardiomyopathy Questionnaire: a new health status measure for heart
 405 failure. J Am Coll Cardiol 2000;35:1245-55.
- 406 22. Spertus J, Peterson E, Conard MW et al. Monitoring clinical changes in patients with 407 heart failure: a comparison of methods. Am Heart J 2005;150:707-15.
- 408 23. Heidenreich PA, Spertus JA, Jones PG et al. Health status identifies heart failure outpatients at risk for hospitalization or death. J Am Coll Cardiol 2006;47:752-6.
- 410 24. Arnold SV, Spertus JA, Lei Y et al. Use of the Kansas City Cardiomyopathy
 411 Questionnaire for monitoring health status in patients with aortic stenosis. Circ Heart Fail
 412 2013;6:61-7.
- 413 25. Huff CM, Turer AT, Wang A. Correlations between physician-perceived functional status,
 414 patient-perceived health status, and cardiopulmonary exercise results in hypertrophic
 415 cardiomyopathy. Qual Life Res 2013;22:647-52.
- 416 26. Cella D, Riley W, Stone A et al. The Patient-Reported Outcomes Measurement
 417 Information System (PROMIS) developed and tested its first wave of adult self-reported
 418 health outcome item banks: 2005-2008. J Clin Epidemiol 2010;63:1179-94.
- Revicki DA, Kawata AK, Harnam N, Chen WH, Hays RD, Cella D. Predicting EuroQol
 (EQ-5D) scores from the patient-reported outcomes measurement information system
 (PROMIS) global items and domain item banks in a United States sample. Qual Life Res
 2009;18:783-91.
- 423 28. Grodin JL, Hammadah M, Fan Y, Hazen SL, Tang WH. Prognostic value of estimating functional capacity with the use of the duke activity status index in stable patients with chronic heart failure. J Card Fail 2015;21:44-50.
- Parissis JT, Nikolaou M, Birmpa D et al. Clinical and prognostic value of Duke's Activity
 Status Index along with plasma B-type natriuretic peptide levels in chronic heart failure
 secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2009;103:735.
- 430 30. Tang WH, Topol EJ, Fan Y et al. Prognostic value of estimated functional capacity
 431 incremental to cardiac biomarkers in stable cardiac patients. J Am Heart Assoc
 432 2014;3:e000960.
- 433 434