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November 1,
2021

1st Editorial Decision

November 1, 2021 

Re: JCB manuscript #202109084 

Prof. Christian Ungermann 
Osnabrück University 
Biology/Chemistry 
Barbarastrasse 13 
Osnabrück 49076 
Germany 

Dear Prof. Ungermann, 

Thank you for submitting your manuscript entitled "Biogenesis of signaling endosomes depends on late endosome/MVB
maturation and its fusion machinery". Your manuscript has been assessed by expert reviewers, whose comments are appended
below. Although the reviewers express potential interest in this work, significant concerns unfortunately preclude publication of
the current version of the manuscript in JCB. 

We share the enthusiasm of reviewer #1 regarding the importance of characterizing the nature and formation of signalling
endosomes as well as connecting the metabolic regulation of cell growth and organelle biogenesis. However, as discussed prior
to making a formal decision, we agree with the concerns of reviewer #2 regarding appropriate markers for SEs. After having
assessed your plan to address this issue, we appreciate that available markers have multiple locations and therefore find that
your proposal to perform an extensive additional colocalization analysis as detailed in points i, ii, and iii should provide valuable
information that hopefully addresses this issue. In response to reviewer #2 point 3 we are concerned that adding a
transmembrane domain to Ivy1 has a large potential to result in artifacts that cannot be interpreted. Therefore, we recommend
focusing on the alternative proposals to test whether Ego1 colocalization with Ivy1 better defines the SE compartment, as well as
to utilize a split-YFP of Ego1 and Ivy1, and to test if Ego1 with a C-terminal GFP-nanobody tag traps Mup1-GFP to Ivy1 positive
puncta. We do not think you need to experimentally address how Ivy1 gets to signaling endosomes for the current study
(reviewer #2 point 2). Regarding point 4 of reviewer #2 please clarify your thoughts on potential models in your revised text. In
addition, we hope that you will be able to address all of the remaining reviewer comments in your revised manuscript. 

Please note that a substantial amount of additional experimental data likely would be needed to satisfactorily address the
concerns of the reviewers. As you may know, the typical timeframe for revisions is three to four months. However, we at JCB
realize that the implementation of social distancing measures that limit spread of COVID-19 also pose challenges to scientific
researchers. Therefore, JCB has waived the revision time limit. Please note that papers are generally considered through only
one revision cycle, so any revised manuscript will likely be either accepted or rejected. 

If you choose to revise and resubmit your manuscript, please also attend to the following editorial points. Please direct any
editorial questions to the journal office. 

GENERAL GUIDELINES: 
Text limits: Character count is < 40,000, not including spaces. Count includes title page, abstract, introduction, results,
discussion, acknowledgments, and figure legends. Count does not include materials and methods, references, tables, or
supplemental legends. 

Figures: Your manuscript may have up to 10 main text figures. To avoid delays in production, figures must be prepared
according to the policies outlined in our Instructions to Authors, under Data Presentation,
https://jcb.rupress.org/site/misc/ifora.xhtml. All figures in accepted manuscripts will be screened prior to publication. 

***IMPORTANT: It is JCB policy that if requested, original data images must be made available. Failure to provide original
images upon request will result in unavoidable delays in publication. Please ensure that you have access to all original
microscopy and blot data images before submitting your revision.*** 

Supplemental information: There are strict limits on the allowable amount of supplemental data. Your manuscript may have up
to 5 supplemental figures. Up to 10 supplemental videos or flash animations are allowed. A summary of all supplemental
material should appear at the end of the Materials and methods section. 

Please note that JCB now requires authors to submit Source Data used to generate figures containing gels and Western blots
with all revised manuscripts. This Source Data consists of fully uncropped and unprocessed images for each gel/blot displayed
in the main and supplemental figures. Since your paper includes cropped gel and/or blot images, please be sure to provide one



Source Data file for each figure that contains gels and/or blots along with your revised manuscript files. File names for Source
Data figures should be alphanumeric without any spaces or special characters (i.e., SourceDataF#, where F# refers to the
associated main figure number or SourceDataFS# for those associated with Supplementary figures). The lanes of the gels/blots
should be labeled as they are in the associated figure, the place where cropping was applied should be marked (with a box),
and molecular weight/size standards should be labeled wherever possible. 
Source Data files will be made available to reviewers during evaluation of revised manuscripts and, if your paper is eventually
published in JCB, the files will be directly linked to specific figures in the published article. 

Source Data Figures should be provided as individual PDF files (one file per figure). Authors should endeavor to retain a
minimum resolution of 300 dpi or pixels per inch. Please review our instructions for export from Photoshop, Illustrator, and
PowerPoint here: https://rupress.org/jcb/pages/submission-guidelines#revised 

If you choose to resubmit, please include a cover letter addressing the reviewers' comments point by point. Please also highlight
all changes in the text of the manuscript. 

Regardless of how you choose to proceed, we hope that the comments below will prove constructive as your work progresses.
We would be happy to discuss them further once you've had a chance to consider the points raised. You can contact the journal
office with any questions, cellbio@rockefeller.edu or call (212) 327-8588. 

Thank you for thinking of JCB as an appropriate place to publish your work. 

Sincerely, 

Lois Weisman, PhD 
Monitoring Editor 

Andrea L. Marat, PhD 
Senior Scientific Editor 

Journal of Cell Biology 

--------------------------------------------------------------------------- 

Reviewer #1 (Comments to the Authors (Required)): 

Jieqiong Gao and co-workers describe in this manuscript that the ‚biogenesis of signaling endosomes depends on late
endosome/MVB maturation and its fusion machinery'. The authors have shown in their previous work that signaling endosomes
in budding yeast provide a platform for TORC1 signaling that is distinct from vacuolar TORC1 signaling. Moreover, these
signaling endosomes (ivy1 positive) are distinct from multivesicular bodies (vps4 positive) (MVBs). Here, the authors set out to
define the biogenesis of signaling endosomes using a combination of yeast genetics, advanced (3D lattice light sheet) live cell
imaging and (quantitative) proteomics. 

The results of this manuscript are important as they map the cellular itinerary of signaling endosomes, establish signaling
endosomes as a new endosomal sub-compartment and characterize mechanistically how this compartment is connected with
the endocytic pathway. It turns out that the formation of signaling endosomes is - at least in part - dependent on the AP3
pathway, and the MVB pathway. Both, signaling endosomes and MVBs require Rab conversion from Vps21 to Ypt7 for
maturation to then undergo HOPS dependent fusion with vacuoles and with each other. A fraction of the endocytic cargo (such
as nutrient transporters) can also move through signaling endosomes. In addition, this work highlights the intrinsic connections
of TORC1 signaling (and hence the metabolic regulation of cell growth) and organelle biogenesis along the endo-lysosomal
pathway. 

Major point: 

- In ESCRT mutants, the markers for signaling endosomes accumulate on class E compartments (Figure 2). In these mutants,
do individual signaling endosomes still exist or are they all 'absorbed' into class E compartments? I think it might be important to
address this question, since TORC1 signaling from class E compartments and/or signaling endosomes was not affected, while
vacuolar TORC1 signaling was strongly reduced (Figure 4). 

To me this result is somewhat paradox: While signaling endosomes perhaps no longer exist (instead you have class E
compartments), TORC1 signaling from signaling endosomes is is not affected. Yet, vacuoles still exist, but vacuolar TORC1
signaling is affected. Please clarify this point. 

- The figure legends for Figure 4 are incomplete and hence information on the WB experiment (was it performed at 30{degree
sign}C?) is missing. 



- Fig.8: I do not agree with the conclusion that 'HOPS but not CORVET dependent fusion of signaling endosomes with MVBs
allows efficient delivery of plasma membrane-derived cargo to the vacuole'. This conclusion implies sequential sorting events in
which all Mup1 cargo must visit signaling endosomes that then fuse with MVBs for efficient MVB sorting of cargo into vacuoles.
The data in Figure 8 demonstrates that HOPS and CORVET function at different stages in the endo-lysosomal pathway, but I do
not see how conclusions on the role of signaling endosomes in cargo sorting are possible without specifically 'eliminating'
signaling endosomes (which at the moment might not be possible). Please rephrase. 

Minor points: 

- Related to the major point above: I find it interesting that signaling endosomes not just 'simply' mature into MVBs to make ILVs,
but instead fuse with MVBs to sort cargo. Any idea how to explain this observation? Are they too small to host the formation of
ILVs? Do they ever undergo homotypic fusion events? 
- In my version of the paper the overlay microscopy images in the supplementary figures looked scrambled. 

Reviewer #2 (Comments to the Authors (Required)): 

In this manuscript, Gao et al. investigated the biogenesis of signaling endosome(SE), which harbors TORC1 and EGO complex
and was recently described as a novel endosomal population. They first showed Ivy1, a putative SE marker, partially colocalizes
with other SE proteins, such as EGO1, Gtr2, and Fab1(~30%), but not Vps4. Then, they showed that the identity of Ivy1-labeled
SE is directly linked to MVB biogenesis since Ivy1 dots strongly accumulated in Class E compartments when Vps4 was inactive.
Because MVB formation depends on multiple fusion events, they next studied the regulation of SE-vacuole fusion, and found
that HOPS, but not CORVET, is required for the proper identity of SE and its fusion with the vacuole. Lastly, endocytic cargoes,
including alpha-factor and Mup1, can colocalize with Ivy1, and this colocalization was further enhanced when HOPS function
was compromised, suggesting that endocytosed cargos can move through SEs before reaching the vacuole lumen. Overall, the
data presented here are of high quality, and the paper is well-written. However, this reviewer is not convinced that Ivy1 dots can
represent signaling endosomes. Only~ 30% colocalization between Ego1/Kog1 and Ivy1 was observed. In contrast, nearly 80%
colocalization between Ypt7 and Ivy1 was observed. This is consistent with previous publications showing Ivy1 is a Ypt7
effector, but does not justify the use of Ivy1 to label SE. Please see below for more details. The authors need to tone down
significantly. 
Major concerns: 
1. How do we define signaling endosomes in yeast? Are they Ivy1-positive dots? Or are they vacuole-attached compartments
that contain both TORC1 and Ego complex? In their previous studies, the authors have shown that TORC1 at the SE can
phosphorylate Fab1 and Vps27. So, it is my understanding that SE is an endosomal compartment that contains TORC1 and Ego
complexes. As shown in figure 1C, only 30% of Ego1 and Kog1 signal colocalize with Ivy1 dots. In other words, the majority of
the TORC1 and Ego complexes do not colocalize with Ivy1. This raises the concern of whether Ivy1 can truly represent SE. 

2. Along the line of whether Ivy1 can represent signaling endosomes, previous studies (Lazar T. et al. 2002, Numrich et al. 2015)
have shown Ivy1 is an inverted bar-domain protein that interacts with phospholipids, Ypt7, and Vps33 (a HOPS component). All
these interactions could contribute to its membrane association. However, none of the interactions can explain why Ivy1 could
uniquely label signaling endosomes since phospholipids, Ypt7, and Vps33 are common components of late endosomes. In
addition, the fact that Ivy1 interacts with Ypt7 and Vps33 complicates the interpretation of using vps11ts mutants, which is also a
HOPS component. 

3. Because Ivy1 is not a transmembrane protein, the authors need to address the concern that Ivy1 may dissociate from the
membrane and re-attach to other Ypt7-, Vps33-, or phospholipids-containing endosomes. For example, in Figure 8C-D, the
authors showed that the vps11-1 mutant has more colocalization between Ivy1 and Mup1 at 37 degree. An alternative
explanation could be Ivy1 fell off its original membrane and relocalized to Mup1-labeled late endosomes, instead of the
accumulation of SE. 

4. In the 2019 Mol. Cell paper, Hatakeyama et al.showed that TORC1 on the signaling endosomes inhibits the ESCRT function
by phosphorylating Vps27. In the current study, it is also shown that signaling endosomes contain very little Vps4. Both data
consistently suggest that the ESCRT machinery may not function on the signaling endosomes. Then, the authors showed
endocytic cargoes like Mup1 and alpha-factor can traffick normally through the signaling endosomes. I found this set of data
confusing. If there is no ESCRT function on the signaling endosomes, how do signaling endosomes internalize these cargo
proteins and become MVBs? 

5. In figure 4A, the effect of vps11-1 on ET function is not very obvious. The authors need to verify with a second cargo, such as
Fab1 or Vps27 phosphorylation. In addition, the VT cargo Sch9C-term-GFP-Pho8N-term also uses the AP3 pathway for its
trafficking to the vacuole. This complicates the interpretation of VT activity in the vps11-1 mutant. If Sch9C-term-GFP-Pho8N-
term cannot be delivered to the vacuole(since HOPS is dysfunctional), it is not surprising that no phosphorylation cannot be
detected. 



Minor concerns: 

6. The mass spectrometry data in figure7 did not answer "which other cargoes may pass through SE." Also, they needed to be
verified by other methods such as western blots. 

7. In Figure 9, the signaling endosome appears to be a compartment detached from the vacuole. However, most of the live-cell
imaging data provided by this manuscript as well as the data shown in the 2019 Mol. Cell paper indicated that signaling
endosomes are attached to the vacuole. Please make sure the model is consistent with the data.
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We would like to thank both reviewers for their insightful comments, which helped us 
to improve our manuscript. We are particularly grateful that you gave us the chance to 
respond to the criticism beforehand. 
 
One main issue of the reviewers has been the use of Ivy1 as a signaling endosome 
marker. During the revision, we have now thoroughly characterized the localization of 
Ivy1 relative to several endosomal proteins as well as Tor1 and Ego1 as signaling 
complex components. We also included Vps4 in this analysis. Based on this, a picture 
emerges that signaling endosomes are only observed when both the HOPS tethering 
complex is functional (using a specific vps11-1 allele), and MVBs can form. If MVB 
biogenesis is perturbed, SE markers like Ivy1 and Ego move to the Class E endosome 
(as many other endosomal proteins). If HOPS is perturbed – which is the main focus 
of this study – Ivy1 positive structures accumulate. These structures now lack Ego1 
and Tor1. We speculate that this is due to the rerouting of the EGO complex to the 
Golgi.  
 
We agree with the reviewers that we need to distinguish Ivy1 from SEs and did so 
throughout the text now. Our analysis reveals, however, an exciting crosstalk between 
MVBs and SEs, which is controlled by HOPS and likely retromer. We speculate that 
SEs are a dynamic structure that undergoes fusion and fission and is maintained 
during signaling. We have taken this into account and therefore needed to restructure 
the manuscript, but also removed Figure 8 (relative localization of Ivy1 to the endocytic 
cargo Mup1) as we cannot make any conclusion on endocytic trafficking due to the 
changes that occur to Ivy1 during the restrictive temperature of the vps11-1 mutant. 
 
We have therefore thoroughly reworked the manuscript and feel that this overall 
strongly improved the study. In particular, we have 
 

- employed three-color imaging to determine how the SE proteins Tor1 and Ego1 
colocalize with Ivy1, and observed that a large fraction of this colocalization 
population overlaps with Vps21 and Ypt7 (new Figure 1). 
 

- included a reverse quantification by analyzing all markers relative to Ivy1 and 
now show that Ego1, Gtr2, and Kog1 increase in their colocalization with Ivy1 
(Figure S1A). 
 

- moved the mass spec analysis of the vps11-1 and vps11-3 mutants to the initial 
characterization of the ts strains (now Figure 4F, G). 
 

- extended the monitoring of Cps1 trafficking by using three-color imaging with 
the additional markers Tor1 and Ego1. We show that all SE-localized markers 
are lost at the expense of the expanded class E compartments in the ESCRT 
mutant (Figure 3E, F). 
 

- provided evidence that retromer is required for Ivy1 and Ego1 localization to 
dot-like structure (Figure 6E, F). 
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- provided the evidence that the two vacuolar (VT) and endosomal (ET) TORC1 

reporters can arrive successfully at the vacuole and SE in the vps11-1 mutant 
at 30°C, the temperature at which we monitored the TORC1 activity (Figure 7A, 
Figure S4A-E). 
 

- demonstrated that the HOPS mutant affects ET function by using Vps27 
modification as a second read-out (Figure 7D). 
 

- deleted the Mup1 trafficking part relative to Ivy1 (previous Figure 8). 
 

- adjusted and expanded the text to focus on the function of HOPS on the identity 
of SEs as a dynamic structure, which resulted in the adjustment of manuscript 
title and restructure of the figures and writing. 
 
 

Please find below a detailed response to all specific comments of the reviewers. 
 
---------------------------------------------------------------------------  
 
Reviewer #1 (Comments to the Authors (Required)):  
 
Jieqiong Gao and co-workers describe in this manuscript that the ‚biogenesis of 
signaling endosomes depends on late endosome/MVB maturation and its fusion 
machinery'. The authors have shown in their previous work that signaling endosomes 
in budding yeast provide a platform for TORC1 signaling that is distinct from vacuolar 
TORC1 signaling. Moreover, these signaling endosomes (ivy1 positive) are distinct 
from multivesicular bodies (vps4 positive) (MVBs). Here, the authors set out to define 
the biogenesis of signaling endosomes using a combination of yeast genetics, 
advanced (3D lattice light-sheet) live-cell imaging and (quantitative) proteomics.  
 
The results of this manuscript are important as they map the cellular itinerary of 
signaling endosomes, establish signaling endosomes as a new endosomal sub-
compartment and characterize mechanistically how this compartment is connected 
with the endocytic pathway. It turns out that the formation of signaling endosomes is - 
at least in part - dependent on the AP3 pathway, and the MVB pathway. Both, signaling 
endosomes and MVBs require Rab conversion from Vps21 to Ypt7 for maturation to 
then undergo HOPS dependent fusion with vacuoles and with each other. A fraction of 
the endocytic cargo (such as nutrient transporters) can also move through signaling 
endosomes. In addition, this work highlights the intrinsic connections of TORC1 
signaling (and hence the metabolic regulation of cell growth) and organelle biogenesis 
along the endo-lysosomal pathway.  
 
 
Thank you for the overall positive evaluation. 
 
Major point:  
 
- In ESCRT mutants, the markers for signaling endosomes accumulate on class E 
compartments (Figure 2). In these mutants, do individual signaling endosomes still 
exist or are they all 'absorbed' into class E compartments? I think it might be important 
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to address this question, since TORC1 signaling from class E compartments and/or 
signaling endosomes was not affected, while vacuolar TORC1 signaling was strongly 
reduced (Figure 4).  
 
To me this result is somewhat paradox: While signaling endosomes perhaps no longer 
exist (instead you have class E compartments), TORC1 signaling from signaling 
endosomes is not affected. Yet, vacuoles still exist, but vacuolar TORC1 signaling is 
affected. Please clarify this point.  
 
We thank the reviewer for these important points. To test if the individual signaling 
endosomes still exist in the vps4 mutant, we performed three-color imaging of the Cps1 
protein as a substrate of ESCRT-III with Ego1 or Tor1 and Ivy1. We did this in particular 
in vps4 mutant cells. Under these conditions, Tor1 and Ego1 move together with Ivy1 
to the Class E endosome (Figure 3 E, F). We suspect that, under these conditions, 
endosomal signaling occurs from this aberrant structure. As the vacuole will receive 
less flux of nutrients, we suspect that this results in the reduction in vacuolar TORC1 
activity. We have now extended this part of the text to meet the reviewers' point (see 
results part on Figure 7G, H). 
 
- The figure legends for Figure 4 are incomplete and hence information on the WB 
experiment (was it performed at 30{degree sign}C?) is missing.  
 
We have added it now. 
 
- Fig.8: I do not agree with the conclusion that 'HOPS but not CORVET dependent 
fusion of signaling endosomes with MVBs allows efficient delivery of plasma 
membrane-derived cargo to the vacuole'. This conclusion implies sequential sorting 
events in which all Mup1 cargo must visit signaling endosomes that then fuse with 
MVBs for efficient MVB sorting of cargo into vacuoles. The data in Figure 8 
demonstrates that HOPS and CORVET function at different stages in the endo-
lysosomal pathway, but I do not see how conclusions on the role of signaling 
endosomes in cargo sorting are possible without specifically 'eliminating' signaling 
endosomes (which at the moment might not be possible). Please rephrase.  
 
We agree with the reviewer and therefore removed the figure entirely. As vps11-1 cells 
show relocalization of Ego1 to the Golgi at restrictive temperature, we cannot be sure 
which structure we are following that colocalizes with Mup1.  
 
Minor points:  
 
- Related to the major point above: I find it interesting that signaling endosomes not 
just 'simply' mature into MVBs to make ILVs, but instead fuse with MVBs to sort cargo. 
Any idea how to explain this observation? Are they too small to host the formation of 
ILVs? Do they ever undergo homotypic fusion events?  
 
Indeed, Ivy1-positive structures seem to coalesce into a single structure if HOPS 
function is reactivated. We interpret this as homotypic fusion events. However, at this 
stage, we cannot be entirely certain as, so far, we have not visualized this even at high 
resolution or determined fusion directly. This will be an issue for future studies (see 
Figure 8A-E). 
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- In my version of the paper the overlay microscopy images in the supplementary 
figures looked scrambled.  
 
We are sorry that this occurred and only noticed the issue once we saw the review. 
Thanks very much for pointing this out, we will recheck the figures after converting 
them to PDF files before the next submission.  
 
 
Reviewer #2 (Comments to the Authors (Required)):  
 
 
In this manuscript, Gao et al. investigated the biogenesis of signaling endosome (SE), 
which harbors TORC1 and EGO complex and was recently described as a novel 
endosomal population. They first showed Ivy1, a putative SE marker, partially 
colocalizes with other SE proteins, such as EGO1, Gtr2, and Fab1(~30%), but not 
Vps4. Then, they showed that the identity of Ivy1-labeled SE is directly linked to MVB 
biogenesis since Ivy1 dots strongly accumulated in Class E compartments when Vps4 
was inactive. Because MVB formation depends on multiple fusion events, they next 
studied the regulation of SE-vacuole fusion, and found that HOPS, but not CORVET, 
is required for the proper identity of SE and its fusion with the vacuole. Lastly, endocytic 
cargoes, including alpha-factor and Mup1, can colocalize with Ivy1, and this 
colocalization was further enhanced when HOPS function was compromised, 
suggesting that endocytosed cargos can move through SEs before reaching the 
vacuole lumen. Overall, the data presented here are of high quality, and the paper is 
well-written. However, this reviewer is not convinced that Ivy1 dots can represent 
signaling endosomes. Only~ 30% colocalization between Ego1/Kog1 and Ivy1 was 
observed. In contrast, nearly 80% colocalization between Ypt7 and Ivy1 was observed. 
This is consistent with previous publications showing Ivy1 is a Ypt7 effector, but does 
not justify the use of Ivy1 to label SE. Please see below for more details. The authors 
need to tone down significantly. 
  
Major concerns:  
 
1. How do we define signaling endosomes in yeast? Are they Ivy1-positive dots? Or 
are they vacuole-attached compartments that contain both TORC1 and Ego complex? 
In their previous studies, the authors have shown that TORC1 at the SE can 
phosphorylate Fab1 and Vps27. So, it is my understanding that SE is an endosomal 
compartment that contains TORC1 and Ego complexes. As shown in figure 1C, only 
30% of Ego1 and Kog1 signal colocalize with Ivy1 dots. In other words, the majority of 
the TORC1 and Ego complexes do not colocalize with Ivy1. This raises the concern of 
whether Ivy1 can truly represent SE.  
 
We thank the reviewer for these important points, which we took as a lead during our 
revision.  
 
The term signaling endosome was coined based on the distinct localization of the Rag 
GTPase complex (called EGO complex in yeast) and its interacting TORC1 complex 
to the vacuole and endosome (Hatakeyama et al., 2019). Both are peripheral 
membrane protein complexes, and Ego1 (and thus the complex) seems to be primarily 
(but not exclusively) sorted via the AP-3 pathway (Hatakeyama et al., 2019). One key 
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observation was that Vps27, an early ESCRT subunit, is a substrate of endosomal 
TORC1, and thus phosphorylated if endosomal TORC1 is active. The same applies to 
Fab1, the PI3P-5 kinase (Chen et al., 2021). 
 
During our initial characterization of Ivy1 as a Ypt7-effector, we noticed that Ivy1 and 
the EGO complex colocalize to dots, which we initially interpreted as vacuolar domains 
(Numrich et al., 2015), but turned out to be endosomes. Strikingly, Ivy1 did not 
colocalize with Vps4, the ESCRT-IV subunit, which is needed for the formation of 
intraluminal vesicles. This suggested that the biogenesis of SEs is linked to endosomal 
TORC1 activity. 
 
Which marker is now best to trace SEs? All available markers have multiple 
localizations – there is no exclusive Rab5 as Vps21 and its homologs are found on 
EGO-positive and Vps4 positive dots/endosomes (our study). To test if we could take 
Ivy1 as a reference marker for SEs, we initially did a reverse quantification by analyzing 
all markers relative to Ivy1 and now show that Ego1, Gtr2, and Kog1 have more 
colocalization with Ivy1 as there is a reduced number of Ego1, Gtr2, and Kog1 dots 
compared to Ivy1 dots in the cell.  
 
We then analyzed the localization of Ego1 or Tor1 relative to Ivy1 and the Rabs Vps21 
or Ypt7 or the MVB marker Vps4 using three-color imaging. We observed that a large 
fraction of Ego1 or Tor1 colocalized with Ivy1 and this population also colocalized with 
Vps21 or Ypt7. The picture is, however, a little more complex as a fraction of Tor1 (28 
± 0.5%) and Ego1 (10 ± 2.6%) also colocalizes with Vps4 (Figure 1A-D). 
 
We further colocalized Ivy1 with ET (reporter of endosomal TORC1 activity) 
(Hatakeyama et al., 2019) and noticed that more than 50% of Ivy1 dots were positive 
for ET (Figure 1E-G).  
 
We have thus rephrased the entire text to meet these observations. Within the 
manuscript we now point out that we used Ivy1 as a reference marker, which does not 
colocalize strongly with MVBs, yet marks a population of endosomes that are ESCRT-
III minus. TORC1 phosphorylates Vps27 (Hatakeyama et al., 2019) and Fab1 (Chen 
et al., 2021), which may explain this. We therefore took Ivy1 dots as a marker of a SE 
population that we were able to follow. As we also noticed later on, HOPS, ESCRT, 
and retromer mutants cause a redistribution of Ego1 and Tor1 relative to other markers 
and therefore did not refer to SEs once HOPS was inactivated. 
 
2. Along the line of whether Ivy1 can represent signaling endosomes, previous studies 
(Lazar T. et al. 2002, Numrich et al. 2015) have shown Ivy1 is an inverted bar-domain 
protein that interacts with phospholipids, Ypt7, and Vps33 (a HOPS component). All 
these interactions could contribute to its membrane association. However, none of the 
interactions can explain why Ivy1 could uniquely label signaling endosomes since 
phospholipids, Ypt7, and Vps33 are common components of late endosomes. In 
addition, the fact that Ivy1 interacts with Ypt7 and Vps33 complicates the interpretation 
of using vps11ts mutants, which is also a HOPS component.  
 
The reviewer is right. Ivy1 binds Ypt7 and Vps33, based on yeast two-hybrid analyses 
(Lazar et al., 2002). And as pointed out in the manuscript, it has its limitations as it is 
also found on vacuoles. 
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We confirmed before that it is a Ypt7 effector, but did not find any evidence that it binds 
Vps33 or HOPS (Numrich et al., 2015). Ivy1 also binds PI3P and Fab1 (Numrich et al., 
2015; Malia et al., 2018; Chen et al., 2021), though we did not find strong evidence for 
general phospholipid binding as proposed by Lazar et al. (2002). We also recently 
discovered that Ivy1 is phosphorylated at its unstructured N- and C- terminal 
extensions and that this changes its localization (Grziwa et al., in preparation). 
Therefore, we postulate that Ivy1 may use multiple cues to localize in part to SEs due 
to its interaction with PI3P and Fab1. Its localization to vacuoles seems to be mainly 
driven by Ypt7 binding.  
 
We have further clarified these points throughout the text. 
 
3. Because Ivy1 is not a transmembrane protein, the authors need to address the 
concern that Ivy1 may dissociate from the membrane and re-attach to other Ypt7-, 
Vps33-, or phospholipids-containing endosomes. For example, in Figure 8C-D, the 
authors showed that the vps11-1 mutant has more colocalization between Ivy1 and 
Mup1 at 37 degree. An alternative explanation could be Ivy1 fell off its original 
membrane and relocalized to Mup1-labeled late endosomes, instead of the 
accumulation of SE.  
 
We agree completely with the reviewer that we cannot exclude if Ivy1 may relocalize 
from its original membrane to another membrane during the HOPS inactivation. We 
have thus removed this figure entirely and thoroughly rephrased the text when we 
discuss the effects of the HOPS mutant. 
 
4. In the 2019 Mol. Cell paper, Hatakeyama et al.showed that TORC1 on the signaling 
endosomes inhibits the ESCRT function by phosphorylating Vps27. In the current 
study, it is also shown that signaling endosomes contain very little Vps4. Both data 
consistently suggest that the ESCRT machinery may not function on the signaling 
endosomes. Then, the authors showed endocytic cargoes like Mup1 and alpha-factor 
can traffick normally through the signaling endosomes. I found this set of data 
confusing. If there is no ESCRT function on the signaling endosomes, how do signaling 
endosomes internalize these cargo proteins and become MVBs?  
 
We envision at present two scenarios, though we cannot yet say, which of these apply. 
One model is that SEs are suppressed in fusion as long as signaling inputs activate 
endosomal TORC1. Once TORC1 is inactive, they fuse with MVBs, where ESCRTs 
cause cargo sorting into intraluminal vesicles. 
 
Alternatively, TORC1 on SEs may inhibit ESCRTs due to phosphorylation of Vps27 
(Figure 7D). If signaling is lost, a phosphatase may activate Vps27 and the cargo will 
become a substrate to the ESCRT machinery. Both models are not exclusive as there 
could be fusion between SEs and MVBs. We also discuss both in the text now. 
 
5. In figure 4A, the effect of vps11-1 on ET function is not very obvious. The authors 
need to verify with a second cargo, such as Fab1 or Vps27 phosphorylation. In 
addition, the VT cargo Sch9C-term-GFP-Pho8N-term also uses the AP3 pathway for 
its trafficking to the vacuole. This complicates the interpretation of VT activity in the 
vps11-1 mutant. If Sch9C-term-GFP-Pho8N-term cannot be delivered to the 
vacuole(since HOPS is dysfunctional), it is not surprising that no phosphorylation 
cannot be detected.  
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We thank the reviewer for these important points. As the reviewer suggested, we first 
determined the localization of VT and ET in wt, vps11-1, and vps11-3 cells at 24°C and 
30°C. We observed that both VT and ET reporters can arrive successfully at the 
vacuole and SE, respectively, at both temperatures (Figure 7A, Figure S4A-E).  
 
We then followed phosphorylation of Vps27 as a second TORC1 target at endosomes 
and detected less overall Sch9 phosphorylation in vps11-1, but not in vps11-3 cells, 
and an upshift of the Vps27-specific phosphorylation bands (Figure 7D,E) 
(Hatakeyama et al., 2019). This demonstrates that the impairment of HOPS function 
affects both endosomal and vacuolar TORC1 activities. 
 
 
Minor concerns:  
 
6. The mass spectrometry data in figure7 did not answer "which other cargoes may 
pass through SE." Also, they needed to be verified by other methods such as western 
blots.  
 
The reviewer is right. The figure shows the change in the relative distribution of cargoes 
in the mutant using mass spectrometry as an unbiased method, which does not rely 
on tagged proteins. Trafficking defects in the vps11-1 mutants have been analyzed by 
Peterson and Emr (2002). We rephrased the text of this part. 
 
 
7. In Figure 9, the signaling endosome appears to be a compartment detached from 
the vacuole. However, most of the live-cell imaging data provided by this manuscript 
as well as the data shown in the 2019 Mol. Cell paper indicated that signaling 
endosomes are attached to the vacuole. Please make sure the model is consistent 
with the data. 
 
The reviewer is right, the model is revised now. 
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Abstract 

The endomembrane system of eukaryotic cells is essential for cellular homeostasis during growth 

and proliferation. Previous work showed that a central regulator of growth, namely the target of 

rapamycin complex 1 (TORC1), binds both membranes of vacuoles and signaling endosomes (SE) 

that are distinct from multivesicular bodies (MVB). Interestingly, the endosomal TORC1, which binds 

membranes in part via the EGO complex, critically defines vacuole integrity. Here, we demonstrate 

that SEs form at a branchpoint of the biosynthetic and endocytic pathways toward the vacuole and 

depend on MVB biogenesis. Importantly, function of the HOPS tethering complex is essential to 

maintain the identity of SEs and proper endosomal and vacuolar TORC1 activities. In HOPS 

mutants, the EGO complex redistributed to the Golgi, which resulted in a partial mislocalization of 

TORC1. Our study uncovers that SE function requires a functional HOPS complex and MVBs, 

suggesting a tight link between trafficking and signaling along the endolysosomal pathway. 
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Introduction  

The endocytic pathway connects the plasma membrane to the endolysosomal compartment with its 

early (EE) and late endosome (LE) and the lytic lysosome, where proteins are selectively degraded 

(Huotari and Helenius, 2011; Langemeyer et al., 2018). This connection allows a constant 

adjustment of the plasma membrane protein and lipid content in response to environmental cues or 

metabolic needs. Consequently, proteins are continuously surveyed, and are selectively removed 

by endocytosis if they are bound to a ligand or cargo (Sardana and Emr, 2021). During endocytosis, 

internalized proteins are packaged into small vesicles, which are first delivered to the EE. Here, 

some proteins release their cargo and are sorted via the recycling endosome to the PM, whereas 

others are transferred from the EE to the LE (Huotari and Helenius, 2011). This process requires 

both maturation of EE to LE, but also multiple fusion events among EEs and LEs (Zeigerer et al., 

2012). To allow membrane protein degradation, ESCRT (endosomal sorting complex required for 

transport) complexes sort these proteins into intraluminal vesicles (ILVs)(Zhen et al., 2021). 

Consequently, maturation changes the tubular EE into a spherical structure with multiple intraluminal 

vesicles. Mature LEs, now also called multivesicular bodies (MVB), finally fuse with the lysosome to 

allow protein degradation for reuse of nutrients (Sardana and Emr, 2021; Huotari and Helenius, 

2011).   

 Rab GTPases are crucial regulators of membrane trafficking, docking and fusion events 

(Barr, 2013; Wandinger-Ness and Zerial, 2014; Hutagalung and Novick, 2011; Goody et al., 2017). 

All Rabs can bind to both GTP and GDP. For activation, a guanine nucleotide exchange factor (GEF) 

promotes loading of the Rab with GTP as a prerequisite for its ability to bind to effector proteins. 

Inactivation of the Rab requires a GTPase activating protein (GAP), which allows extraction of the 

Rab-GDP by the chaperone GDI. In the endolysosomal system, Rab5 functions on early endosomes 

and interacts, among others, with the effector tethering complex CORVET (class C core 

vacuole/endosome tethering) to promote early endosome fusion (Balderhaar and Ungermann, 2013; 

Balderhaar et al., 2013). During endosome maturation, Rab5 recruits and activates the Mon1-Ccz1 

GEF complex, which in turn activates Rab7 on late endosomes (Nordmann et al., 2010; Langemeyer 

et al., 2020). In yeast, the Rab7-homolog Ypt7 then recruits the heterohexameric HOPS complex 
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(homotypic fusion and vacuole protein sorting)(Wurmser et al., 2000; Bröcker et al., 2012; Seals et 

al., 2000). HOPS has two binding sites for Ypt7, bridges late endosomes and vacuoles to promote 

the assembly of SNAREs from both organelles, and thus drive fusion (Wickner and Rizo, 2017; Mima 

and Wickner, 2009; Baker et al., 2015; Bröcker et al., 2012; Beek et al., 2019). Importantly, HOPS 

also supports fusion of autophagosomes and AP-3 vesicles with the yeast vacuole (Schoppe et al., 

2020; Gao et al., 2018; Beek et al., 2019; Cabrera et al., 2010).  

 Endosomal maturation is accompanied by changes in the lipid composition, most prominently 

in phosphoinositides. EEs are marked by phosphatidylinositol-3-phosphate (PI3P), which is 

generated by the Vps34 PI-3 kinase complex (Schu et al., 1993), whose activity is promoted by Rab5 

(Tremel et al., 2021). At LEs, PI3P is further phosphorylated by the only PI3P 5-kinase Fab1 (PIKfyve 

in metazoans)(Hasegawa et al., 2017; Ho et al., 2012). Both lipid kinases function as part of large 

complexes and localize to multiple membranes of the endolysosomal system. Proteins can 

specifically bind to phosphorylated inositol head group, often in coincidence of binding to Rab 

GTPases or other membrane proteins (Balla, 2013). Consequently, changes in Rab composition and 

PIPs also result in a change in the general membrane composition of maturing organelles. 

 The endolysosomal system of yeast seems to be less complex than the mammalian system 

(Day et al., 2018). It thus came as a surprise when signaling endosomes (SE) were described as a 

novel endosomal population distinct from MVBs in yeast (Hatakeyama and Virgilio, 2019b; 

Hatakeyama et al., 2019; Hatakeyama and Virgilio, 2019a). These endosomes harbor, like vacuoles, 

the highly conserved TORC1 (target of rapamycin complex 1) kinase and its regulatory EGO (Exit 

from G0) complex (Chen et al., 2021; Hatakeyama et al., 2019), named Rag-Ragulator complex in 

metazoans (Kanarek et al., 2020). Interestingly, SEs lack the ESCRT-IV ATPase Vps4 required for 

ILV formation (Babst et al., 1998), but contain a population of the Fab1 lipid kinase (Chen et al., 

2021). We recently showed that Fab1 is a substrate of the TORC1 complex, and that Fab1 

phosphorylation promotes its localization to SEs in addition to its localization to MVBs and vacuoles 

(Chen et al., 2021). This suggests that the activity of TORC1 controls Fab1 and thus the biogenesis 

of SEs. However, the exact link between MVBs and SEs remains unresolved. 

Deleted: results

Deleted: kinase 

Deleted: activating



 

 5 

 One additional marker protein found on SEs is the I-BAR protein Ivy1 (Chen et al., 2021). 

Ivy1 is an effector of Ypt7, binds PI3P, and can inhibit Fab1 (Numrich et al., 2015; Malia et al., 2018; 

Lazar et al., 2002). It also dynamically relocalizes from puncta to vacuoles and vacuolar 

microdomains in response to nutrient starvation or cellular stress (Numrich et al., 2015; Zweytick et 

al., 2014; Varlakhanova et al., 2018a; Ishii et al., 2019). We showed before that a fraction of Ivy1 co-

localizes with the EGO complex in endosomal dots, which are distinct from MVBs as they lack Vps4 

(Chen et al., 2021; Hatakeyama et al., 2019). Here, we focus on the biogenesis of SEs as a novel 

endosomal population. Our data reveal that SEs harbor not just a pool of TORC1 and the EGO 

complex, but also the Rab7-like Ypt7 and the Rab5-like Vps21. Importantly, both ESCRTs and HOPS 

are important to maintain the identity of SEs. Our data suggest that SEs are dynamic structures, 

which form at an interface between the endocytic pathway and the Golgi by continuous fission and 

fusion processes. 

 

Results  

 

SEs and MVBs are distinct endosomal populations 

We previously showed that Ivy1, Fab1, and TORC1 localize to the vacuole and to endosomal dots 

proximal to the vacuole, which we coined signaling endosomes (SEs) (Hatakeyama et al., 2019; 

Chen et al., 2021). To understand the dynamics and function of signaling endosomes in the context 

of the endosomal pathway, we wondered if we could take Ivy1 as a reference marker of signaling 

endosomes given that the protein, as the other described and above-mentioned SE marker proteins, 

localizes dynamically to endosomes and vacuoles (Malia et al., 2018; Varlakhanova et al., 2018a; 

Numrich et al., 2015; Chen et al., 2021). However, this dynamic localization also applies to all other 

marker proteins of SEs and MVBs. We thus reasoned that the analysis of the relative localization of 

these markers to each other should reveal, how signaling endosomes form or maintain their identity.  

 As a start, we analyzed the localization of Ivy1, marked C-terminally with a Halo tag, relative 

to several endosomal markers and signaling proteins using three-color imaging. As a marker of the 

TORC1 complex we selected the catalytic subunit Tor1, which is preferentially found on endosomes 
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(and vacuolar membranes) if N-terminally tagged with GFP (Hatakeyama et al., 2019; Chen et al., 

2021). As a marker of the EGO complex we selected its myristoylated subunit Ego1. We colocalized 

these with endosomal and vacuolar markers: mCherry-tagged Vps4 (a subunit of ESCRT complex), 

Vps21 (a Rab5-like protein at endosomes), or Ypt7 (a Rab7-like protein at late endosomes) (Figure 

1A, B). We then scored the level of triple colocalization (dark grey), dual colocalization (red, blue), 

or no colocalization (light grey) (Figure 1C, D).  

 Our analysis revealed that Ivy1 colocalized well with Tor1 and Ego1 (between 40-50%, blue 

fraction and dark grey, columns 1, 4). A large fraction of Ivy1/Tor1 and Ivy1/Ego1 positive structures 

was also positive for Vps21 and even more so for Ypt7, in the case of Ego1 (dark grey part, columns 

2, 3 and 5, 6). Importantly, Ivy1/Tor1 or Ivy1/Ego1 positive structures hardly overlapped with Vps4 

(dark grey part, columns 1, 3), suggesting that Ivy1 marks a fraction of endosomes that is distinct 

from MVBs (Hatakeyama and Virgilio, 2019b; Hatakeyama et al., 2019). We noticed in addition that 

a fraction of Tor1 (28 ± 0.5%) and Ego1 (10 ± 2.6%) also colocalized with Vps4 (red part, columns 

1, 4). For some Tor1 and Ego1 dots (20-30%), no colocalization was found (light grey part of 

columns). As Vps4 marks ESCRT III-positive late endosomes and endosomal TORC1 

phosphorylates Vps27 as an ESCRT-0 subunit (Hatakeyama et al., 2019; Hatakeyama and Virgilio, 

2019a; b; Lahiri and Klionsky, 2019), we decided to focus on the Ivy1-positive endosomal population. 

We reasoned that this is likely an endosomal pool where signaling via TORC1 occurs, which 

prevents ESCRT function (Hatakeyama et al., 2019). 

 We previously established reporter constructs to determine endosomal (ET) and vacuolar 

(VT) TORC1 activities (Hatakeyama et al., 2019). They consist of fusion proteins, which target a 

truncated form of the TORC1 substrate Sch9 either to endosomes or the vacuole (Hatakeyama et 

al., 2019). To confirm if we could take Ivy1 as an apparent marker of SEs, we co-localized mScarlet-

tagged Ivy1 or mCherry-tagged Kog1 (a TORC1 subunit) with GFP-tagged ET and VT. More than 

50% (52.9 ± 2.8%) of Ivy1 and 80% (83.33 ± 1.6%) of Kog1 colocalized with ET (Figure 1E-G). In 

addition, VT colocalized with both proteins, indicating that Ivy1 has two populations that overlap with 

TORC1, SEs and the vacuole (Figure 1E-G).  
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 To further determine the identity of Ivy1 dots, we colocalized C-terminally mGFP or mCherry-

tagged Ivy1 with functionally tagged markers of the endosome or vacuole carrying the other 

fluorophore. In particular, we analyzed Vps4, Vps8 (a subunit of CORVET complex at early 

endosomes), Vps21, Ypt7, Ego1, Gtr2 (a subunit of the heterodimeric Rag GTPase module that 

controls TORC1 at SEs), Kog1, and Fab1 (a PI3P 5-kinase). In agreement with our previous studies 

(Chen et al., 2021; Malia et al., 2018; Numrich et al., 2015), we observed that Ivy1 strongly 

colocalized with Ypt7, and a fraction of Ivy1 colocalized with Vps8, Vps21, Ego1, Gtr2, Kog1, and 

Fab1 (Figures 2A, B, and C). As observed before (Figure 1), Ivy1 localized only very weakly with 

Vps4 (Figures 2A, and 2C). In a reverse quantification, we noticed that Ego1, Gtr2, and Kog1 showed 

increased colocalization with Ivy1, while Vps21 and Vps8 showed less colocalization. This is 

because Ego1, Gtr2, and Kog1 form fewer dots than Ivy1, whereas Vps21 dots are more abundant. 

Thus, we hereafter took Ivy1 as a reference marker protein to study SEs in more detail. 

 

Ivy1 and Vps4 positive endosomes differ in their mobility relative to the vacuole 

To determine the dynamics of Ivy1-positive structures, we took advantage of lattice light-sheet 

microscopy (LLSM) to trace Ivy1-mGFP, which enabled us to follow the molecular events in living 

cells with high spatiotemporal resolution and utmost detection efficiency of lowest signals (Chen et 

al., 2014). Intriguingly, we detected two classes of fluorescent signals of Ivy1-mGFP (Figure 2E): 

hyper-dynamic Ivy1 signals at the vacuolar membrane (class I) and rather immobile Ivy1 dots next 

to the vacuole (class II) (Figures 2D-G, and Video 1). Ivy1 signals on the vacuole membrane were 

dim, but mobile, whereas Ivy1 dots were rather bright (Figure 2F, G). To compare the dynamics of 

Ivy1 positive endosomal compartments and MVBs in the cells, we monitored Ivy1-mGFP relative to 

Vps4-mCherry by LLSM and observed that Ivy1 puncta moved much slower than Vps4 positive dots 

(Figure 2H, Video 2). This suggests that SEs and MVBs differ not only in some key proteins, but also 

in their relative mobility at the vacuole. 
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SE identity depends on MVB biogenesis 

Since SEs also carry endosomal proteins such as the CORVET subunit Vps8 and Vps21, but also 

the Rab7-like Ypt7 (Figures 1, 2), we wondered if impaired MVB biogenesis would affect SE identity. 

We therefore analyzed the localization of Ivy1-mGFP in wild-type and vps4Δ cells. Loss of ESCRT 

proteins results in the accumulation of multilamellar structures, called Class E compartment, next to 

the vacuole, where all endosomal proteins accumulate (Raymond et al., 1992; Rieder et al., 1996; 

Babst et al., 1998; Adell et al., 2017; Russell et al., 2012). When we analyzed Ivy1 in vps4∆ cells, 

the protein strongly accumulated in bright puncta next to the vacuole, and most cells lost the vacuolar 

localization of Ivy1 (Figures 3A, B and Videos 3 and 4). However, Ivy1 dots were still positive for 

Vps8, Vps21, Ypt7, Ego1, Fab1 and Kog1 (Figures 3A, B and Figure S1B). The same observation 

was made upon inactivation of Vps4 in a vps4 temperature-sensitive (ts) strain (Figure S1C, 

D)(Babst et al., 1997). At permissive temperature (24°C), mCherry-tagged Ivy1 and mNeon-tagged 

Fab1, one of the proteins we tested for colocalization with Ivy1 in vps4∆ cells, partially co-localized 

in dots and at the vacuolar membrane. However, when shifted to the non-permissive temperature 

(37°C), Ivy1 strongly accumulated as in the vps4∆ cells in dots (Figure S1C, D), which were partially 

positive for Fab1 and likely correspond to Class E compartments (Adell et al., 2017)(Figure S1C-E).  

 To confirm that Ivy1 was indeed present on Class E compartments in vps4 mutant cells, we 

analyzed the colocalization of mCherry-tagged Ivy1 with GFP-tagged ESCRT substrate 

carboxypeptidase S (Cps1) in wild-type and vps4∆ cells. Upon deletion of vps4, Ivy1 colocalized 

more strongly with Cps1, which accumulated at Class E compartments (Figure S1F, G). To further 

test if SEs remain as distinct endosomes in vps4∆ cells, we analyzed the colocalization of mGFP-

tagged Tor1 or Ego1 with Halo-tagged Ivy1 and mCherry-tagged Cps1. We observed that 35.85 ± 

0.9% of the Tor1 dots and 76.27 ± 4.2% of the Ego1 dots colocalized with Ivy1 and Cps1 (Figure 3F, 

dark grey part). There was almost no colocalization of Tor1 or Ego1 with just Ivy1 (blue part) and 

very little with just Cps1 (red part), suggesting that SEs were lost at the expense of the expanded 

class E compartments of the ESCRT mutant (Figure 3E-G). We thus conclude that the maintenance 

of SEs as an endosomal population is directly linked to the biogenesis of MVBs. 
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HOPS function is required to maintain SE number and endolysosomal trafficking  

The biogenesis of the late endosome depends on multiple fusion events at early and late endosomes 

as a prerequisite for MVB formation (Zeigerer et al., 2012). EE fusion requires the CORVET tethering 

complex, whereas the fusion of MVBs with vacuoles depends on HOPS (Beek et al., 2019; 

Balderhaar and Ungermann, 2013). We therefore asked whether HOPS or CORVET were required 

to maintain the identity of SEs. In a previous study, two temperature-sensitive alleles for Vps11 have 

been identified, which disable HOPS (vps11-1) or CORVET (vps11-3) function, whereas a vps18-1 

mutant specifically impairs HOPS (Robinson et al., 1991; Peterson and Emr, 2001). All mutants are 

functional at the permissive temperature of 24°C but show a protein sorting defect toward the vacuole 

and a partial growth defect at 37°C (Peterson and Emr, 2001). We therefore tagged Ivy1 with mGFP 

in these strains and analyzed its localization relative to FM4-64-stained vacuoles at permissive 

(24°C) or restrictive (37°C) temperature. Both, vps11-1 and vps18-1 cells strongly accumulated Ivy1-

mGFP in 4-fold more dots proximal to the vacuole at the restrictive temperature (Figure 4A, B and 

E), whereas the vps11-3 mutant had no effect on Ivy1 localization (Figure 4C, E). This indicates that 

the inactivation of HOPS, but not of CORVET, affects the number of observed Ivy1-positive 

structures in the cell. We previously showed that Ivy1 accumulates at SEs in cells expressing a 

phosphomimetic Fab16D allele (Chen et al., 2021). We thus wondered if the number of Ivy1 dots 

would increase in a vps11-1 fab16D double mutant. Indeed, this was observed (Figure 4D and E), 

suggesting that impairment of HOPS and Fab1 both affect the formation of SE independently.  

 As the vps11-1 mutant caused a strong increase in Ivy1 positive dots, we asked if we could 

see general changes in the endosomal and vacuolar proteome due to HOPS inactivation. We 

therefore turned to a recently established method of SILAC-based vacuolar proteomics, which allows 

the identification of all vacuolar proteins in comparative analyses (Eising et al., 2019). We reasoned 

that mutants impaired in HOPS (vps11-1) or CORVET (vps11-3) should differ in their vacuolar 

proteome at the restrictive temperature and thus reveal impaired cargo trafficking. We therefore 

isolated vacuoles from “light” labeled wild-type cells and compared them either to vacuoles from 

“heavy” labeled vps11-1 or to vacuoles from “heavy” labeled vps11-3 cells (Figure 4F). We plotted 

the ratios of vps11-1 over wild-type on the x-axis against the ratios of vps11-3 over wild-type on the 
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y-axis. This analysis revealed that all subunits of HOPS and CORVET were affected in both mutants 

(light blue dots). The effect of the vps11-1 mutant appears to be stronger than the vps11-3 mutant. 

However, we were able to identify clear differences regarding the vacuolar proteome of both 

analyzed mutants. As expected, the vps11-1 mutation affected the abundance of EGO complex 

subunits (red dots), cargoes of the autophagy-related Cytosol-to-vacuole (CVT) pathway (orange 

dots), and AP-3 cargo proteins (purple dots). In contrast, the vps11-3 mutant mostly affected the 

abundance of proteins following the endo-lysosomal pathway, especially plasma membrane proteins 

(light green dots) and vacuolar hydrolases such as CPY and Cps1 (dark green dots) (Figure 4G). 

Together, this indicates that the CORVET-specific vps11-3 allele impairs endocytosis, while the 

vps11-1 allele affects HOPS function, which is required for all fusion events at late endosomes and 

vacuoles (Wickner and Rizo, 2017; Beek et al., 2019; Peterson and Emr, 2001). Vacuolar proteomics 

of temperature-sensitive alleles can thus recapitulate the affected trafficking defects (Lin et al., 2008; 

Cabrera et al., 2013; Markgraf et al., 2009; Peplowska et al., 2007). 

 

HOPS is required to maintain identities of endosomal structures  

Vacuolar proteomics can reveal the overall changes in protein abundance on vacuoles and 

associated compartments, yet cannot resolve how a HOPS mutant affects the relative distribution of 

endosomal proteins at SEs, MVBs, and vacuoles. We therefore co-localized both Vps4 and Ivy1 with 

several endosomal and Golgi markers relative to the vacuole in vps11-1 mutant at the permissive 

and restrictive temperature. For this, we used tagged constructs with mCherry or mGFP fluorophores 

that maintain the functionality of the proteins (Numrich et al., 2015; Adell et al., 2017).  

 We initially focused on Ivy1 as a protein found at SEs. At the permissive and restrictive 

temperatures (24°C, 37°C, respectively), Ivy1 dots were still strongly positive for Ypt7 and to a large 

extent (26.8 ± 1.8 %, 32.74 ± 3.7%) also for Fab1, the SNARE Pep12 (40.75 ± 3.2%, 29,67 ± 2.4%), 

the Ypt7 GEF Ccz1 (33.28 ± 2.5%, 22.66 ± 4%), the HOPS subunits Vps39 (43.7 ± 3.5%, 41.52 ± 

2.5%) and Vps41 (41.1 ± 1.2%, 36.32 ± 1.6%) (Figure 5A-C and Figure S2A-C). We also did not 

detect an increase in Ivy1 colocalization with Vps4 or the AP-3 marker Apl5 (Figure 5A and Figure 

S2A). 
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 This picture changed when we analyzed early endosomal markers. Both the Rab5-like Vps21 

and the CORVET subunit Vps8 colocalized with Ivy1 at the permissive temperature like in wild-type 

(Figure 5B, C). However, at the restrictive temperature, Vps8 and Vps21 positive dots colocalized 

significantly less with Ivy1 (Figure 5B, C). This suggests that loss of HOPS function results in a 

change of surface composition of Ivy1-marked structures, and thus likely in the entire SE pool. 

Importantly, Ivy1-positive dots were still positive for the endosomal SNARE Pep12, Fab1 and Ypt7, 

but lost the early endosomal markers Vps21 and Vps8 (Figure 5C).  

 To determine if HOPS inactivation also changed the late endosomal identity, we traced the 

colocalization of Vps4 with the same markers. Vps4 largely colocalized with Vps8 (82.7 ± 2.85%), 

Vps21 (67.75 ± 4.4%) and Pep12 (73.44 ± 5.7%), which decreased by 10-30% upon HOPS 

inactivation (Figure 5D). Interestingly, Vps4 also colocalized well with the subunit of the Ypt7 GEF-

subunit, Ccz1 (75.95 ± 3%), and to a lesser degree with Vps39 (24.95 ± 2%) and Fab1 (25.04 ± 

2.7%), while only little Ypt7 (10.7 ± 1.1%) was found at these structures (Figure 5D, Figure S3A-C). 

At the restrictive temperature, the colocalization of Vps4 with Ccz1, Vps41 or Fab1 decreased 

strongly, suggesting that also the composition of Vps4-positive late endosomes changes upon 

HOPS inactivation (Figure S3B-C).  

 

HOPS and retromer function maintain SE identity 

Given that both Ivy1- and Vps4 positive endosomes seem to require HOPS to maintain their identity, 

we asked if Ego1 and TORC1 would remain at endosomes if HOPS is inactivated. At the permissive 

temperature, Ego1 and Kog1 colocalized with Ivy1 as in wild-type (Figure 6A, B, Figure 2C). 

However, at the restrictive temperature, colocalization between Ego1 or Kog1 dots and Ivy1 was 

largely lost (Figure 6A, B). As Ego1 reaches the vacuole surface by the AP-3 pathway, we tested if 

some Ivy1 or Ego1 was found also on the Golgi (marked by Sec7), but did not detect any overlap at 

the permissive temperature (Figure 6C, D). Surprisingly, at the restrictive temperature, we observed 

that Ego1 now colocalized with the Golgi marker Sec7 (Figure 6C, D). The number of Sec7 dots 

stayed, however, the same, indicating that HOPS inactivation did not affect Golgi function per se. 

For Kog1, we did not detect colocalization with Sec7 and currently do not know the identity of the 
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remaining dots (Figure 6C, D). These data suggest that loss of HOPS results in an accumulation of 

the EGO complex at the Golgi, while TORC1 is found elsewhere.  

 Previous work in mammalian cells showed that retromer plays a critical role in TORC1 

signaling by controlling a Rab7 GAP and thus Rab7 levels at lysosomes (Kvainickas et al., 2019). A 

possible explanation for the Golgi localization of Ego1 is that Ego1 became a substrate of retromer, 

which is found on SEs (Figure 6A, B). We thus analyzed the localization of Ivy1 relative to Ego1 in 

vps35∆ cells and observed a loss of both Ivy1 and Ego1 dots at the expense of vacuolar localization. 

This suggests that the localization of the EGO and TOR complexes to SEs requires both retromer 

and HOPS function (Figure 6E, F).  

 Since Ego1 reaches the vacuolar surface via the AP-3 pathway, we further tested if other 

AP-3 cargoes also accumulate at the Golgi if HOPS is inactivated. We therefore monitored AP-3-

dependent trafficking of the artificial cargo GNS to the vacuole (Reggiori et al., 2000). This GNS 

cargo consists of the N-terminally tagged cytosolic part of the vacuolar SNARE Nyv1, a bona fide 

AP-3 cargo (Wen et al., 2006), linked to the longer transmembrane domain of Snc1. If the AP-3 

pathway is defective, GNS is rerouted via the plasma membrane to the vacuole (Reggiori et al., 

2000). We therefore followed GNS in the vps11-1 mutant and observed that it localized to the 

vacuole at the permissive temperature. At the restrictive temperature, GNS also stained the plasma 

membrane, indicative of an AP-3 defect (Figure S2B). This indicates that the inactivation of HOPS 

does not result in a general rerouting of AP-3 cargoes to the Golgi or its retention. It rather suggests 

that the localization of the EGO and TOR complexes to SEs is determined by dynamic fission and 

fusion processes that require a functional retromer and HOPS complex. 

 

HOPS function is required for TORC1 signaling 

As a complete impairment of HOPS function results in the redistribution of Ego1 from SEs and other 

locations to the Golgi, we expected an alteration in vacuolar and endosomal TORC1 activities. Using 

our previously described reporter system to measure vacuolar (VT) and endosomal (ET) TORC1 

activities (Hatakeyama et al., 2019), we independently confirmed this expectation. These reporters 

are found in wild-type cells at SEs and vacuoles (Figure 1E-G). As TORC1 activity is temperature 
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sensitive, we here used temperatures between 24°C and 30°C. Under these conditions, the VT 

reporter arrived successfully at the vacuole, whereas the ET reporter colocalized with Kog1 and 

Ego1 (Figure 1E-G, Figure 7A, Figure S4A-E). 

 We then determined VT and ET activities. Cells containing the vps11-1 allele, but not vps11-

3 cells, exhibited a significant reduction in vacuolar TORC1 (VT) activity at 24°C that became even 

more pronounced at 30°C, while the ET activities were even slightly, but significantly, increased in 

vps11-1, but not vps11-3 cells (Figure 7B, C). As additional readouts, we followed the 

phosphorylation of Sch9 and Vps27, which are substrates of vacuolar and endosomal TORC1, 

respectively (Hatakeyama et al., 2019). We detected less Sch9 phosphorylation (assayed by 

immunoblot analyses using phosphospecific antibodies that target the TORC1 residue T737 in Sch9) 

and higher Vps27 phosphorylation (assayed by a slower electrophoretic migration in Phos-tag gel 

analyses) in vps11-1, but not in vps11-3 cells (Figure 7D,E)(Hatakeyama et al., 2019). This shows 

that the impairment of HOPS function, in parallel to affecting the endosomal localization of various 

proteins, also significantly disturbs the partitioning of TORC1 signaling between endosomes and 

vacuolar membranes. 

 Because VT primarily defines rapamycin-sensitive growth through its vacuolar target Sch9 

(Urban et al., 2007; Hatakeyama et al., 2019), these data explain why a moderate reduction in HOPS 

function at semi-permissive temperatures (in vps11-1 and vps18-1 cells), but not a reduction in 

CORVET function (in vps11-3 cells), resulted in rapamycin-sensitive growth (Figure 7B-E). Notably, 

in line with its rapamycin-sensitive growth at 30°C (Figure 7F), the vps4∆ strain also exhibited 

significantly lower VT, but not ET activity (Figure 7G, H). As vps4∆ strains have no AP-3 sorting 

defect (Babst et al., 1997), this corroborates our conclusion above that defective MVB biogenesis 

has a significant impact on TORC1 signaling. Taken together, HOPS is needed to maintain proper 

TORC1 activities at SEs and vacuoles, which is also in agreement with previous genetic analyses 

(Kingsbury et al., 2014; Hatakeyama et al., 2019; Zurita-Martinez et al., 2007). 
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allele should cause a release of Vps39 or even HOPS 
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HOPS is required for reformation of Ivy1 positive structures next to the vacuoles 

As HOPS inactivation causes an accumulation of Ivy1-positive structures due to a possible fusion 

defect, we wondered if we could observe recovery of Ivy1-positive structures with vacuoles by 

shifting vps11-1 mutant cells back to the permissive temperature (Figure 8A). To monitor this, we 

shifted cells to 37°C to accumulate Ivy1-mGFP dots, and then traced Ivy1 dots by LLSM after cells 

were exposed to the permissive temperature (Figure 8B). Over the first 30 min, we observed that 

the number of Ivy1 puncta strongly decreased at the expense of one large dot (Figure 8B). At 32 

min, this bright dot suddenly disappeared (Figure 8C) and Ivy1 fluorescence thereafter equally 

distributed over the entire vacuole surface (Figure 8B, D, Videos 5,6). Following this event, Ivy1 dots 

then reappeared proximal to the vacuole, suggesting either reformation of SEs or relocalization of 

Ivy1 (Figure 8E). These data suggest that Ivy1-positive structures may initially undergo homotypic 

fusion before fusing with the vacuole or MVB, and all fusion or reformation events are HOPS 

dependent. During this process, they most likely also acquire the EGO and TORC1 signaling 

complexes, resulting in the reformation of SEs. 

 

Endosomal cargo can pass through Ivy1 positive structures 

Previous analyses suggested that SEs have a key function in endosomal TORC1 activity to control 

protein synthesis, macroautophagy and ESCRT-mediated microautophagy at the vacuole 

(Hatakeyama et al., 2019; Hatakeyama and Virgilio, 2019b; Lahiri and Klionsky, 2019). However, it 

has not been resolved how endosomal TORC1 may sense the nutrient status of the cell. We 

considered the possibility that SEs are part of the endocytic pathway and may thus detect the flux of 

cargo or possibly receptor proteins. To test if Ivy1-positive SEs are connected to the endocytic 

pathway, we monitored the trafficking of Cy5-labeled α-factor via its pheromone receptor Ste2 from 

the plasma membrane through the endocytic pathway to the vacuole (Arlt et al., 2015; Day et al., 

2018). For this, α-factor was added to cells expressing mGFP-tagged Ivy1, and both signals were 

recorded by 3D LLSM over time. Due to the time needed between α-factor addition to cells and their 

mounting at the LLSM stage, we only observed events at the Ivy1-decorated SEs. We observed α-

factor and Ivy1 in the same structure over time, followed by the appearance of α-factor in the vacuole 
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lumen (Video 7, Figure 9B and C), suggesting that endosomal cargo can pass through endosomal 

structures marked by Ivy1.  

 

Discussion  

Signaling endosomes are a novel endosomal population in yeast, which harbors endosomal TORC1 

(Hatakeyama and Virgilio, 2019b; Lahiri and Klionsky, 2019; Hatakeyama et al., 2019; Chen et al., 

2021). Here, we set out to determine the identity of SEs and their link to the endocytic pathway using 

Ivy1 as a reference marker. We show that these SEs are distinct structures with slower mobility than 

MVBs, localize close to the vacuole, yet are tightly connected to MVB biogenesis. If the ESCRT-IV 

protein Vps4 is lacking or impaired, Tor1, Ego1, and Ivy1 as proteins found on SEs shift largely to 

Class E compartments as shown for many other endosomal proteins (Russell et al., 2012). Using a 

HOPS inactivating vps11-1 allele (Peterson and Emr, 2001), we uncover that most of the Ivy1-

positive structures remain endosomal, but lose SE-specific signaling markers such as the TORC1 

subunit Kog1 and Ego1, which is then found at the Golgi (Figure 6). Once HOPS is reactivated, 

these Ivy1-positive structures reform into a punctum next to the vacuole, suggesting that they are 

reformed SEs. In agreement with the signaling function of SEs, HOPS inactivation impairs vacuolar 

TORC1 activity even at semi-permissive temperatures and slightly enhances endosomal TORC1 

activity (Figure 7). This is explained by the depletion of Ego1 (and hence EGOC; (Nicastro et al., 

2017)) at vacuolar membranes and its clustering at SEs and the Golgi compartment. Overall, we 

reveal that SEs form at a branch between endocytosis and MVB biogenesis, thus linking signaling 

to protein trafficking (Figure 9D). 

 SEs as an endosomal population have escaped attention in previous studies. One reason 

for this could be that SEs harbor basically all endosomal markers, such as the Rab5-like Vps21, 

CORVET, or the SNARE Pep12. Also, the ESCRT-0 subunit Vps27 is present on SEs (Hatakeyama 

et al., 2019), and Vps27 has been taken as a bona fide marker of endosomes in many studies (Kama 

et al., 2011; Dobzinski et al., 2015; Kanneganti et al., 2011; MacDonald et al., 2012; Bilodeau et al., 

2003; Katzmann et al., 2003; Curwin et al., 2009). However, as shown here and before (Chen et al., 

2021), SEs, which we follow using Ivy1 as a reference marker, lack the ESCRT-IV subunit Vps4 and 
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are thus unable to form intraluminal vesicles, yet all SE-specific markers accumulate at class E 

compartments if VPS4 is deleted (Figure 3). This shows that the function of the SE as a dynamic 

endosomal compartment requires functional MVBs. Even the CORVET subunit Vps8 as an effector 

of the Rab5-like Vps21 may not be the best marker to trace endosomes in general and thus follow 

their fusion with the vacuole (Day et al., 2018; Casler and Glick, 2020). 

 We realize that SEs are difficult to trace and used here mainly Ivy1 as a reference marker. 

Ivy1 is an IBAR protein with a preference for negative curvature, binds both PI3P and Ypt7, can 

inhibit Fab1 function, and is found in endosomal dots and on the vacuole similar to Tor1 and Ego1 

(Lazar et al., 2002; Numrich et al., 2015; Malia et al., 2018). Ivy1 also relocalizes from dots to the 

vacuole in response to changes in amino acids, and is found in vacuolar domains after long 

starvation (Sullivan et al., 2019; Varlakhanova et al., 2018b; a; Murley et al., 2017; Toulmay and 

Prinz, 2012; Numrich et al., 2015). We are aware that Ivy1 as a peripheral membrane protein may 

relocalize from endosomes to vacuoles without membrane fusion. However, we follow Ivy1 here 

under normal growth conditions and observe clear colocalization of Tor1 or Ego1 together with Ivy1 

and endosomal proteins such as Vps21, but also Ypt7 (Figure 1A-D). Importantly, Ivy1 dots also 

colocalized well with endosomal TORC1 (ET) (Figure 1F-G). Moreover, Ivy1 structures accumulate 

if HOPS is impaired, suggesting that they require HOPS to fuse with MVBs and the vacuole. These 

data indicate that Ivy1 dots correspond largely to SEs, possibly at different stages of their maturation 

(Figure 1A-D). In addition to the more static Ivy1-positive dots (which we here consider SEs), we 

observe a rather mobile Ivy1 fraction on vacuoles (Figure 2F, G), which was also observed when we 

reactivated HOPS and traced the vacuolar pool of Ivy1 on the vacuole over time (Figure 8). We 

consider it likely that these mobile dots on vacuoles correspond to individual Ivy1 molecules, but not 

endosomes. In comparison to Ivy1 dots, MVBs (as monitored by Vps4 mobility) are more mobile 

(Figure 2H), though we do not know the reason for this difference in mobility presently. 

 Several studies have used ultrastructural analyses to dissect the yeast endocytic pathway by 

following the endocytic uptake of nanogold particles (Griffith and Reggiori, 2009; Prescianotto-

Baschong and Riezman, 2002). Here, tubular intermediates appeared, which were interpreted as 

early endosomes. As we find colocalization of Ivy1 with a-factor as an endocytic cargo, we speculate 
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that the biogenesis of SEs and TORC1 signaling is linked to nutrient transporter shuttling (Figure 

9D). How such a link between trafficking and signaling may work is presently unclear. We favor a 

model where nutrient transporters themselves either activate TORC1 or bring along signaling 

molecules. This would allow TORC1 to translate trafficking of nutrient transporters into the metabolic 

state of the cell. If TORC1 is then active, it may phosphorylate several proteins such as the Fab1 

complex (Chen et al., 2021), which may stabilize the SE, affect signaling and thus growth.  

 Our data uncover a key role of the HOPS complex in maintaining SE identities. HOPS is a 

tethering complex that binds SNAREs and promotes fusion of Ypt7-positive membranes (Wickner 

and Rizo, 2017; Zick and Wickner, 2016; Mima and Wickner, 2009; Bröcker et al., 2012; Lürick et 

al., 2017; Ho and Stroupe, 2015). The two vps11 alleles clearly affect HOPS and CORVET differently 

(Peterson and Emr, 2001). The vps11-1 allele affects primarily HOPS and thus fusion events at the 

vacuole, but still allows CORVET-dependent endocytosis, whereas the vps11-3 allele blocks the 

latter process without interfering with fusion at the vacuole. In agreement, vacuolar proteomics 

clearly show that the vps11-3 mutant strongly blocks endocytosis, whereas the vps11-1 analysis 

shows that both HOPS and the EGO complex are lost from vacuolar fractions at the restrictive 

temperature (Figure 4F, G). If SEs then harbor both HOPS and Ypt7, why do not they fuse with the 

vacuole? We speculate that signaling at the SE may also block the fusion machinery, by 

phosphorylation of Vps27 or other proteins (Figure 7C, D) (Hatakeyama et al., 2019; Hatakeyama 

and Virgilio, 2019a). In this case, loss of signaling may revert this process and promote fusion of 

SEs with MVBs or the vacuole. We are currently testing this hypothesis.  

 SEs are possibly also connected to the AP-3 pathway (Nagano et al., 2019; Toshima et al., 

2014), and thus may exist at a branch between the biosynthetic sorting pathway to the vacuole and 

the endocytic pathway (Figure 9D). This would explain why the EGO complex, an identified substrate 

of the AP-3 pathway (Hatakeyama et al., 2019), localizes to SEs and vacuoles. This localization may 

be far more dynamic than anticipated as Ego1 (and likely the entire EGOC) appears at the Golgi if 

HOPS has been inactivated. Furthermore, Ego1 and Ivy1 dots are reduced in retromer mutant, 

suggesting a role of sorting nexins or retromer in retrograde transport at SEs. Localization of EGOC 
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and TORC1 to SEs may thus require a balance between the HOPS dependent fusion and a retromer-

dependent recycling pathway.  

 In summary, our data reveal that signaling endosomes are tightly connected to the 

biogenesis of late endosomes in yeast, are linked to the endocytic pathway, and may thus receive 

signal input for endosomal TORC1 activity for their stabilization as an endosomal structure. We 

uncover a key role of the HOPS complex in keeping SE identities, suggesting that fusion regulation 

may be part of the signaling cascade. Future studies need to dissect how TORC1 or other signaling 

complexes promote SE formation, sense endocytic trafficking, and thus translate this into metabolic 

adjustments. 

 

Materials and methods 

 

Yeast strains and molecular biology 

Strains used in this study are listed in Table S1. Deletions and tagging of genes in the cells were 

done by PCR-based homologous recombination with corresponding primers and templates (Janke 

et al., 2004; Puig et al., 1998). Mutations in Fab1 were generated by a CRISPR-Cas9 approach 

(Generoso et al., 2016). Vps4-mCherry has an HA-tag as a spacer before the mCherry tag, which 

maintains protein functionality (Adell et al., 2017). Plasmids are listed in Table S2. 

 

Fluorescence microscopy  

Yeast cells were grown in a synthetic complete medium (yeast nitrogen base without amino acids 

and with ammonium sulfate) containing 2% glucose to log phase at 30°C. Selective temperature-

sensitive (ts) strains were cultured in a synthetic complete medium at 24°C to log phase and then 

shifted to 37°C for 1 h. Cells were imaged on a DeltaVision Elite imaging system based on an 

inverted microscope with 100x NA 1.49 objectives, an sCMOS camera (PCO, Kelheim, Germany), 

and an Insight SSI (TM) illumination system. Stacks of 6 to 8 images with 0.2-0.35 µm spacing were 

taken, and images were deconvolved using the SoftWoRx software (Applied Precision, Issaquah, 

WA). To analyze the localization of ET or VT relative to the vacuole, Ivy1 and Kog1, images were 
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captured with an inverted spinning disk confocal microscope (Nikon Ti-E , VisiScope CSU-W1, 

Puchheim, Germany) that was equipped with a Photometrics pco.edge 4.2 sCMOS camera, and a 

100x NA1.3 oil immersion Nikon CFI series objective (Egg, Switzerland).   

 

Real-time 3D lattice light-sheet microscopy (LLSM) and image processing  

Wild-type cells expressing Ivy1-mGFP were grown in a synthetic complete medium to log phase, 

and vacuoles were stained with FM4-64 or CMAC (videos 1, 2, 3, and 4). vps11-1 ts cells expressing 

Ivy1-mGFP were grown in synthetic complete medium at 24°C to a log phase, incubated at 37°C for 

1 h, and vacuoles were stained with CMAC. For α-factor uptake, cells expressing Ivy1-mGFP were 

grown in synthetic complete medium to a log phase, incubated on ice for 15 min, and then 2.5 μM 

labeled α-factor were added to the cells for additional 15 min incubation on ice.  

 5 μl of cells were spotted on the top of 5 mm round glass coverslips (Art. No. 11888372, 

Thermo Scientific) coated with concanavalin A for 5 min at room temperature to make them adhere. 

They were then mounted on a sample holder specially designed for LLSM, which was an exact 

home-built clone of the original design by the Eric Betzig group (Chen et al., 2014). The holder was 

inserted into a sample bath containing synthetic complete medium at room temperature (25°C). A 

two-channel image stack was acquired in sample scan mode through a fixed light sheet with a step 

size of 500 nm which is equivalent to a ~271 nm slicing with respect to the z-axis considering the 

sample scan angle of 32.8°. We used a dithered square lattice pattern generated by multiple Bessel 

beams using an inner and outer numerical aperture of the excitation objective of 0.48 and 0.55, 

respectively. Each 3D image stack (512×320×150 voxels) contained 50-100 cells and was imaged 

at 30-40 frames. For time-lapse movies, we recorded protein dynamics with a full 3D stack every 1 

sec for a total time of 1 min (60 time points). For vps11-1 cells recovery assay, we recorded a full 

3D stack every 1 min for a total time of 40 min (40 time points). For α-factor uptake assay, we 

recorded a full 3D stack every 30 sec for a total time of 15 min (30 time points). The different channels 

were sequentially excited using a 405 nm laser (LBX-405, Oxxius, Lannion, Franc) for CMAC, a 488 

nm laser (2RU-VFL-P-300-488-B1R, MPB Communications Inc., Pointe-Claire, Canada) for GFP 

(Ivy1 or Vps4), a 560 nm laser (2RU-VFL-P-500-560-B1R, MPB Communications Inc.) for mCherry 
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(Ivy1). Fluorescence was detected by a sCMOS camera (ORCAFlash 4.0, Hamamatsu, Japan) 

using a quadband emission filter (446/523/600/677 HC Quadband, Semrock) and an exposure time 

of 13.2 ms for monitoring protein dynamics in each channel, and an exposure time of 23.2 ms for 

the vps11-1 cells recovery and α-factor uptake assay. The final pixel size in the image is 104.5 nm. 

The raw data was further processed by using an open-source LLSM post-processing utility called 

LLSpy v0.4.9 (https://github.com/tlambert03/LLSpy) for deskewing, deconvolution, 3D stack rotation, 

and rescaling. Deconvolution was performed by using experimental point spread functions and is 

based on the Richardson-Lucy algorithm using 10 iterations. Finally, image data were analyzed 

using spot detection and tracking in Imaris 9.5 (Bitplane, Zurich, Switzerland). By using the built-in 

spot detection routine, single fluorescent signals were classified as diffraction-limited ellipsoids with 

a diameter of 250 nm in x- and y-, and 600 nm in z direction. These spots were tracked with the built-

in autoregressive motion model using a maximum single step displacement of 1.2 µm and a 

maximum gap size of 0 time points. Only trajectories longer than 2.5 s were considered for further 

analysis. Mean track intensity and speed box-plots were generated by Imaris built-in Vantage plot 

tool. Here box-plots show minimum (Q0 percentile) and maximum (Q4 percentile) values, the box 

defines data points within Q1 and Q3 percentile and the line the median (Q2 percentile). 

 

ET/VT assay to determine TORC1 activity 

wt, vps11-1, and vps11-3 cells were transformed either with the ET reporter (FYVE-GFP-Sch9C-term) 

harboring plasmid (p3027) or the VT reporter (Sch9C-term-GFP-Pho8N-term) harboring plasmid p2976. 

The cells were grown at 24°C or 30°C in a synthetic complete (2 % glucose, YNB, ammonium sulfate, 

all amino acids) until mid-log phase, and 10 ml of cell culture were mixed with TCA (trichloroacetic 

acid) at a final concentration of 6%. After centrifugation, the pellet was washed with cold acetone 

and dried in a speed-vac. The pellet was resuspended in lysis buffer (50 mM Tris-HCl, pH 7.5, 5 mM 

EDTA, 6 M urea, 1% SDS), the amount being proportional to the OD600nm of the original cell culture. 

Proteins were extracted by agitation in a Precellys machine after the addition of glass beads. After 

the addition of 2X Laemmli buffer (350 mM Tris-HCl, pH 6.8, 30% glycerol, 600 mM DTT, 10% SDS, 

and 0.02% bromophenol blue), the mix was boiled at 98°C for 5 minutes. The analysis was carried 
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out by SDS-PAGE using phosphospecific anti-Sch9-pThr737, anti-Sch9, and anti-GFP antibodies. 

For Vps27 phosphorylation state analysis, EDTA-free protein extracts were run on a 6% gel 

containing 50 µM Mn2+-Phos-tag, and probed with anti-Vps27 antibodies. 

 

Vacuole isolation and proteomics 

Wild-type and ts mutant cells were grown in 500 ml synthetic medium with 30 mg/l normal lysine or 

30 mg/l heavy lysine (L-Lysine 13C6
15N2; Cambridge Isotope Laboratories) at 23°C and then 

incubated at 37°C for 1 h to an OD600  of  ∼0.8 to 1.0, respectively. The vacuole isolation assay was 

performed as described before (Gao et al., 2018). Isolated vacuoles were precipitated with 20% 

trichloroacetic acid (TCA), incubated on ice for 20 min, and resuspended in ice-cold acetone twice 

by sonication. The vacuole precipitate was further purified using PreOmics IST kit (Martinsried, 

Germany) for the final mass spectrometry measurements.  

 Reversed-phase chromatography was analyzed by a Thermo Ultimate 3000 RSLCnano 

system connected to a Q Exactive-Plus mass spectrometer (Thermo). Peptides were separated and 

eluted as described previously (Eising et al., 2018). The MS results were analyzed by MaxQuant 

(REF) (version 1.6.14.0, www. maxquant.org/) as described before (Fröhlich et al., 2013), and the 

plots were performed with the R software package (www.r-project.org/). 
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Figure legends 

 

Figure 1. Ivy1 localizes to signaling endosomes. (A, B) Localization of Tor1 or Ego1 relative to 

Ivy1 and Vps4, Vps21, or Ypt7. Cells expressing mGFP-tagged Tor1 or Ego1 with Halo-tagged Ivy1 

and mCherry-tagged Vps4, Vps21, or Ypt7 were grown in a synthetic complete medium. The cells 

were incubated with the Janelia fluor 646 Halo-tag ligand for 1 h and washed 8 times before taking 

images. The cells were analyzed by fluorescence microscopy and shown as individual slices. Scale 

bar, 5 µm. (C) Quantification of Tor1 or Ego1 dots co-localizing with Ivy1 and/or Vps4, Vps21, or 

Ypt7 puncta (from A, B). Tor1 dots (n ≥ 100), Ego1 dots (n ≥ 100), Ivy1 dots (n ≥ 150), Vps4 dots (n 

≥ 500), Vps21 dots (n ≥ 500), Ypt7 dots (n ≥ 100) from three independent experiments were 

quantified by Image J. (D) Schematic representation showing the observed populations of 

fluorescent mGFP-Tor1 and Ego1-mGFP dots in cells. Dark grey dots indicate the fraction of Tor1 

(top panel) or Ego1 (bottom panel) co-localizing with Ivy1, and Vps4 (left), Vps21 (middle), or Ypt7 

(right) puncta. Blue spots indicate the fraction of Tor1 or Ego1 co-localizing just with Ivy1. Red dots 
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indicate the fraction of Tor1 or Ego1 co-localizing with just Vps4 (left), just Vps21 (middle), or just 

Ypt7 (right). Light grey dots indicate the fraction of Tor1 or Ego1 without any colocalization with the 

selected markers. (E, F) Localization of Kog1 or Ivy1 relative to vacuolar TORC1 (VT) and 

endosomal TORC1 (ET) reporters. Cells expressing mCherry-tagged Kog1 or mScarlet-tagged Ivy1 

were transformed with ET (FYVE-GFP-Sch9C-term) or VT (Sch9C-term-GFP-Pho8N-term) reporters. The 

cells were grown in a synthetic medium, analyzed by fluorescence microscopy and shown as 

individual slices. Scale bar, 5 µm. (G) Quantification of the number of Kog1 or Ivy1 dots co-localizing 

with ET-positive dots. Kog1 dots (n ≥ 100), Ivy1 dots (n ≥ 150), ET dots (n ≥ 200) were quantified by 

Image J. Error bars represent standard deviation (SD) of three independent experiments. 

 

Figure 2. Ivy1-positive structures mark SEs that are distinct from MVBs. (A, B) Localization of 

Ivy1-positive dots relative to endosomal proteins. Cells expressing mGFP-tagged Ivy1 and mCherry-

tagged Vps4, Vps8, Vps21, Kog1 or mCherry-tagged Ivy1 and GFP-tagged Ypt7, Ego1, Gtr2, 

mNeon-tagged Fab1 were grown in a synthetic medium. Vacuoles were stained with CMAC. The 

cells were analyzed by fluorescence microscopy and individual slices are shown. Scale bar, 5 µm. 

(C) Quantification of Ivy1 dots co-localizing with endosomal proteins. Ivy1 dots (n ≥ 150), Vps4 dots 

(n ≥ 300), Vps8 dots (n ≥ 50), Vps21 dots (n ≥ 200), Ypt7 dots (n ≥ 150), Ego1 dots (n ≥ 50), Gtr2 

dots (n ≥ 50), Kog1 dots (n ≥ 50), or Fab1 dots (n ≥ 50) were quantified by Image J. Error bars 

represent standard deviation (SD) of three independent experiments. (D) Ivy1 localization by lattice 

light-sheet microscopy (LLSM) after 3D deconvolution (video 1). Cells expressing mGFP-tagged Ivy1 

were grown in a synthetic medium. Vacuoles were stained with FM4-64 and visualized relative to 

Ivy1-mGFP by Imaris. Scale bar, 5 μm. 200-500 cells were analyzed in each independent 

experiment. (E) Schematic model showing the location of fluorescent Ivy1-mGFP expressed in yeast 

cells. The green ring corresponds to Ivy1 localization on the vacuolar membrane (Class I), green 

spots indicate SEs (Class II), and magenta spots are MVBs. (F) Fluorescence intensity distribution 

of all tracked spots for Ivy1-mGFP from video 1. (G) Speed distribution based on trajectory 

displacements per time point of all tracks for Ivy1-mGFP from video 1. The data were analyzed as 
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in Figure 2F. (H) Speed distribution for Ivy1-mCherry (SEs) and Vps4-HA-mGFP (MVBs) from video 

2. The data were analyzed as in Figure 2F. 

 

Figure 3. SE identity depends on MVB functionality. (A, B) Localization of Ivy1 relative to 

endosomal proteins in ESCRT mutants. Wild-type or vps4Δ cells expressing mGFP-tagged Ivy1 and 

mCherry-tagged Vps8, Vps21, Ypt7, Kog1 or mCherry-tagged Ivy1 and GFP-tagged Ego1, mNeon-

tagged Fab1 were grown in a synthetic medium. Vacuoles were stained with CMAC. The cells were 

analyzed by fluorescence microscopy and shown as individual slices. Scale bar, 5 µm. (C) 3D track 

of the mean fluorescence intensity of Ivy1-mGFP from videos 3 and 4. Wild-type or vps4Δ cells 

expressing mGFP-tagged Ivy1 were grown in a synthetic medium. Vacuoles were stained with 

CMAC and the data were analyzed as in Figure 2F. (D) Quantification related to panels A and B. 

Ivy1 dots (n ≥ 200), Vps4 dots (n ≥ 400), Vps21 dots (n ≥ 300), Ypt7 dots (n ≥ 100), Ego1 dots (n ≥ 

50), Kog1 dots (n ≥ 100), or Fab1 dots (n ≥ 50) were quantified by Image J. Error bars represent 

standard deviation (SD) of three independent experiments. n.s, p>0.05 (Student’s t-test). (E) 

Localization of Tor1 or Ego1 relative to Ivy1 and Cps1 in vps4∆ cells. Cells expressing mGFP-tagged 

Tor1 or Ego1 with HaloTag-Ivy1 and mCherry-Cps1 were grown in a synthetic medium. The cells 

were incubated with the Janelia fluor 646 HaloTag ligand for 1 h and washed 8 times before imaging. 

The cells were analyzed by fluorescence microscopy and shown as individual slices. Scale bar, 5 

µm. (F) Quantification of Tor1 or Ego1 dots co-localizing with Ivy1 and/or Cps1 from panel E. Tor1 

dots (n ≥ 100), Ego1 dots (n ≥ 100), Ivy1 dots (n ≥ 200), Cps1 dots (n ≥ 200) from three independent 

experiments were quantified by Image J. (G) Schematic model showing the different populations of 

mGFP-Tor1 and Ego1-mGFP dots analyzed in panel F. Dark grey spots indicate Tor1 or Ego1 dots 

co-localizing with both Ivy1 and Cps1. Blue and red spots indicate Tor1 or Ego1 dots co-localizing 

with just Ivy1 or just Cps1, respectively. Light grey spots indicate Tor1 or Ego1 dots that show 

colocalization neither with Ivy1 nor with Cps1. 

 

Figure 4. Ivy1-positive structures accumulate in HOPS mutants. (A-C) Localization of Ivy1 

relative to the vacuole. Selected temperature-sensitive (ts) strains (vps11-1, vps18-1, vps11-3) 
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expressing mGFP-tagged Ivy1 were grown at 24°C in a synthetic medium, and then shifted to 24°C 

or 37°C for 1 h. Vacuoles were stained with FM4-64. The cells were analyzed by fluorescence 

microscopy and shown as individual slices. Scale bar, 5 μm. (D) vps11-1 fab16D cells expressing 

mGFP-tagged Ivy1 were stained with CMAC and analyzed as before. (E) Quantification of Ivy1 dots 

per cell in the indicated mutant strains grown at 24 and 37°C. Ivy1 dots (n ≥ 200) were analyzed. 

Error bars represent standard deviation (SD) of three independent experiments. n.s, p>0.05, **, p ≤ 

0.01, ***, p ≤ 0.001 (Student’s t-test). (F) Design of the experimental procedure to determine vacuolar 

proteomics. (G) Vacuolar proteomic analysis. Wild-type and vps11-1 or vps11-3 cells were grown in 

light lysine (wt cells) or heavy lysine (mutant cells) containing SILAC medium as described in 

Methods and incubated at 37°C for 1 h. The vacuoles were isolated and analyzed by mass 

spectrometry. Intensities of identified proteins are plotted in normalized heavy over light SILAC 

ratios. Selected vacuolar proteins are marked. 

 

Figure 5. Ivy1-structures lose early endosomes marker proteins upon HOPS inactivation. (A) 

Quantification of Ivy1 dots co-localizing with Vps4, Apl5, or Fab1 puncta in vps11-1 mutant cells 

grown at 24°C or 37C. Ivy1 dots (n ≥ 200), Vps4 dots (n ≥ 400), Apl5 dots (n ≥ 500), or Fab1 dots (n 

≥ 50) were quantified by Image J. Error bars represent standard deviation (SD) of three independent 

experiments. n.s, p>0.05 (Student’s t-test) (related to Figure S2A). (B) Localization of Ivy1 relative 

to the endosomal Rabs Vps21 and Ypt7, or the SNARE Pep12. vps11-1 ts cells expressing mGFP-

tagged Ivy1 and mCherry-tagged Vps21, Pep12 or mScarlet-tagged Ivy1 and mGFP-tagged Ypt7 

were grown at 24°C in a synthetic medium, and then shifted to 24°C or 37°C for 1 h. Vacuoles were 

stained with CMAC. The cells were analyzed by fluorescence microscopy, and individual slices are 

shown. Scale bar, 5 µm. (C) Quantification of Ivy1 dots that co-localize with Vps8, Vps21, Ypt7, or 

Pep12 puncta. Ivy1 dots (n ≥ 150), Vps8 (n ≥ 100), Vps21 dots (n ≥ 300), Ypt7 dots (n ≥ 100), or 

Pep12 dots (n ≥ 150) were quantified by Image J. Error bars represent standard deviation (SD) of 

three independent experiments. n.s, p>0.05; **, p ≤ 0.01; ***, p ≤ 0.001 (Student’s t-test) (related to 

Figure S2A). (D) Quantification of Vps4 dots that colocalize with Vps8, Vps21, Ypt7, or Pep12 

puncta. Dots of Vps4 (n ≥ 400), Vps8 (n ≥ 100), Vps21 (n ≥ 300), Ypt7 (n ≥ 100), or Pep12 (n ≥ 150) 
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were quantified by Image J. Error bars represent standard deviation (SD) of three independent 

experiments. *, p ≤ 0.05, **, p ≤ 0.01 (Student’s t-test) (related to Figure S3A).  

 

Figure 6. HOPS and retromer mutants differentially affect Ego1 localization away from SEs. 

(A) Ivy1 structures lose signaling complexes upon HOPS inactivation. vps11-1 cells expressing 

mScarlet-tagged Ivy1 and mGFP-tagged Vps35, Ego1 or mGFP-tagged Ivy1 and mCherry-tagged 

Kog1 were grown at 24°C in a synthetic medium and then shifted to 24°C or 37°C for 1 h. Vacuoles 

were stained with CMAC. The cells were analyzed by fluorescence microscopy and individual slices 

are shown. (B) Quantification of Ivy1 dots co-localizing with Vps35, Ego1, or Kog1 puncta. Ivy1 dots 

(n ≥ 200), Vps35 dots (n ≥ 150), Ego1 dots (n ≥ 150), or Kog1 dots (n ≥ 100) were quantified by 

Image J. Error bars represent standard deviation (SD) of three independent experiments. *, p ≤ 0.05, 

**, p ≤ 0.01, ***, p ≤ 0.001 (Student’s t-test). (C) Localization of Sec7 relative to Ivy1, Ego1, or Kog1. 

vps11-1 cells expressing mScarlet-tagged Sec7 and mGFP-tagged Ivy1, Ego1 or mGFP-tagged 

Sec7 and mCherry-tagged Kog1 were grown and analyzed as in (A). (D) Percentage of Sec7 dots 

co-localizing with Ivy1, Ego1, or Kog1 puncta. Ivy1 (n ≥ 200), Sec7 (n ≥ 350), Ego1 (n ≥ 150), or 

Kog1 dots (n ≥ 100) were quantified by Image J. Error bars represent standard deviation (SD) of 

three independent experiments. ***, p ≤ 0.001 (Student’s t-test). (E) Localization of Ivy1 relative to 

Ego1 in wild-type and retromer mutant. Wild-type or vps35∆ mutant expressing mCherry-tagged Ivy1 

and mGFP-tagged Ego1 were grown in a synthetic medium. Vacuoles were stained with CMAC. The 

cells were analyzed by fluorescence microscopy and individual slices are shown. Scale bar, 5 µm. 

(F) Quantification of Ivy1 and Ego1 dots per wt or vps35D cell. Ivy1 dots (n ≥ 200) and Ego1 dots (n 

≥ 200) were quantified. Error bars represent standard deviation (SD) of three independent 

experiments. *, p ≤ 0.05; ***, p ≤ 0.001 (Student’s t-test). 

 

Figure 7. HOPS mutants affect TORC1 activity. (A) Localization of VT relative to the vacuole. Wt, 

vps11-1, and vps11-3 cells were transformed with the VT (Sch9C-term-GFP-Pho8N-term) reporter and 

grown in a synthetic medium at 24°C or 30°C.  Vacuoles were stained with FM4-64. The cells were 

analyzed by fluorescence microscopy and showed as individual slices. Scale bar, 5 μm. (B) The 
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vps11-1 allele causes changes in both vacuolar and endosomal TORC1 activities. Strains with the 

indicated genotypes were transformed with ET (FYVE-GFP-Sch9C-term) or VT (Sch9C-term-GFP-Pho8N-

term) reporters and grown exponentially at 24°C or 30°C on SDC+all medium. To measure ET/VT 

activities (PMID: 30527664), proteins were extracted, run on SDS-PAGE, and the phosphorylation 

levels of the ET/VT reporters were detected by immunoblotting using phospho-specific anti-Sch9-

pThr737 antibodies. ET/VT input levels were detected with anti-GFP antibodies. Different exposures 

are shown to better visualize the effects on ET and VT. (C) Quantifications of the ET/VT assays in 

(A). Significance was determined with a two-tailed Student’s t-test (**p < 0.005; *p < 0.05). (D) 

Phosphorylation states of vacuolar Sch9 and endosomal Vps27. Wt, vps11-1, and vps11-3 were 

grown in a synthetic complete medium. Corresponding cells extracts were run on 7.5% and 9% SDS-

PAGE and probed with phosphospecific Thr737 Sch9 and anti-Sch9 antibodies or run on a 6% gel 

containing 50 µM Mn2+-Phos-tag and probed with anti-Vps27 antibodies. Quantifications of the Sch9 

Thr737 phosphorylation assayed in (D). Error bars represent standard deviation (SD) of three 

independent experiments. **, p ≤ 0.01 (Student’s t-test).  (F) Growth of wild-type, vps4Δ, vps11-1, 

vps18-1, and vps11-3 on rapamycin-containing plates. The cells were grown in synthetic medium 

and spotted onto plates containing SDC+all with or without 2 ng/ml rapamycin and grown at either 

24°C or 30°C for 2–5 days. G) VPS4 deletion affects vacuolar but not endosomal TORC1 activity. 

Wild-type and vps4Δ cells were transformed with ET (FYVE-GFP-Sch9C-term) or VT (Sch9C-term-GFP-

Pho8N-term) reporters and grown exponentially at 30°C in a synthetic medium. ET/VT activities were 

assessed as in panel B. (H) Quantifications of the ET/VT assay in (G). Significance was determined 

with a two-tailed Student’s t test (*, p ≤ 0.05).   

 

Figure 8. HOPS function is required for SE recovery. (A) Schematic diagram of the method for 

monitoring signaling endosomes fusion with vacuoles. (B, C) Tracing of SEs by LLSM during 

recovery of vps11-1 mutant cells (from video 5). vps11-1 cells expressing mGFP-tagged Ivy1 were 

grown at 24°C in a synthetic medium, incubated at 37°C for 1 h, and then tracked and analyzed by 

LLSM at 24°C. Vacuoles were stained with CMAC. The 3D stacks were cropped by Imaris after 

deconvolution, and the different channels were split by ImageJ. Scale bar, 2 µm. Imaris-defined XY, 
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XZ and YZ planes of the 32-min time point are shown. The analyzed dot is indicated in (B) by white 

arrows and Ivy1 fluorescent intensity was analyzed by vantage time plots in Imaris, and the plot 

statistic values were measured by surpass objects with spots (C). (D) 3D view of Ivy1 following dots 

dispersion. The image was extracted from video 5, and all views are shown. (E) Quantification of 

Ivy1 dots in video 6. The numbers of Ivy1 dots were counted manually and analyzed by ImageJ. 

Error bars represent standard deviation (SD) of three independent experiments.  

 

Figure 9. Plasma membrane-derived cargo can pass through the signaling endosomes.  (A) 

Schematic model of α-factor uptake by yeast cells. Green dots refer to SE, green ring to vacuoles, 

magenta dots to MVB. (B) Trafficking of α-factor relative to SEs. Selected time points from LLSM 

image (video 7) after 3D deconvolution are shown. Cells expressing mGFP-tagged Ivy1 were grown 

in a synthetic medium, cooled to 4°C to block endocytosis, and treated with fluorescent α-factor for 

15 min at 4°C. After mounting, α-factor was tracked by LLSM at 23°C. Indicated time points refer to 

the time interval after 5 min when cells were shifted to 23°C. (C) 3D track mean fluorescence 
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surpass objects with spots. The analyzed dots were indicated in (B) by white arrows. The experiment 

was done 3 times with similar observations. (D) Working model of the signaling endosomes function 

in endolysosomal trafficking. Endocytic transport of a plasma membrane protein (red) bound to cargo 

(blue) occur via the early endosome (EE) and multivesicular body (MVB) toward the vacuole. 

Signaling endosomes (SE) are shown at the interface between EE and the Golgi. Rab5 (5, green) 

and Rab7 (7, black) indicate membrane identity of each compartment. Vps4 (4, pink) is present on 

MVBs, Ivy1 on SEs and the vacuole, where also the two pools of EGOC, a substrate of the AP-3 

pathway, and TORC1 are observed. A fraction of EGOC and TORC1 also resides on MVBs. HOPS 

promotes fusion between these compartments. For details see text.  
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Reviewer #1 (Comments to the Authors (Required)): 

The authors have address all my concerns. The manuscript is now much stronger and provides exciting new ideas for signaling
endosomes and TORC1 signaling. 

Reviewer #2 (Comments to the Authors (Required)): 

In this revision, the authors have addressed many of my concerns. Overall, the paper quality has been improved. Signaling
endosome is a new concept coined by the authors, and it has generated significant interest in the field. Thus, it is appropriate to
publish this paper in JCB. 
However, I am still not entirely convinced that Ivy1 can represent signaling endosomes. As the authors stated in this revision,
cells have significantly more Ivy1 dots than Tor1 or Ego1 dots, which means a lot of Ivy1 dots cannot be interpreted as signaling
endosomes. In addition, the colocalization between Ivy1 and signaling endosome makers(Ego1, Tor1, and Kog1) ranged from
40 to 50%, which indicates nearly half (or more) of the Ivy1 dots do not colocalize with signaling endosomes. I understand that
the endosome population is heterogeneous, and it is impossible to find two endosomal proteins to be perfectly colocalizing. Still,
future readers of this paper need to be cautioned with whether Ivy1 is the appropriate maker for signaling endosomes. 
Thus, I suggest the authors do the following without more experiments: 
1. Provide a quantification of average dot numbers per cell for Ivy1, Tor1, Ego1, and Vps4. 
2. Indicate how many cells have been counted for each quantification. 
3. Provide a reverse quantification for Vps4 dots. In other words, what percentage of Vps4 dots are Ivy1 positive? 
4. Include a discussion of the heterogeneity of endosomes and make a clear statement that not all Ivy1 dots can represent
signaling endosomes. 

Other minor points: 
1. Video 2. It appears that the time label is covered by a thumbnail image at the lower right corner. 
2. Again, in video 2, why does Ivy1-GFP appear to have many more dots than other IVY1 images/videos? Is this an artifact
caused by Vps4 tagging?
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