Supplemental Methods and Materials:

T785 Synthesis
N .C
=
N___CH N.__CH N, Cl 7
N N NO
‘ HNO- | POC, ‘ = HZN/\/\/NHBDC o 2
= e 5 ™ No
AcOH, 60°C NO; 65-90°C 2 Et3N, THF, 0°C
OH OH c
NHBoc
1 2 3
N, _Cl N, _Cl
e s o} cl
o}
piC. H, - NH, )J\/\/ P Hk/\/ N= N
. HN cl . HN _meon Ay
EtCAC H EtN, THF \H toluene,100°C NK/\\
NHBoc
NHBoc NHBoc
5 6

4
o
Y
0
o
— o HCI N=
NH; N
- = NH _ I

120°C % /\\/\/

S I L
! = NK/VNHBOC
7 8
3-nitroquinoline-2,4-diol (1). To a solution of quinoline-2,4-diol (260 g, 1.61 mol, 1 eq) in AcOH (1.2 L)
was added fuming nitric acid (152.49 g, 2.42 mol, 108.92 mL, 1.5 eq) dropwise at 0°C. The mixture was
stirred at 65°C for 5 hours. LCMS showed the reactant was consumed. The mixture was cooled to 25°C
and quenched by addition of ice-water (500 mL). The product was separated by filtration and washed with
water (500 mL x 3), dried to give 3-nitroquinoline-2,4-diol (320 g, 1.52 mol, 94.29% yield) as yellow
solid.  The crude product was used in the next step without further purification. LC/MS: m/z = 207.0

[M+H]* TH NMR (DMSO-de, 400 MHz) & 11.96 (s, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.64 (t, ] = 7.2 Hz,

1H), 7.34 (d, J = 8.0 Hz, 1H), 7.27 (t, ] = 7.2 Hz, 1H).

2,4-dichloro-3-nitroquinoline (2). 3-nitroquinoline-2,4-diol (365 g, 1.77 mol, 1 eq) was added slowly to

POCI; (2.44 kg, 15.93 mol, 1.48 L, 9 eq) at 65°C and further heated to 90°C for 12 h. LCMS showed the
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starting material was consumed completely. The mixture was concentrated under vacuum. The residue
was then poured into ice-water (3 L) and stirred for 0.5 h. The aqueous phase was filtered, washed by water
(500 mL x 5) and the filter cake was collected and further purified by silica gel chromatography (Petroleum
ether/Ethyl acetate=20/1, 3/1) to obtain 2,4-dichloro-3-nitro-quinoline (330 g, 1.32 mol, 74.39% yield, 97%
purity) as yellow solid. LC/MS: m/z = 243.0 [M+H]" IH NMR (CDCl;, 400 MHz) 6 8.29 (d, J = 8.4 Hz,
1H), 8.13 (d, J = 8.4 Hz, 1H), 7.96 (t, ] =8.4 Hz, 1H), 7.82 (t, ] = 8.4 Hz, 1H).

Tert-butyl N-[4-[(2-chloro-3-nitro-4-quinolyl) amino]butyl]carbamate (3). To a mixture of 2,4-dichloro-
3-nitro-quinoline (330 g, 1.36 mol, 1 eq) and tert-butyl N-(4-aminobutyl)carbamate (281.18 g, 1.49 mol,
1.1 eq) in THF (1.5 L) was added Et;N (206.09 g, 2.04 mol, 283.48 mL, 1.5 eq) slowly at 0°C and stirred
for 2 h. TLC (Petroleum ether: Ethyl acetate = 1:1, Rf = 0.43) showed the starting materials were consumed
completely and one main spot was detected. The reaction was quenched by water (2 L) and extracted with
EtOAc (800 mL x 3). The combined organic layer was washed by brine (1000 mL), dried over Na;SOg,
filtered, and concentrated in vacuum. The crude product was washed by petroleum ether (1000 mL) and
filtered to give tert-butyl N-[4-[(2-chloro-3-nitro-4-quinolyl) amino]butyl]carbamate (500 g, crude) as
yellow solid. LC/MS: m/z = 395.2 [M+H]" IH NMR (CDCls, 400 MHz) 6 8.12 (d, J = 7.2 Hz, 1H), 7.92
(d, ] =8.4 Hz, 1H), 7.75 (t, ] =7.2 Hz, 1H), 7.53 (t, ] = 7.6 Hz, 1H), 6.43 (s, 1H), 4.70 (s, 1H), 3.50-3.45
(m, 2H), 3.22-3.17(m, 2H), 1.80-1.75 (m, 2H), 1.67-1.61 (m, 2H), 1.44 (s, 9H).

Tert-butyl N-[4-[(3-amino-2-chloro-4-quinolyl)amino]butyl]carbamate (4). To a solution of tert-butyl N-
[4-[(2-chloro-3-nitro-4-quinolyl)aminobutyl carbamate (150 g, 379.89 mmol, 1 eq) in EtOAc (800 mL)
was added Pt/C (40 g, 10% purity) under N». The suspension was degassed under vacuum and purged with
H, several times. The mixture was stirred under H» (50 psi) at 25°C for 3 hours. LCMS and HPLC showed
the starting material was consumed completely. The reaction mixture was filtered and the filtrate was
concentrated to give tert-butyl N-[4-[(3-amino-2-chloro-4-quinolyl)amino]butyl]carbamate (110 g, crude)
as off-white solid. LC/MS: m/z = 365.2 [M+H]" 1H NMR (CDCls, 400 MHz) 6 7.90 (d, J = 8.0 Hz, 1H),
7.79 (d, J = 7.6 Hz, 1H) 7.49-7.45 (m,2H), 4.59 (s, 1H), 4.15-4.10 (m, 2H), 3.29-3.26 (m, 2H), 3.18-3.16
(m, 2H), 1.70-1.60 (m, 4H), 1.45 (s, 9H).
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Tert-butyl N-[4-[[2-chloro-3-(pentanoylamino)-4-quinolyl]amino]butyl] carbamate (5). To a mixture of
tert-butyl N-[4-[(3-amino-2-chloro-4-quinolyl)amino]butyl] carbamate (500 g, 1.37 mol, 1 eq) and Et;N
(208.00 g, 2.06 mol, 286.11 mL, 1.5 eq) in THF (1000 mL) was added pentanoyl chloride (247.85 g,
2.06 mol, 249.10 mL, 1.5 eq) dropwise at 0°C. The mixture was stirred at 0°C for 1 h. LCMS showed
the reaction was completed and desired product was detected. The mixture was poured into ice water (1000
mL) and stirred for 2 min. The aqueous phase was extracted with ethyl acetate (500 mL x 3). The combined
organic phase was washed with brine (1000 mL), dried with anhydrous Na,SOs, filtered and concentrated
in vacuum. The residue was purified by re-crystallization from EtOAc/petroleum ether (1/1, 800 mL) to
give the pure tert-butyl N-[4-[[2-chloro-3-(pentanoylamino)-4-quinolylJamino] butyl] carbamate (550 g,
1.16 mol, 84.92% yield, 95% purity) as light yellow solid. LC/MS: m/z =449.3 [M+H]" 1H NMR (MeOD,
400 MHz) 6 8.14 (d, J = 8.4 Hz, 1H), 7.72 (d, ] = 7.6 Hz, 1H), 7.67 (t, ] = 8.0 Hz, 1H), 7.46 (t, ] = 6.8 Hz,
1H), 3.56 (t,J = 7.2 Hz, 2H), 3.07 (t, J = 7.2 Hz, 2H), 2.51 (t, ] = 7.6 Hz, 2H), 1.77-1.66 (m, 4H), 1.54-1.41

(m, 4H), 1.41 (s, 9H), 1.01 (t, ] = 7.2 Hz, 3H).

Tert-butyl N-[4-(2-butyl-4-chloro-imidazo[4,5-c]quinolin-1-yl)butyl]carbamate (6). To a solution of tert-
butyl N-[4-[[2-chloro-3-(pentanoylamino)-4-quinolyl]amino] butyl]carbamate (490 g, 1.09 mol, 1 eq) in
toluene (1000 mL) was added AcOH (65.54 g, 1.09 mol, 62.42 mL, 1 eq) at 25°C. The mixture was stirred
at 100°C for 15 hours. TLC indicated ~10% of reactant was remained, and one major new spot with
lower polarity was detected. LCMS showed the desired product was detected. The mixture was
concentrated. The residue was poured into ice water (1000 mL) and stirred for 5 min. The aqueous phase
was extracted with ethyl acetate (500 mL x 3). The combined organic phase was washed with NaHCO;.aq
(500 mL) and brine (800 mL), dried with anhydrous Na>SOs, filtered and concentrated in vacuum. The
residue was purified by re-crystallized from EtOAc/ petroleum ether (1/50, 500 mL) to give tert-butyl N-
[4-(2-butyl-4-chloro-imidazo[4,5-c]quinolin-1- yl)butyl]carbamate (400 g, 928.14 mmol, 85.05% yield) as
a white solid. LC/MS: m/z=431.1 [M+H]" 1H NMR (CDCls, 400 MHz) 6 8.19 (d, J = 6.8 Hz, 1H), 8.09
(d, J=7.6 Hz, 1H) 7.66-7.62 (m,2H), 4.61 (s, 1H), 4.54 (t, J=7.6 Hz, 2H), 3.21-2.20 (m, 2H), 3.00
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(t, J=8.0 Hz, 2H), 1.97-1.88 (m, 4H), 1.71-1.69 (m, 2H), 1.55-1.49 (m, 2H), 1.42 (s, 9H), 1.01 (t, J= 7.2

Hz, 3H).

Tert-butyl N-[4-[2-butyl-4-[(2,4-dimethoxyphenyl)methylamino]imidazo[4,5-c]quinolin-1-
yl]butyl|carbamate (7). Tert-butyl N-[4-(2-butyl-4-chloro-imidazo[4,5-c]quinolin-1-yl)butyl] carbamate
(62 g, 143.86mmol, 1 eq) in (2,4-dimethoxyphenyl)methanamine (120.27 g, 719.31 mmol, 108.35 mL, 5
eq) was stirred at 120°C for 3 hr. LCMS showed the reaction was completed. The reaction was quenched
by addition of water (200 mL), acidified by diluted hydrochloride acid and extracted with EtOAc (300 mL
x 3). The combined organic layers were washed by brine (500 mL), dried over Na,SO, filtered and
concentrated under reduced pressure. The residue was purified by re-crystallization from EtOAc
(200mL) to give tert-butyl N-[4-[2-butyl-4-[(2,4-dimethoxyphenyl)methylamino]imidazo[4,5-c]quinolin-
1-yl]butyl]carba mate (70 g, 118.39 mmol, 82.29% yield, 95% purity) as white solid. LC/MS: m/z =562.4
[M+H]" 1H NMR (MeOD, 400 MHz) § 8.22 (d, J = 8.4 Hz, 1H), 8.05 (s, 1H), 7.74 (t, ] = 7.6 Hz, 1H),7.66
(t,J=8.4 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 6.63-6.58 (m, 1H), 6.54 (d, J = 8.0 Hz, 1H) 4.62 (t,J = 7.2 Hz,
2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.12 (t, ] = 6.8 Hz, 2H), 3.00 (t, J = 7.6 Hz, 2H), 1.98-1.86 (m, 4H), 1.69-

1.65 (m, 2H ), 1.53-1.50 (m, 2H), 1.37 (s, 9H), 1.01 (t,J = 7.6 Hz,

1-(4-aminobutyl)-2-butyl-imidazo[4,5-c]quinolin-4-amine  (9). Tert-butyl  N-[4-[2-butyl-4-[(2,4-
dimethoxyphenyl)methylamino Jimidazo[4,5-c] quinolin-1-yl] butyl]carbamate (30 g, 53.41 mmol, 1 eq)
was added to HCI (12M, 200 mL) at 25°C. The mixture was stirred at 25°C for 12 hour. LCMS showed the
starting material was consumed completely. The reaction mixture was filtered, washed with MeOH (500
mL) and the filtrate was concentrated to give the crude product, recrystallized from EtOAc (50 mL) to give
the pure 1-(4-aminobutyl)-2-butyl-imidazo[4,5-c]quinolin-4-amine (17 g, 48.38 mmol, 90.58% yield, 99%
purity, HCl) as white solid. lH NMR (MeOD, 400 MHz) ¢ 8.28 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 8.4 Hz,

1H), 7.75 (t,J =7.6 Hz, 1H), 7.76 (t, ] = 7.6 Hz, 1H), 4.72 (t, ] = 7.6 Hz, 2H), 3.08 (t, J = 7.6 Hz, 2H), 3.01
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(t,J = 7.6 Hz, 2H), 2.07-1.85 (m, 6H), 1.62-1.53 (m, 2H), 1.05 (t, J = 7.6 Hz, 3H). LCMS (ESI): [M+H]".

calculated 312.21, [M+H]" found 312.

Nature Cancer - 39



Supplemental Figure 1:
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Supplemental Figure 1: T785 synthesis and design. (A, B) Confirmation of T785 structure via (A)
proton NMR and (B) LC-MS. (C) Molecular docking studies using a co-crystal structure of human TLRS
and R848 (PDB ID: 3W3N) to visualize T785 in the binding pocket of TLRS supported solvent
accessibility of the point of conjugation. Zoomed in views of the binding pocket show solvent
accessibility of the exit vector (upper panel) and a view of the entire TLRS protein with a single T785

docked (lower panel).
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Supplemental Figure 2:
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Supplemental Figure 2: T78S stimulation is TLR7/8 specific and elicits pDC activation. (A) HEK293
Null reporter cells, the parental cell line used for hTLR7 and hTLRS reporter cells, were stimulated
overnight with a concentration titration of T785 or R848 and activity was measured using QuantiBlue

detection medium. (B) pDCs were isolated from healthy donor blood and stimulated overnight with T785

(TLR7/8), R848 (TLR7/8) or CpG (TLRY). Cytokine secretion was measured by ELISA.
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Supplemental Figure 3:
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Supplemental Figure 3: Myeloid isolation and trastuzumab-ISAC activation. (A) Purity of freshly

isolated myeloid APCs following negative selection by density gradient centrifugation using the

RosetteSep Human Monocyte Enrichment Kit followed by magnetic separation with the EasySep Human

Monocyte Enrichment Kit without CD16 Depletion as assessed by flow cytometry. (B) Gating strategy

for analysis of activation and differentiation of myeloid APCs in all described in vitro experiments. First,
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cells are gated as singlets by FSC or SSC to remove doublets. Next, a cellular size gate using SSC and
FSC removes debris. Viable cells are then gated based on a Live/Dead stain. Finally, myeloid APCs are
gated based on CDI11c" and HLA-DR" expression. (C) Histogram analysis of cell surface marker

expression of total myeloid APCs following stimulation with 80 nM rituximab-ISAC or 80 nM rituximab.
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Supplemental Figure 4:
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Supplemental Figure 4: Myeloid APC differentiation and activation following ISAC stimulation.
Freshly isolated human myeloid APCs were cultured with rituximab, T785, rituximab and T785 or the
rituximab T785-ISAC in the presence of CFSE-labeled CD20" Toledo tumor cells at a 3:1 ratio. The
rituximab concentration is depicted on the X-axis with the concentration of T785 in these assays being
consistent with the amount of T785 conjugated to the rituximab T785-ISAC. (A-C) Myeloid APCs were
analyzed via flow cytometry or cytokine bead array 18 hours after stimulation. Data shown are from 3
donors and are representative of >10 donors (mean and SEM); *P<0.05, **P<0.01, ***P<(.001,
**%%p<(0.0001. (D) Frozen myeloid APCs from were thawed, rested for two hours and incubated with

trastuzumab or trastuzumab T785-ISAC for 18 hours prior to assessment of cell surface markers by FACS
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analysis. Data are from 1 experiment and 3 donors and are representative of at least 3 experiments with 3

donors in each (shown as mean and SEM); *P<0.05, **P<0.01, ***P<(.001, ****P<0.0001.
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Supplemental Figure 5:
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Supplemental Figure 5: Myeloid APC differentiation and activation following ISAC stimulation.

The frequency of positive subsets (percentage positive) was calculated based on gating of unstimulated

monocytes in the absence of tumor. On the left, the gating strategy is shown for unstimulated monocytes

co-cultured with Toledo CD20" tumor cells. A dose dependent response analogous to that measured with

MFI (as reported in the manuscript) is observed when computed as percent positive of total monocytes.
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Supplemental Figure 6:
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Supplemental Figure 6: ISAC stimulation leads to increased antigen cross-presentation and T cell

proliferation. (A) Mouse splenocytes were isolated and cultured in vitro with ovalbumin antigen

complexed with anti-OVA CL264-ISAC or anti-OVA mAb. Antigen cross-presentation was measured

using multicolor flow cytometry through detection of MHC-I bound SIINFEKL peptide on total CD11c”

splenic cells. (B) CD8" T cells with OVA-specific TCR were isolated from OT-1 transgenic mice and

co-cultured with anti-OVA mAb or anti-OVA ISAC stimulated APCs. T cell proliferation was measured

by final T cell count with the initial number of APCs substracted.
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Supplemental Figure 7:
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Supplemental Figure 7: ISACs elicit distinct intracellular signaling in monocytes and ¢DCs. (A-
E) Freshly isolated human PBMC were stimulated 1 pM of rituximab-ISAC or an equimolar mixture
of rituximab and T785 in the presence of CD20" Toledo tumor cells at a 1:1 ratio for 15 minutes. (A)
Signaling induction of p-MAPKAPK2, p-p38, p-CREB and p-S6 in monocytes and cDCs was

quantified by the arcsinh of the ISAC or mixture as compared to the unstimulated PBMCs. (B) cDCs
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were subsetted as CD141 cDCls and CDlc ¢DC2s. (C) Signaling through p-ERK1/2 and p-S6
measured following 5, 15, or 30-minute stimulation with rituximab T785-ISAC or the mixture of
rituximab and T785. (D) Signaling induction of p-MAPKAPK2, p-ERK1/2 and p-IRF7 was quantified
by the arcsinh of the ISAC with and without Syk blockade (R406) as compared to the unstimulated
control. (E) Signaling induction of p-IRF7 was quantified by the arcsinh following stimulation with
rituximab T785-ISAC or rituximab-TLRnull-ISAC (TLRnull-ISAC). (A-E) Data are from six donors
(mean and SEM) for panels A, B, D, E and from two donors (mean and SEM) for panel C. Data are

shown as mean with SEM; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Supplemental Figure 8:
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Figure 8: R406-mediated Syk inhibition does not alter T785 activity in human myeloid APCs.
Monocytes were treated with 1 uM of R406 prior to stimulation with 2 uM T785 overnight. Activation
was assessed by flow cytometry and no statistical significance was seen between the conditions with

and without Syk inhibition. The dashed line represents the expression level of the unstimulated control.
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Supplemental Figure 9:

A

JIMT-1

80 =

60 =

20 =

% Medium Only

1.5

-
o
1

I
]
1

0.0

HCC1954
% 6 g
4 ° 4
i i
s :
3 3
20
B HCC1954

1.5+
>
c
o
£
2
8
s 0.
-

0.0

T T T T T T 1
0.001 0.01 0.1 1 10 100 1000 10000
Concentration (nM)

T T T
0.001 0.01 0.1 1

T T T 1
10 100 1000 10000
Concentration (nM)

bbs

Trastuzumab

Isotype ISAC-T785
Isotype ISAC-CL264
Trastuzumab ISAC-T785
Trastuzumab ISAC-CL264

Supplemental Figure 9: In vitro cancer cell line proliferation with trastuzumab-ISACs. (A) In vitro

HER?2 expression by the indicated cancer cell lines as assessed by flow cytometry with PE-labeled anti-

HER?2 antibody (clone 24D2) (red) or the isotype control (blue). (B) Cancer cell line proliferation assayed

with an MTT assay kit 72 hours after incubation with the indicated tumor cell line and the indicated test

article. Rituximab-ISACs were utilized as isotype controls. Data are from 2 experiments performed in

triplicate.
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Supplemental Figure 10:
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Supplemental Figure 10: Analytical data for representative trastuzumab and rituximab
T785-ISACs. LC/MS and analytical SEC were performed to analyze ISACs following conjugation. For

both the trastuzumab T785-ISAC (A) and rituximab T785-ISAC (B) had average DAR levels of 2.48 and
2.46, respectively. Conjugates were also found to be endotoxin low, with less than 0.05 EU/mg detected.
Analytical SEC was performed to measure aggregation following conjugation, and both conjugates were

found to have <2% aggregate present.

Nature Cancer - 65



Supplemental Figure 11:
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Supplemental Figure 11: T785-ISACs are well tolerated; CL264-ISACs lead to systemic cytokine
secretion and transient body weight loss. NSG or Rag2/IL2rg double knockout mice were implanted with
the indicated human tumor cell line and randomized when the tumor volume reached 50 — 75 mm?
(HCC1954) or 75 — 150 mm?® (JIMT-1). Mice were treated via intraperitoneal injection with 5 mg/kg of
trastuzumab, trastuzumab T785-ISAC, trastuzumab CL264-ISAC or the respective isotype ISACs and
cytokine secretion was measured by ELISA 4 hours following administration. Body weight was measured

following dosing every 5 days, with doses indicated by dashed vertical lines.
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Supplemental Figure 12
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Supplemental Figure 12: Gene expression data for all genes used to calculate gene signatures in
HCC1954 model. NanoString gene expression data was obtained using the mouse pan-cancer immune
profiling panel, and gene expression pathway signature analysis was performed using the nSolver
Advanced Analysis Pathway Score algorithm. Data are shown as heat maps for all genes used to calculate
gene signature scores for (A) Dendritic Cell Functions, Macrophage Functions, Antigen Processing and

Presentation, (B) Chemokines and (C) Cytokines.
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Supplemental Figure 13:
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Supplemental Figure 13: Trastuzumab T785-ISAC treatment induces increased cytokine and
chemokine secretion. HCC1954 tumors were implanted into SCID/Beige mice and were harvested from
cohorts of mice 24 hours after a single dose of 5 mg/kg ISAC or control antibodies (n=5 mice per group).
(A) Tumors were analyzed by NanoString mRNA quantification and data was analyzed by nSolver
Advanced Analysis Pathway Scoring to measure changes in the Cytokines signature. (B) Cytokine
secretion was measured in tumor lysates by MSD. Data are shown as mean with SEM and statistics are

shown with *P<0.05, **P<0.01, ***P<0.001, ****P<(0.0001.
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Supplemental Figure 14:
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Supplemental Figure 14: Trastuzumab T785-ISAC treatment in HCC1954 xenograft model induces
increased CD11c gene expression. HCC1954 tumors were implanted into SCID/Beige mice and were
harvested from cohorts of mice 1, 3, 6, or 9 days after treatment with a single dose of 5 mg/kg ISAC or
control antibodies (n=5 mice per group). Tumors were analyzed by NanoString mRNA quantification.
Data are shown as mean with SEM and statistics are shown with *P<0.05, **P<0.01, ***P<0.001,

**A%P<0.0001.
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Supplemental Figure 15:
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Supplemental Figure 15: rHER2 expression on MMC syngeneic tumor cell lines pre- and post-
implantation. rtHER2 expression was measured on the MMC tumor cell line by flow cytometry with
fluorescently-conjugated anti-THER2 antibody (red) or an isotype control (blue). For the MMC tumor

cell line, antigen expression was assessed 23 days post implantation.

Nature Cancer - 71



Supplemental Figure 16:
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Supplemental Figure 16: Body weight and tumor burden following rHER?2 T785-ISAC treatment
in MMC tumor model. (A) Treatment with rHER2 T785 ISAC or its controls led to no measurable
significant impact on body weight relative to the baseline body weight measured prior to initiation of
treatment. (B) MMC tumor burden was measured at 1 and 6 days post initiation of treatment with 5
mg/kg rtHER2 T785-ISAC or its controls. Tumors were measured and then harvested at each time point
for further analysis by NanoString, MSD protein quantification, and immunohistochemistry. Data are

shown as mean with SEM; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Supplemental Figure 17:
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Supplemental Figure 17: rHER2 T785-ISAC treatment in the MMC model triggers chemokine and
pro-inflammatory cytokine production in the tumor. MMC tumor cells were implanted in FVB/N-TgN
(MMTV-Erbb2) mice. Mice were treated via intraperitoneal injection with 5 mg/kg of mouse anti-rat HER2
antibody, mouse anti-rat HER2 T785-ISAC or their respective isotype controls upon reaching a tumor
volume of about 500 mm?. Cytokine levels were measured in tumor lysates 24 hours after administration

by MSD. Data are shown as mean with SEM; *P<0.05, **P<(.01, ***P<0.001, ****P<0.0001.
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Supplemental Figure 18:
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Supplemental Figure 18: Gene expression data for all genes used to calculate gene signatures in
MMC model. NanoString gene expression data was obtained using the mouse pan-cancer immune
profiling panel, and gene expression pathway signature analysis was performed using the nSolver
Advanced Analysis Pathway Score algorithm. Data are shown as heat maps for all genes used to calculate
gene signature scores for (A) Dendritic Cell Functions, Macrophage Functions, Antigen Processing and

Presentation, (B) Chemokines, (C) Cytokines, and (D) T Cell Functions.
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Supplemental Figure 19:
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Supplemental Figure 19: Gating scheme for flow cytometry analysis of tumor samples from MMC

syngeneic tumor model.
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Supplemental Figure 20:
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Supplemental Figure 20: Phagocyte depletion in the MMC model leads to absence of myeloid
APC increase seen following ISAC treatment. FVB/N-TgN (MMTV-Erbb2) mice were implanted
with the MMC tumor cell line. Mice were randomized the tumor volume reached about 500 mm? and
were pre-treated with clodronate-loaded or control liposomes for phagocyte depletion. Animals were
then treated with 5 mg/kg rHER2 T785-ISAC mouse anti-rat HER2 antibody, mouse anti-rat HER2
T785-ISAC, or isotype T785-ISAC (TA99) given twice every 5 days (n=5 mice per arm). Tumors were
harvested 6 days following initiation of treatment and were analyzed by flow cytometry, with myeloid
APCs defined as viable cells with CD45+CD11b+CD11¢+F4/80+ expression. Data are shown as mean

with SEM; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Supplemental Figure 21:
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Supplemental Figure 21: Analytical data for representative trastuzumab T785-ISAC and CL264-

ISAC. LC/MS and analytical SEC were performed to analyze ISACs following conjugation. The

trastuzumab T785-ISAC had an average DAR level of 2.48 while the trastuzumab CL264-ISAC had an

average DAR of 2.51. Conjugates were also found to be endotoxin low, with less than 0.05 EU/mg detected.
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Supplemental Figure 22:
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Supplemental Figure 22: CL264-ISACs lead to systemic cytokine secretion and transient body weight
loss; T-cell dependent efficacy in MMC syngeneic tumor model. (A) FVB/N-TgN (MMTV-Erbb2) mice
were implanted with the MMC tumor cell line. Mice were randomized when the average tumor volume
reached 500 mm® and treated via intraperitoneal injection with 5 mg/kg of mouse anti-rat HER2 antibody
or mouse anti-rat HER2 CL264-ISAC every 5 days for a total of 3 treatments (n=4 mice per arm). For CD8
T cell depletion, mice were randomized when the tumor volume reached ~280 mm®. Mice were treated
with an antibody to deplete CD8 T cells or with a rIgG2b control, and then treated via intraperitoneal
injection with 2 mg/kg of mouse anti-rat HER2 antibody or mouse anti-rat HER2 CL264-ISAC every 7
days for a total of 2 treatments (n=5-7 mice per arm). Anti-rat HER2 CL264-ISAC treated mice that
experienced complete tumor regression for >90 days (n=4 mice per arm) were challenged with the MMC
tumor cell line. (B) Balb/c mice were implanted with the CT26-rHER2 tumor cell line and were randomized
when the tumor volume reached 50 mm?. Mice were then treated via intraperitoneal injection with 10 mg/kg
of mouse anti-rat HER2 or mouse anti-rat HER2 CL264-ISAC every 5 days for a total of 6 treatments and
body weight was measured relative to the baseline body weight prior to initiation of treatment. Data are

shown as mean with SEM; *P<0.05, **P<0.01, ***P<0.001, ****P<(.0001.
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Supplemental Figure 23:
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Supplemental Figure 23: ISACs elicit production of CXCL9 and CXCL11 in HCC1954 xenograft

model. SCID/Beige mice were implanted with the human breast cancer cell line HCC1954. Mice were

dosed with a single treatment of 5 mg/kg of trastuzumab, trastuzumab T785-ISAC, rituximab, or rituximab

T785-ISAC by intraperitoneal injection. Tumors were harvested 24 hours after treatment and analyzed by

Nanostring mRNA quantification. Data are from one experiment with 5 mice per group (mean and SEM);

*P<0.05, **P<0.01, ***P<0.001, ****P<(.0001.
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Supplemental Figure 24:

A B
% Ly6G+ % Ly6G-F4/80+
100- 5 —e
8 As & A 4 -
+ + [ —
2 )
= 604 T 3
Q o)
o o
‘5 401 ‘s 2-
e 2
201 14
0- T T |\ *‘T' 0-
™2 2.0 O N Q X
S L0° et S N x& o
\6\‘000‘.0,\»'1? @(‘91?0 .&& oo.b o&
GRS T L
&0\\\} RN A o R\
=S A &

Supplemental Figure 24: Cell depletion is measured in the periphery following depleting treatments
in the HCC1954 model. HCC1954 tumor cells were implanted into SCID/Beige mice, and cells of
interest were depleted prior to and during trastuzumab T785-ISAC treatment using anti-Ly6G antibody
(rat IgG2a control), clodronate liposomes (control liposomes) or anti-Gr1 antibody (rat IgG2b control).
Data are from one experiment with n=4-6 mice per group and cells were analyzed by flow cytometry 13
days following initiation of treatment. (A) Percent of Ly6G+ cells of CD11b+ cells in blood taken during
xenograft depletion study. (B) Percent of Ly6G-F4/80+ cells of CD11b+ cells in blood. Data are

presented as mean with SEM; ******pP<(.000001 and ***P <0.001.
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Supplemental Table 1:

Fc Receptor Binding

FCGR1 (CD64)
FCGR2A (CD32A)
FCGR2B (CD32B)

FCGR3A (CD16A)

Rituximab
Kp (nM)
551 +0.298
4100+ 196
6230+ 134

377+ 528

Rituximab-{SAC
Kp (nM)
5.08+0.266
3600 + 253
4790 + 839

214+ 916

Supplemental Table 1: Binding affinities of monoclonal antibody Rituximab and Rituximab-ISAC

for the Fc gamma receptors. Rituximab or Rituximab T785-ISAC were injected over CMS5 chips

containing immobilized Fc gamma receptor proteins. Kinetics for FCGR1 and FCGR3A were analyzed

using Biacore T200 evaluation software (V3.1) using kinetic fit (1:1). For low affinity receptors

(FCGR2A and FCGR2B), KDs were determined using steady state affinity (1:1).
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Supplemental Table 2:

Antibody Element Mass
CD32 La 139
CD3 (UCHT1) Ce 140
p-PLCG2 (K86-689.37) Pr 141
CD19 (HIB19) Nd 142
CD123 (6H6) Nd 143
p-Src (K98-37) Nd 144
CD4 (RPA-T4) Nd 145
CD8a (RPA-T8) Nd 146
CD11c (Bu15) Sm 147
CD64 (10.1) Sm 148
p-STATS (Y694) (47) Nd 150
CD107a Eu 151
p-AKT Sm 152
p-MAPKAPK (27B7) Eu 153
p-SHP2 (pY580) (Polyclonal) Sm 154
CD11b (ICRF44) Gd 155
p-SLP76 (Y128) (J141-668.36.58) Gd 156
CD1c Gd 157
CD33 Gd 158
IRF7-PE-antiPE Tb 159
p-ZAP70/Syk (Y319/Y352) (17a) Gd 160
CD14 (M5E2) Dy 161
p-CREB (S133) (87G3) Dy 162
p-NFkB (S529) (K10-895.12.50) Dy 163
p-PI3K Dy 164
CD16 Ho 165
IkB (total) (L35A5) Er 166
p-PLCG1 (Y783) Er 167
p-ERK1/2 (20A) Er 168
p-p38 (T180/Y182) (36/ p38) m 169
CD40 (5C3) Er 170
p-Btk/Itk (Y551/Y511) (24a/BTK) Yb 171
p-S6 (S235/S236) (N7-548) Yb 172
p-STAT3 (Y705) (4) Yb 173
p-Jnk/SAPK (T183/Y185) (G9) Yb 174
CD141 Lu 175
CD56 (NCAM16.2) Yb 176
DNA1 Ir 191
DNA2 Ir 193
HLA-DR Bi 209

Supplemental Table 2: CyTOF antibody panel for the assessment of intracellular signaling in

human PBMCs. A panel of antibodies targeting surface and intracellular markers was designed to enable

phenotyping and sub-setting of immune cells found within PBMCs as well as measure signaling across

diverse signaling pathways.
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