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I. EXPERIMENTAL DETAILS.

Cell culture. Parental Madin-Darby Canine Kidney (MDCK) GII cells (kindly provided by M. Gloerich, UMC
Utrecht) were cultured in a 1:1 ratio of low glucose DMEM (D6046; Sigma-Aldrich) and Nutrient Mixture F-12
Ham (N4888; Sigma-Aldrich) supplemented with 10% fetal calf serum (Thermo Fisher Scientific), and 100 mg/mL
penicillin/streptomycin, 37 ◦C, 5% CO2. For experiments, cells were seeded on non-coated cover glasses and cultured
in high-glucose Dulbecco Modified Eagle’s Medium (D1145; Sigma-Aldrich) supplemented with 10% fetal calf serum,
2 mM glutamine, and 100 mg/mL penicillin/streptomycin. Before fixation, cells were incubated for 2 h in the CDK1-
inhibitor RO-3306 (10 µM in final concentration; SML0569; Sigma-Aldrich).
Immunostaining. After 8 h, cells formed a closed monolayer. To increase the cell density within the monolayer and

to attain a buckling instability, cells were cultured for a total of 25 h and then fixed for 15 min in 4% paraformaldehyde
(43368; Alfa Aesar) in phosphate-buffered saline (PBS). After fixation, cells were permeabilized for 10 min with 0.1%
Triton-X 100 and blocked for 60 min with 1% bovine serum albumin in PBS. E-cadherin was visualized using an E-
cadherin rabbit antibody (1:500 ratio; 24E10; Cell Signalling) followed by staining with Alexa 532 antirabbit secondary
antibody (1:500 ratio; A-11009; Invitrogen). F-actin was stained with Alexa Fluor 647-labeled phalloidin (1:500 ratio;
A22287; Invitrogen) and the DNA with DAPI (1:1000 ratio; Sigma- Aldrich).
Microscopy. Samples were imaged at high resolution on a home-build optical microscope setup based on an

inverted Axiovert200 microscope body (Carl Zeiss, Oberkochen, Germany), a spinning disk unit (CSU-X1; Yokogawa
Electric, Musashino, Tokyo, Japan), and an emCCD camera (iXon 897; Andor Labs, Morrisville, NC). IQ-software
(Andor Labs) was used for setup-control and data acquisition. Illumination was performed using fiber-coupling of
different lasers (405 nm (CrystaLaser, Reno, NV), 514 nm (Cobolt AB, Solna, Sweden), and 642 nm (Spectra-Physics
Excelsior; Spectra-Physics, Stahnsdorf, Germany)). Cells adhered on a cover glass were inspected with an EC Plan-
NEOFLUAR 40 1.3 Oil Immersion Objective (Carl Zeiss).
Image analysis. Cell segmentations and the height-to-radius profile analysis were performed using written scripts

in Matlab2018a. Cell boundaries were identified from a maximum intensity projection of the F-actin signal of a
confocal z-stack of the top part of the dome. The height profile was determined by the averaged intensity of the
F-actin signal of a radius-dependent annulus area per plane of the z-stack. Fiji software was used for the orthogonal
view of the dome. 3D reconstructions were done by ImarisViewer9.7.0 and z-directions were corrected for spherical
aberration and axial distortion [56].

II. HEIGHT FUNCTION OF MDCK DOMES

MDCK GII epithelial cells were growing on a coverslip. We observe that, after they formed a closed monolayer
on the substrate, non-planar features, so called domes, developed due to the superelastic properties of the cells [22].
We imaged domes of different heights and diameters (see Fig. 1). Depending on the focal plane between the inner
and outer area of the monolayer, cells changed their cell-cell contact length and the number of nearest neighbors.
As described in the main text, this leads to the presence of topological defects in regions of high curvature (Fig. 1A
and B). Furthermore, we sometimes found the additional disordered and folded structures on top of domes, see for
example Fig. 1C. We measured the height of the buckled cell layer above the flat substrate. The height-to-radius
profile of the outer area of the monolayer shows with increasing radius an increase in height, see Fig. 1D. We assume
that the buckling instability and the formation of additional structures on top of the dome is caused by the cells
continued division and growth even after they form a closed monolayer. The growth and division would cause the
buildup of stresses in the monolayer that are relieved by the buckling. This is in agreement with e.g. Ref. [6]. We
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Figure 1. Domes in MDCK layers. Pictures of three domes of different sizes in panels (A)-(C) for which we measured the
height of the cell monolayer above the flat substrate. The height of the outer area of domes as a function of the radius (distance
from the center of the dome along the flat reference plane) is shown in panel (D). The color of each plot corresponds to the
label in the panels (A)-(C), cyan to the dome in Fig. 1D in the main text. Segmented cells of domes shown in panel (A) and
(B) illustrate the presence of topological defects near the top of the dome. For the three smallest domes, namely the functions
colored blue [shown in panel (B)], green [shown in panel (A)], and cyan (shown in Fig 1D in the main text), we see that with
increasing height at the center both the radius of the dome and the width of the plateau of constant height near the center are
increasing. Furthermore, the height is a monotonically decreasing function of the radius. Instead, for the largest dome [red and
shown in panel (D)] additional chaotic and folded structures were observed on top of the dome such that the height is maximal
away from the origin. Red: F-actin, green: E-cadherin, blue: nuclei.

speculate that, consistently with the mechanism outlined in the main text, a net positive topological charge could
facilitate the out-of-plane deformation of the monolayer, hence the formation of domes, in combination with other
system-specific mechanisms, such as the injection of fluid under the cell layer which results in a focal detachment
[21, 22]. Furthermore, it is possible that a difference in ion-concentration surrounding the monolayer between apical
and basal side can even support the dome formation in areas where topological defects appear, see also Ref. [21].

To support this speculation, we have we analyzed eleven domes and counted the total topological charge in the
central region, where the Gaussian curvature is maximal and positive. The topological charge of a cell having ci sides
is conventionally defined as qi = 6 − ci. Thus, pentagonal cells (i.e. ci = 5) have topological charge qi = 1, whereas
heptagonal cells (i.e. ci = 7) has charge qi = −1. The total topological charge is then computed by summing the
individual charges of all the cells in the central region of a dome, hereafter referred to as “region of interest” (ROI):
Q =

∑
i∈ROI qi (see Fig. 2A). We found that all domes in our sample feature a positive total topological defect charge,

with the mean charge of the eleven domes being Qmean = 9.3± 4.9 (mean ± standard deviation).
Furthermore, as shown in Fig. 2B we find that the total topological charge of a dome is strongly correlated with the

total number of cells per dome (linear correlation coefficient r = 0.85). Such a linear relation, is consistent with the
hypothesis that the topological charge of the cellular monolayer effectively screened by its Gaussian curvature, i.e.

Q ≈
∫
dome

dAK . (1)

To illustrate this point, one can approximate the dome as a spherical cap of radius R, so that K = 1/R2 and
dA = dΩR2, with dΩ the infinitesimal solid angle. The right hand side of Eq. (1) equates then the solid angle ∆Ω
spanned by the ROI: i.e. Q ≈ ∆Ω (see Fig. 2A). This, in turn, is proportional to the number of cells it encloses, given
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Figure 2. Topological charge of domes. (A) Sketch of topological defects on a dome. Heptagons are blue and pentagons
are red. (B) The total topological defect charge per dome increases linearly with the number of cells constituting the dome.
(C) The cells contributing a positive topological charge are mainly pentagons. The height of each bar in the histogram is the
averaged probability of finding a cell with n nearest neighbors in the eleven analysed domes. The error bar represents their
standard deviations.

that Ncells = AROI/Acell = R2∆Ω/Acell. Thus

Q ≈
(
Acell

R2

)
Ncells . (2)

Fig. 2C shows instead the probability distribution of the number of sides ci of the cells in the ROI obtained from a
sample of eleven domes. We see that a large majority of the cells are either pentagonal or hexagonal with almost half
of the observed population being pentagonal (probability of 0.42± 0.09 (mean ± standard deviation)). Since, defects
larger than 6−fold cells are underrepresented this leads to all the domes observed having a positive total topological
charge.

III. FORCE BALANCE

In general, the force balance on the surface is given by ∇iσi = −Ξext [28, 41],where σi denotes the surface stress
and Ξext external forces applied to the system. We use bold letters to refer to vectors in R3 and latin indices to
refer to surface coordinates onM. For example, the stress tensor can be written as a 2× 3 matrix. It is possible to
decompose the stress into its tangential and normal component, σi = σijej + σinn. In the absence of external forces,
the force balance can then be written as

∇iσi =
(
∇iσij +K j

i σ
i
n

)
ej +

(
∇iσin − σijKij

)
n = 0 . (3)

Here, we used ∇in = K j
i ej and ∇jej = −Kijn. From the free energy of the main text we find, following Ref.

[29, 38–40] the tangential and normal stress tensors

σFij = γgij − κBHKij + κBH
2gij + κF

[
gijχ∇2χ− χ∇i∇jχ+∇iχ∇jχ

]
, (4)

and

σFn,i = κB∇iH + κF

[
(2Hg ji − 2K j

i )χ+ 2(Kj
i − 2g ji H)

]
∇jχ+ κFK

j
i χ∇jχ . (5)

To derive the equations in the main text we use the well-known geometric identity Kgij = 2HKij −KikK
k
j and the

commutator [∇i,∇2]χ = −K∇iχ. Using these together with the other stress tensors presented in the main text, we
find the hydrodynamic equation for the momentum density and the normal force balance by projecting the general
force balance onto the tangential and normal direction, respectively. We will present a more detailed derivation in a
future work.



IV. DERIVATION OF HEIGHT EQUATION

In this section we derive the height equation, Eq. (5) of the main text, from the general equations describing the
dynamics of the active surface, Eqs. (2) and (3) of the main text. We work in the Monge gauge where a height field
h(r) is defined as described in the main text. A +1 defect is at the center of a disk of radius R and we assume that
|∇h| � 1. As shown in the main text, we can find the explicit solutions for the velocity and director fields given
in Eqs. (4) from the Eqs. (2) of the main text and we are thus now concerned with rewriting Eq. (3) of the main
text. In the small-gradient approximation we have K ≈ 0, H ≈ −∇2h/2, and the metric is just the identity such that
covariant derivatives are equal to the flat derivatives. It is then straightforward to see that

fne = −γ∇2h(r) +
κB
2
∇4h(r) . (6)

Furthermore, using χ(r) = − log r/R, we find

fnd = κF
r∂2rh(r)− ∂rh(r)

r3
. (7)

Lastly, for the curvature tensor coupled to the hydrodynamic and active stress tensor, we find the following. We have,

Kijσ
h,ij = (∇i∇jh)

[
Phδ

ij − η
(
∇ivj +∇jvi

)]
, (8)

and

Kijσ
a,ij = α(∇i∇jh)

(
1

2
δij − pipj

)
, (9)

where δij is the flat polar metric. For the first term on the right-hand side of both Eq. (8) and Eq. (9) we have
(∇i∇jh)δij = ∇2h. Furthermore, in polar coordinates ∇i∇jh = ∂i∂jh − Γkij∂kh, with Γkij the Christoffel symbol
associated with δij . This is non-zero only if i = j = r, in which case ∇2

rh = ∂2rh, or if i = j = ϕ, then ∇2
ϕh = r∂rh.

Similarly, we have ∇ivj = ∂ivj + δilΓjklv
k. With vr = 0 and vϕ = vϕ(r) we then find that this is non-trivial only if

i = r and j = ϕ such that ∇rvϕ = ∂rvϕ. Thus, since ∇r∇ϕh = 0, the second term in Eq. (8) vanishes. Hence, as
mentioned in the main text, the velocity does not enter explicitly in the final equation for h. For the last term we
have:

pipj∇i∇jh(r) = cos2 ε ∂2rh(r) +
sin2 ε

r
∂rh(r) , (10)

where ε = ± arccos(−1/λ)/2 as found above. Therefore, adding Eqs. (6)-(9) together, we find

0 = fne + fnd +Kij

(
σh,ij + σa,ij) =

(
Ph +

α

2
− γ
)
∇2h+

κF
r
∂r
h

r
+
λ− 1

2λ
∂2rh+

λ+ 1

2λr
∂rh+

κB
2
∇4h (11)

which can be rewritten to yield the height equation, Eq. (5) in the main text.

V. MAPPING TO PHYSICAL UNITS

The model parameters in lattice units used for simulations are kφ = 0.008, A0 = 0.02, κF = 0.02, β = 0.03,M =
0.1,Γ = 1, λ = 1.1, and η = 5/3. By following previous studies [49, 54], an approximate relation between simulation
and physical units (for an active gel of cytoskeletal extracts) can be obtained using L = 1 µm as the length-scale,
τ = 10 ms as the time-scale, and F = 1000 nN as the force-scale. A mapping of some relevant quantities is reported
in Table I.

VI. MOVIES

Movie 1: 3D dome animation. 3D rotation and reconstruction of the same MDCK GII monolayer as in Fig.
1D of the main text. Double scaling of the z-direction was chosen to ease the visualization of the buckling instability.
The color code is as follows. Red: F-actin, green: E-cadherin, blue: nuclei.



Model parameters Simulation units Physical units
Shear viscosity, η 5/3 1.67 KPas
Elastic constant, κF 0.02 100 nN
Flow-alignment parameter, λ 1.1 dimensionless
Diffusion constant, D =Ma 0.001− 0.015 0.0087− 0.0128 µm2s−1

Activity, α 0− 0.01 (0− 100) KPa

Table I. Mapping of some relevant quantities between simulation units and physical units.

Movie 2: Profile and tessellation. Left: top-to-bottom confocal z-stack of the same MDCK GII monolayer as
in Fig.1D of the main text. At a distance of 15.3 µm to the coverslip, cells are segmented and correlated according to
their number of nearest neighbors. Top-right: cross section of the dome. The white lines indicate the inner, middle
and outer area of the monolayer. Bottom-right: height-to-radius profile of the buckled monolayer starting from the
center of the dome (see also Fig. 1). The position (red circle) follows a sigmoidal fit of the outer area and moves
according to the z-stack animation in the left panel. Red: F-actin, green: E-cadherin, blue: nuclei.
Movie 3: Oscillation between buckled states. Oscillations between a cuspidal configuration with negative

curvature at the center and a smooth configuration. From an initially flat state the interface buckles. Note that
while the initial protrusion is growing the defect is slightly off-center, leading to the whole protrusion moving on the
xy-plane. (The z-direction corresponds to the interface normal in the initial state.) After some time (t > 380000)
the interface starts to periodically oscillate between these two configurations. The oscillation is accompanied by the
growth and shrinking of additional thin protrusions at the top. The white vectors denote the polarization field, while
the color code refers to the local magnitude of the flow according to the color bar on the right-hand side.
Movie 4: Droplet nucleation. The large extensile active stresses lead to the rapid growth of protrusions that

cannot be counteracted by the elasticity of the interface. This results in a periodic breaking of the interface and the
consequent nucleation of a droplet after each rupture. There are two +1 defects in the polarization field on each
of the droplets. These deform under the straining action of the active liquid crystal on the surface and eventually
dissolve due to Ostwald ripening. The white vectors denote the polarization field, while the color code refers to the
local magnitude of the flow according to the color bar on the right-hand side.
Movie 5: Chaotic dynamics. Shown is an example of the chaotic dynamics found at very high activity. The

complex dynamics in this regime are characterized by chaotic deformations of the membrane with the consequent pro-
liferation of many protrusions at the membrane. The active stresses cannot overcome the elastic forces of the interface
and the protrusions break off from the membrane and elongate under the straining effect of bending deformations
in the polarization pattern. The white vectors denote the polarization field, while the color code refers to the local
magnitude of the flow according to the color bar on the left-hand side.
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