Science Advances

Supplementary Materials for

Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications

Tao Zhang, Huageng Liang, Zhen Wang, Chaorui Qiu, Yuan Bo Peng, Xinyu Zhu, Jiapu Li, Xu Ge, Jianbo Xu, Xian Huang, Junwei Tong, Jun Ou-Yang, Xiaofei Yang, Fei Li*, Benpeng Zhu*

*Corresponding author. Email: benpengzhu@hust.edu.cn (B.Z.); ful5@xjtu.edu.cn (F.L.)

Published 15 April 2022, *Sci. Adv.* **8**, eabk0159 (2022) DOI: 10.1126/sciadv.abk0159

The PDF file includes:

Figs. S1 to S19 Tables S1 to S7 Note S1 Legends for movies S1 to S9

Other Supplementary Material for this manuscript includes the following:

Movies S1 to S9

Fig. S1. The summary of DBS. DBS applications, challenges proposed, as well as the advantages of this work in dealing with the specific DBS challenges (thin arrows).

Fig. S2. Characterization of single Sm-PMN-PT element. (A) Photo of one element (Sm-PMN-PT). **(B)** An enlarged view of the surface of one element. **(C)** Energy dispersive spectroscopy (EDS) elemental mapping images for one element.

Fig. S3. Biocompatibility studies for the fully implantable Sm-PUEH device. (A) Rat scalp status of pre-implantation and post-implantation (4 weeks). **(B)** The removed Sm-PUEH device. **(C)** Representative H & E stained brain image of electrode track without obvious tissue damage. **(D)** Schematic diagram of a rat showing where tissues were taken. **(E)** Representative skin tissues stained with H & E. **(F)** Representative H & E stained skin tissue images obtained at 1 week, 2 weeks and 4 weeks after surgery with Sm-PUEH device and a normal skin tissue image (control). **(G)** Analysis of loose areolar tissue thicknesses, indicating the rats gradually recovered.

Fig. S4. The circuit diagram of Sm-PUEH device.

Fig. S5. Flow chart of Sm-PUEH device fabrication process.

Fig. S6. Size and mass measurement for Sm-PUEH device.

Fig. S7. Electrical impedance and phase angle of one Sm-PMN-PT element.

Fig. S8. Characterization of ultrasound transducer used in this study. (A) 1 MHz ultrasound transducer (diameter-30 mm) in this work. **(B)** The experimental diagram of the transducer echo test. **(C)** The echo signal of the transducer. **(D)** The frequency gain diagram of the echo signal.

Fig. S9. Excitation signal and output signal of Sm-PUEH device. (A) Excitation signal of the signal source. **(B)** Partial enlargement of **Fig. S9-A. (C)** Output voltage signal of Sm-PUEH device. **(D)** Partial enlargement of output voltage signal of **Fig. S9-C**.

Fig. S10. The AC/DC converting of the output voltage by rectifier circuit.

Fig. S11. The rectified output voltage signals of Sm-PUEH device under different ultrasound intensities.

Fig. S12. Rectified output voltage signals of Sm-PUEH device. (A) Rectified output voltage signals of Sm-PUEH device with different ultrasound cycle number. **(B)** The stability of output voltage (1 s). **(C)** Partial enlargement in **(B)**-diagram.

Fig. S13. Charging curve of a capacitor (1000 μ F) using Sm-PUEH device. The charging voltage reaches the saturation value of 1.25 V within 180 s.

Fig. S14. Lighting application of Sm-PUEH device after long-time charging. (A) Schematic diagram for lighting experiment. (B) Lighting of 55 blue LEDs with "*HUST*" pattern after three 220 μ F capacitors charged by Sm-PUEH device under an applied ultrasound (US–1 MHz, 1000 c/p, PRF = 100 Hz, 2.5 MPa) for five minutes.

Fig. S15. Lighting application of Sm-PUEH device after short-time charging. (A) Schematic diagram for lighting experiment. (B) Instant lighting of one blue LED connected with a 220 μ F capacitor in parallel charged by Sm-PUEH device under an applied ultrasound (US–1 MHz, 1000 c/p, PRF = 100Hz, 2.5 MPa).

Fig. S16. The Changes of recorded signals with different stimulating conditions. The signal in the middle column is the combined signal, where the blue arrow indicates the stimulated signal and the green one is the recorded signal. When the stimulated signal's amplitude is increased (2) or its duration is elevated (3), the amplitude of the recorded signal is enhanced, meanwhile its waveform has no obvious change.

Fig. S17. Waveforms of the LFP signal in different frequency bands. From top to bottom are the raw wave, delta (0–3 Hz) wave, theta (4–7 Hz) wave, alpha (8–12 Hz) wave, beta (13–30 Hz) wave, and gamma (31–100 Hz) wave, respectively.

Fig. S18. The comparison of power spectrum changes in theta, alpha, beta, and gamma wave between the control group (n = 8) and the stimulation group (n = 8) after formalin injection. The power spectrum is calculated by the average of each minute, and ratio is processed by the average baseline of the first five minutes. All data are presented as mean \pm SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001, vs. control group.

Fig. S19. Schematic diagram of the method for connecting the stretchable electrodes with piezoelectric elements.

Technology	Ref.	Energy source frequency	Output Input	In vivo or in vitro	Advantages	Drawbacks	
	(25)	RF signal 6.78 MHz	~ 3.7 V 12.5 W	in vivo		Low threshold; electromagnetic interference; complexity in fabrication	
Electromagnetic	(26)	RF signal 1.6 GHz	0.45 mW 800 mW	in vitro	High output power		
	(27)	RF signal 2.34 GHz	$\sim 100~\mu W \mid 2~W$	in vivo	Advantages High output power integration High output power Co High output power Co High penetration depth; high safety threshold Co High output power Co Regenerative Co Regenerative Co Regenerative; unlimited lifetime Lo Regenerative; unlimited lifetime Lo High penetration depth; high safety threshold; high output power; good controllability Lo		
	(20)	Magneto 250 – 400 kHz	2 mW 7 W	in vivo	High output power	Complexity in fabrication	
Piezoelectric	(21)	Ultrasound 1.85MHz	$\sim 400 \ \mu A \mid \sim 692 \ mW/cm^2$	in vivo	High penetration depth; high safety threshold	Low output power; long-term charging	
	(28)	Ultrasound 20 kHz	98.6 μ W 1 W/cm ²	in vitro	High output power	Complexity in fabrication	
Triboelectric	(29)	Peristalsis stomach 0.05 Hz	100 mV -	in vivo	Pagaparativa	Low output power; long- term charging	
	(30)	Body motion -	^B 360 mV 0.4 m/s	in vivo	- Regenerative		
	(31)	Ultrasound 25 kHz	24.7 nW -	in vitro	-		
Electrostatic	(32)	Heart beat 1-2 Hz	20 µJ -	in vitro	Regenerative	Low output power;few implantation	
	(33)	Ultrasound 1 MHz	27 mV 1.2 W/cm ²	in vitro	-		
Bio-Fuel cell	(34)	Enzymatic catalysis -	$0.42 \text{ V} ~16 \; \mu\text{W/mL}$	in vivo	 Recycle materials 	Low output power	
bio-r uci cen	(35)	Enzymatic catalysis -	\sim 4.4 μ W PH = 6.2	in vitro	Recycle materials	Low output power	
Thormoolootrio	(36)	Temperature gradient -	$645~\mu W \mid \Delta T = 3.5~K$	in vivo	Regenerative;	Low instantaneous output	
1 nermoelectric	(37)	Temperature gradient -	$1 \ \mu W \mid \Delta T = 5 \ K$	in vitro	unlimited lifetime	power	
	(38)	Near-infrared light -	${\sim}10.3~mW~ {\sim}~3.3~W/cm^2$	in vivo		Low instantaneous output	
Photovoltaic	(39)	Light -	0.27 V 298.15 K	in vitro	Regenerative	power; long- term charging; low penetration depth	
This work	_	Ultrasound 1MHz	280 μW 212 mW/cm ² 7.7 V 212 mW/cm ²	in vivo/ in vitro	High penetration depth; high safety threshold; high output power; good controllability	_	

Table S1. Comparison of representative wireless power transmissiontechnologies.

^B Estimated based on published data.

Tuste set comparison of representative prezenterine internals for representative										
Ref.	Materials	Size (mm ²)	Frequency	Input condition	Medium	Output condition	Output power density	ŋ		
(41)	PVDF	^в 300	14 MHz	2.05 mW	In water	^в load 64 KΩ	B 76.7 μ W/cm ²	-		
(42)	PZT	ZT 2.058	240 KHz	1 mW/cm ²	In water	load 50 Ω	$3.75 \ \mu W/cm^2$	^B 0.375%		
(43)	PZT 1-3	PZT 1-3 ^B 314	970 KHz	-	In air	load100 Ω	^B 60 mW/cm ²	-		
(44)	<i>PZT</i> 1-3 ^B 5402	^B 5402	350 KHz	65 mW/cm ²	In water	_	$4.1 \ \mu W/cm^2$	^B 0.063%		
(45) KNN 1-3	в 1	304 KHz	^B 5.887 W/cm ²	In water	load 1 KΩ	45 mW/cm ²	^B 0.76%			
This work	Sm-PMN-PT	36	1 MHz	20.3 W/cm ²	In water	load 1 KΩ	1.1 W/cm ²	5.4%		

Table S2. Comparison of representative piezoelectric materials for PUEH.

^B Estimated based on published data.

The conversion coefficient (η) is defined as:

$$\eta = \frac{E_{out}}{E_{in}} \times 100\%,$$

where E_{out} is output energy and E_{in} is input energy.

Table S3. Comparison of representative wireless charging devices.										
Ref.	(25)	(21)	(29)	(34)	(36)	(38)	This work			
Principle of technology	Electromag netic	Piezoelectric	Triboelectric	Bio-Fuel cell	Thermoelectr ic	Photovoltaic	Piezoelectric			
Power type (implant)	RF antenna	Ultrasound	Peristalsis stomach	Enzymatic catalysis	Temperature gradient	Near-infrared light	Ultrasound			
Implantable? (Fully or half)	Fully	Fully	Fully	Fully	Half	Fully	Fully			
Animal type	Rat	Rat	Rat	Rabbit	Rat	Mice	Rat			
Stimulation type	LED	Electrical	Electrical	Electrical	Electrical	LED	Electrical			
Implantation site	Head	Leg	Surface of stomach	Abdomen	Head	Head / back	Head			
Stimulus site	Brain	Sciatic nerve	Vagus	-	-	Brain	Brain			
Stimulation effect	Activity control	Muscle activation	Weight control	_	_	Whisker movement	Analgesia			
Carrier frequency	6.78 MHz	1.85 MHz	0.05 – 2 Hz	-	-	38 KHz	1 MHz			
Stimulation frequency (Hz)	5 – 40 Hz	0–5,000 Hz	0.05 – 2 Hz	_	_	-	0–120 Hz			
Stimulation frequency adjustable?	Yes	Yes	No	_	_	Yes	Yes			
Operation control	Bluetooth	External ultrasound	Peristalsis stomach	Bluetooth	_	Modulated light	External ultrasound			
Battery or rechargeable?	Yes	Yes	No	Yes	-	Yes	No			
Immediate stimulation?	No	No	No	No	No	No	Yes			
Verify biosafety?	Yes	No	Yes	Yes	No	No	Yes			
Whole implant size (mm)	$19 \times 12 \times 5$	1.7 mm ³	$16 \times 12 \times 2.5$	-	83 mm ²	25 × 17 (large part)	$13.5 \times 9.6 \times 2.1$			
Freely moving (y/n)	Yes	No	Yes	Yes	No	No	Yes			
Implant weight (g)	1.4	0.0064	~ 0.8	_	_	_	0.7			
Out performance (<i>in vivo</i>)	$\sim 3.7 \ V$	50 μA – 400 μA	$\sim 200 \; \mu V$	0.42 V	645 μW	~10.3 mW	400 μW (Max)			
Instantaneous effective power (in vivo)	_	_	_	_	-	_	280 μW			
Input power	12.5 W	$\sim 692 \ mW/ \ cm^2$	N/A	16 µW/mL	ΔT- 3.5 K	~ 3.3 W/ cm^2	212 mW/cm^2			

 Table S3. Comparison of representative wireless charging devices.

Parameters	Value
Piezoelectric coefficient d_{33}	4000 pC/N
Electromechanical coupling coefficient k_{33}	95%
Relative free permittivity $\varepsilon_{33}/\varepsilon_0$	13000
Dielectric loss tan δ	0.005
Thickness h	0.38 mm
Density ρ	8100 kg/m ³
Acoustic velocity $c_{\rm p}$	4400 m/s
Acoustic impedance Z_a	36 MRayls

 Table S4. Parameters of Sm-PMN-PT.

Parameters	Value
Ultrasound frequency	0.5 MHz/1 MHz
Density of skin(g/cm ³)	1.15
Density of Skull(g/cm ³)	1.9
Density of Brain(g/cm ³)	1.03
Speed of Sound in Skin(m/sec)	1730
Speed of longitudinal waves in Skull(m/sec)	4080
Speed of shear waves in Skull(m/sec)	2800
Speed of Sound in Brain(m/sec)	1550
Attenuation in Skin[dB/(cm MHz)	1.84
Attenuation in Brain[dB/(cm MHz)]	0.8

 Table S5. Simulation parameters of ultrasound penetrating Skull (51).

Ref.	UEH device	Size (mm²)	Frequency	Input condition	Medium	Output condition C _s (μF)	<i>T</i> (s)	V _o (V)	₽̃(nW)
(31)	Omnidirection al UEH	^в 7.4	25 kHz	60 V	In air	1	15	0.86	24.7
(44)	PZT(1-3) PUEH	^B 5402	35 kHz	150 V	In water	1000	900	0.27	40
(45)	LF-PUEH	в 1	3.4 kHz	100 V	In water	220	200	0.54	160.38
(56)	2-D MEMS UEH	^в 1	38.53 kHz	60 V	In air	1	15	^B 0.44	21.4
(57)	3-D MEMS UEH	^B 6.25	36 kHz	100 V	In air	1	20	0.71	12.6
This work	Sm-PUEH	36	1 MHz	150 V	In water	1000	180	1.25	4270 ± 40

Table S6. Parameters of ultrasound energy harvesters.

^B Estimated based on published data.

The average charging power (\overline{P}) is calculated by the following formula (31):

$$\bar{P} = \frac{C_s {V_0}^2}{2T}$$

where f is the ultrasound working frequency, C_s is the capacitance, T is the charging time, and V_o is the effective output voltage.

f (MHz)	C/P	PRF (Hz)	Pr (MPa)	I _{SPTA} (mW/cm ²)	MI	*Safe or not			
1	400	50	0.65	212.25	0.65	safe			
1	400	75	0.65	318.375	0.65	safe			
1	400	100	0.65	424.5	0.65	safe			
1	400	125	0.65	531	0.65	safe			
1	400	150	0.65	636.75	0.65	safe			
$(P^2(t))$									

Table S7. US waveform properties used in animals in this work

$$I_{SPTA} = \int \frac{P^2(t)}{Z_0} dt \times PRF$$

Where *P* is the instantaneous peak pressure; Z_0 is the characteristic acoustic impedance in Pa s/m, which is defined as $Z_0 = \rho c$; where ρ is the density of the medium, and c is the speed of sound in the medium (Skin:1.15g/cm³,1730m/s in this work) (72).

$$MI = \frac{p_r}{\sqrt{f}}$$

wherein p_r is the peak negative pressure of the US in MPa, and f is the center frequency of the US transducer in MHz (72).

***Safe or not**: According to the Food and Drug Administration (FDA)'s regulation, the safety threshold of ultrasound in the human body is 720 mW/cm² (*23*).

Note S1: Theoretical analysis of excellent power output of Sm-PUEH device

In this work, the width-to-thickness ratio of the single element in this device we designed is about 2.63 (1000 μ m / 380 μ m \approx 2.63). Based on the output power theory of a piezoelectric harvester in thickness-stretch mode of a plate (48), we explore the huge advantages of output power based on Sm-PMN-PT single crystal.

Fig.Note-S1. Schematic diagram of a plate in thickness-stretch mode, where p is the Stress amplitude, Z is Load, I is output current, V is the output voltage and P is the output power. Among them, $T_{33} = pexp(i\omega t)$, and $T_{31} = T_{32} = 0$.

According to the governing formulas of three-dimensional linear piezoelectricity (47), the formulas of the plate can be obtained as follows:

$$T_{11} = T_{22} = c_{13}u_{3,3} + e_{31}\phi_{,3}; \tag{1}$$

$$T_{33} = c_{33}u_{3,3} + e_{31}\phi_{,3}; \tag{2}$$

$$D_3 = e_{33}u_{3,3} - \varepsilon_{33}\phi_{,3}; \tag{3}$$

$$S_{33} = u_{3,3};$$
 (4)

$$E_3 = -\phi_{,3}; \tag{5}$$

where u the mechanical displacement vector, T is the stress tensor, S is the strain tensor, E is the electric field vector, D is the electric displacement vector, and \emptyset is the electric potential; c, e, and ε are the elastic, piezoelectric, and dielectric coefficient.

By solving the partial differential formulas of the above formula (1), (2), (3), (4), (5), it can be obtained:

$$I = i\omega p \frac{\varepsilon_{33}}{e_{33}} \frac{1}{\left(1 + \frac{1}{k_{33}^2}\right)} \frac{1}{\left(1 + \frac{Z}{Z_0}\right) \xi h \cot(\xi h) - \bar{k}_{33}^2}$$
(6)

$$\mathbf{V} = i\omega p \frac{\varepsilon_{33}}{e_{33}} \frac{1}{\left(1 + \frac{1}{k_{33}^2}\right)} \frac{Z}{\left(1 + \frac{Z}{Z_0}\right)\xi h \cot(\xi h) - \bar{k}_{33}^2}$$
(7)

$$\mathbf{P} = \frac{1}{2} |I|^2 Re\{Z\} = \frac{\omega^2 p^2}{2} \frac{\varepsilon_{33|\bar{k}_{33}|^2|}}{|\bar{c}_{33}|} Re\{Z\} \left| \frac{1}{\left(1 + \frac{Z}{Z_0}\right) \xi \operatorname{hcot}(\xi h) - \bar{k}_{33}|^2} \right|^2$$
(8)

where $k_{33}^2 = \frac{e_{33}^2}{\epsilon_{33}c_{33}}$, $\bar{k}_{33}^2 = \frac{k_{33}^2}{1+k_{33}^2}$, $\bar{c}_{33} = c_{33}(1+k_{33}^2)$, $\xi^2 = \frac{\rho}{c_{33}(1+k_{33}^2)}$. In the above formulas, p is the acoustic pressure amplitude applied on the upper surface of the harvester, Z is the load and Z₀ is the internal resistance. c_{33} , e_{33} and ϵ_{33} are the effective elastic coefficient, the piezoelectric coefficient, and dielectric coefficient; h, ρ , ω and ξ are the thickness, the effective mass density, angular frequency, and wave number.

Only considering the material parameters, we simplify the above formula (8):

$$P \propto \frac{\varepsilon_{33}}{c_{33}} \frac{1}{(k_{33} + \frac{1}{k_{33}})^2}$$
(9)

The value of k_{33} is in the range of 0–1, so the formula $\frac{1}{(k_{33} + \frac{1}{k_{33}})^2}$ is a monotonically increasing function. Therefore, according to the formula (9), a larger dielectric coefficient(ε_{33}), and a larger electromechanical coupling coefficient (k_{33}) help to increase the output power. Of course, the maximum output power can be obtained at the resonance frequency.

In this work, Sm-PUEH device we designed works at the resonant frequency (1MHz, **Fig. S7**), and the Sm-PMN-PT single crystal has a larger relative free permittivity and electromechanical coupling coefficient ($\varepsilon_{33}/\varepsilon_0 = 13000$, $k_{33} = 95\%$, **Table S4**).

Captions for Supplementary Movies

Movie S1

High voltage output (80 Vpp) of Sm-PUEH device under pulse ultrasound (US-1 MHz, 2.5 MPa).

Movie S2

The voltage output of Sm-PUEH device with incident angle of 30° under pulse ultrasound (US-1 MHz, 2.5 MPa).

Movie S3

The voltage output of Sm-PUEH device in the bent state under pulse ultrasound (US-1 MHz, 2.5 MPa).

Movie S4

The charging of a capacitor (470 μ F) by Sm-PUEH device under pulse ultrasound (US-1 MHz, 1000 c/p, PRF = 100 Hz, 2.5 MPa).

Movie S5

Lighting of 55 blue LEDs with "*HUST*" pattern after three 220 μ F capacitors charged by Sm-PUEH device under pulse ultrasound (US–1 MHz, 1000 c/p, PRF = 100 Hz, 2.5 MPa) for five minutes.

Movie S6

Instant lighting of one blue LED connected with a 220 uF capacitor in parallel charged by Sm-PUEH device under pulse ultrasound (US-1 MHz, 1000 c/p, PRF = 100Hz, 2.5 MPa).

Movie S7

The output voltage of Sm-PUEH device in pork tissue under pulse ultrasound (US-1 MHz, 0.65 MPa).

Movie S8

Behavioral experiment of analgesia application. The fully implanted Sm-PUEH device achieves analgesia under pulse ultrasound (US-1 MHz, 400 c/p, PRF = 50 Hz, 0.65 MPa).

Movie S9

Biocompatibility study of Sm-PUEH device after long-term implantation.