Table of Contents | Supplementary Material 1: Search strategy | |--| | SEARCH SYNTAX and SEARCH STRING (in PubMed) for RCTs | | Supplementary Material 2: Table with Characteristics of eligible trials | | Supplementary Material 3: Quality assessment of included studies | | Supplementary Material 4: Assessment of inconsistency, funnel plot and impact of individual studies for the primary efficacy outcome | | Supplementary Material 5: Network meta-analysis of interventions for the cardiovascular death outcome12 | | Supplementary Material 6: Network meta-analysis of interventions for the all-cause mortality outcome10 | | Supplementary Material 7: Network meta-analysis of interventions for the myocardial infarction outcome19 | | Supplementary Material 8: Network meta-analysis of interventions for the stroke outcome23 | | Supplementary Material 9: Network meta-analysis of interventions for the stem thrombosis outcome | | Supplementary Material 10: Network meta-analysis of interventions for the safety outcomes | | Supplementary Material 11: Rankogram for every outcome in the main analysis3 | | Supplementary Material 12: Grading of evidence30 | | Supplementary Material 13: Hazard ratios of all outcomes across studies included in the systematic review40 | #### Supplementary Material 1: Search strategy. SEARCH SYNTAX and SEARCH STRING (in PubMed) for RCTs - 1. Clopidogrel - 2. Ticagrelor - 3. Prasugrel - 4. P2y12 inhibitor - 5. ADP receptor antagonist - 6. 1 OR 2 OR 3 OR 4 OR 5 - 7. acute coronary syndrome - 8. acute myocardial infarction - 9. st elevation myocardial infarction - 10. non-st elevation myocardial infarction - 11. non-st elevation acute coronary syndrome - 12. unstable angina - 13.7 OR 8 OR 9 OR 10 OR 11 OR 12 - 14. Precision-sensitivity maximizing RCT search filter from Cochrane - 15.6 AND 13 AND 14 ((((((clopidogrel) OR (ticagrelor)) OR (prasugrel)) OR (p2y12 inhibitor)) OR (adp receptor antagonist)) AND ((((((acute coronary syndrome) OR (acute myocardial infarction)) OR (st elevation myocardial infarction)) OR (non-st elevation myocardial infarction)) OR (non-st elevation acute coronary syndrome)) OR (unstable angina))) AND ((randomized controlled trial[pt] OR controlled clinical trial[pt] OR randomized[tiab] OR placebo[tiab] OR clinical trials as topic[mesh:noexp] OR randomly[tiab] OR trial[ti] NOT (animals[mh] NOT humans [mh]))) (((((("clopidogrel"[MeSH Terms] OR "clopidogrel"[All Fields]) OR "clopidogrel s"[All Fields]) OR ("ticagrelor"[MeSH Terms] OR "ticagrelor"[All Fields])) OR (((("prasugrel hydrochloride"[MeSH Terms] OR ("prasugrel"[All Fields] AND "hydrochloride"[All Fields])) OR "prasugrel hydrochloride"[All Fields]) OR "prasugrel"[All Fields]) OR "prasugrel s"[All Fields])) OR ("p2y12"[All Fields] AND ((((("antagonists and inhibitors"[MeSH Subheading] OR ("antagonists"[All Fields] AND "inhibitors"[All Fields])) OR "antagonists and inhibitors"[All Fields]) OR "inhibitors"[All Fields]) OR "inhibitor"[All Fields]) OR "inhibitor s"[All Fields]))) OR ((((("receptors, purinergic p2"[MeSH Terms] OR (("receptors"[All Fields] AND "purinergic"[All Fields]) AND "p2"[All Fields])) OR "purinergic p2 receptors"[All Fields]) OR ("adp"[All Fields] AND "receptor"[All Fields])) OR "adp receptor"[All Fields]) AND (((("antagonist"[All Fields] OR "antagonists and inhibitors" [MeSH Subheading]) OR ("antagonists" [All Fields] AND "inhibitors" [All Fields])) OR "antagonists and inhibitors" [All Fields]) OR "antagonists"[All Fields]))) AND (((((("acute coronary syndrome"[MeSH Terms] OR (("acute"[All Fields] AND "coronary"[All Fields]) AND "syndrome"[All Fields])) OR "acute coronary syndrome"[All Fields]) OR ((("acute"[All Fields] OR "acutely"[All Fields]) OR "acutes"[All Fields]) AND (("myocardial infarction"[MeSH Terms] OR ("myocardial"[All Fields] AND "infarction"[All Fields])) OR "myocardial infarction"[All Fields]))) OR (("st elevation myocardial infarction"[MeSH Terms] OR ((("st"[All Fields] AND "elevation"[All Fields]) AND "myocardial"[All Fields]) AND "infarction"[All Fields])) OR "st elevation myocardial infarction"[All Fields])) OR (((("non-st elevated myocardial infarction"[MeSH Terms] OR ((("non-st"[All Fields] AND "elevated"[All Fields]) AND "myocardial"[All Fields]) AND "infarction"[All Fields])) OR "non st elevated myocardial infarction"[All Fields]) OR (((("non"[All Fields] AND "st"[All Fields]) AND "elevation"[All Fields]) AND "myocardial"[All Fields]) AND "infarction"[All Fields])) OR "non st elevation myocardial infarction"[All Fields])) OR ("non-st"[All Fields] AND ((((("elevate"[All Fields] OR "elevated"[All Fields])) OR "elevates"[All Fields]) OR "elevation"[All Fields]) OR "elevational"[All Fields]) OR "elevations"[All Fields]) OR "elevational"[All Fields]) OR "elevational"[All Fields]) OR "elevations"[All Fields]) AND (("acute coronary syndrome"[MeSH Terms] OR (("acute"[All Fields] AND "coronary"[All Fields])) OR (("angina, unstable"[MeSH Terms] OR ("angina"[All Fields] AND "unstable"[All Fields]))) OR "unstable angina"[All Fields]) OR ("unstable"[All Fields] AND "angina"[All Fields])))) AND (((((("randomized controlled trial"[Publication Type] OR "controlled clinical trial"[Publication Type]) OR "randomized"[Title/Abstract]) OR "placebo"[Title/Abstract]) OR "clinical trials as topic"[MeSH Terms:noexp]) OR "randomly"[Title/Abstract]) OR "trial"[Title]) NOT ("animals"[MeSH Terms] NOT "humans"[MeSH Terms])) #### **Translations** **clopidogrel**: "clopidogrel"[MeSH Terms] OR "clopidogrel"[All Fields] OR "clopidogrel's"[All Fields] **ticagrelor**: "ticagrelor"[MeSH Terms] OR "ticagrelor"[All Fields] OR "ticagrelor's"[All Fields] **prasugrel:** "prasugrel hydrochloride"[MeSH Terms] OR ("prasugrel"[All Fields] AND "hydrochloride"[All Fields]) OR "prasugrel hydrochloride"[All Fields] OR "prasugrel"s"[All Fields] inhibitor: "antagonists and inhibitors"[Subheading] OR ("antagonists"[All Fields] AND "inhibitors"[All Fields]) OR "antagonists and inhibitors"[All Fields] OR "inhibitors"[All Fields] OR "inhibitors"[All Fields] OR "inhibitor's"[All Fields] adp receptor: "receptors, purinergic p2"[MeSH Terms] OR ("receptors"[All Fields] AND "purinergic"[All Fields] AND "p2"[All Fields]) OR "purinergic p2 receptors"[All Fields] OR ("adp"[All Fields] AND "receptor"[All Fields]) OR "adp receptor"[All Fields] antagonist: "antagonist"[All Fields] OR "antagonists and inhibitors"[Subheading] OR ("antagonists"[All Fields] OR "antagonists and inhibitors"[All Fields] OR "antagonists" [All Fields] **acute coronary syndrome:** "acute coronary syndrome"[MeSH Terms] OR ("acute"[All Fields] AND "coronary"[All Fields] AND "syndrome"[All Fields]) OR "acute coronary syndrome"[All Fields] acute: "acute" [All Fields] OR "acutely" [All Fields] OR "acutes" [All Fields] myocardial infarction: "myocardial infarction" [MeSH Terms] OR ("myocardial" [All Fields] AND "infarction" [All Fields]) OR "myocardial infarction" [All Fields] st elevation myocardial infarction: "st elevation myocardial infarction" [MeSH Terms] OR ("st" [All Fields] AND "elevation" [All Fields] AND "myocardial" [All Fields] AND "infarction" [All Fields]) OR "st elevation myocardial infarction" [All Fields] non-st elevated myocardial infarction [MeSH Terms] OR ("non-st" [All Fields] AND "elevated" [All Fields] AND "myocardial" [All Fields] AND "infarction" [All Fields] AND "st" [All Fields] AND "elevation" [All Fields] AND "elevation" [All Fields] AND "myocardial" [All Fields] AND "infarction" [All Fields]) OR "non st elevation myocardial infarction" [All Fields] **elevation**: "elevate" [All Fields] OR "elevated" [All Fields] OR "elevates" [All Fields] OR "elevationg" [All Fields] OR "elevational" [All Fields] OR "elevations" [All Fields] OR "elevations" [All Fields] acute coronary syndrome: "acute coronary syndrome" [MeSH Terms] OR ("acute" [All Fields] AND "coronary" [All Fields] AND "syndrome" [All Fields]) OR "acute coronary syndrome" [All Fields] unstable angina: "angina, unstable"[MeSH Terms] OR ("angina"[All Fields] AND "unstable"[All Fields]) OR "unstable angina"[All Fields] OR ("unstable"[All Fields]) AND "angina"[All Fields]) clinical trials as topic[mesh:noexp]: "clinical trials as topic"[MeSH Terms:noexp] animals[mh]: "animals"[MeSH Terms] humans [mh]: "humans"[MeSH Terms] #### Supplementary Material 2: Table with Characteristics of eligible trials | STUDY
AND
YEAR
OF
PUBLIC
ATION | POPULATI
ON | N OF
PATI
ENT
S
WIT
H
NST
E-
ACS
(%
OF
TOT
AL) | INVA
SIVE
MAN
AGE
MEN
T (%
OF
TOT
AL) | | TMENT
MS | EFFICACY
OUTCOME | MAJOR
BLEEDI
NG
DEFINIT
ION | FOL
LOW
-UP
DUR
ATI
ON
(ME
DIA
N) | |--|--|--|---|----|---|---|--|---| | WIVIOT
T ET
AL.
2007
(TRITO
N-TIMI
38) | ACS with
scheduled
PCI | 1007
4
(74%
) | 99.1
% | 1. | Prasugr
el (n =
6813)
Clopido
grel (n
= 6795) | Composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke | TIMI
major
bleeding
not
related
to CABG | 14.5
mont
hs | | WALLE
NTIN ET
AL.
2009
(PLATO
) | Hospitalized
for ACS,
with or
without ST-
segment
elevation,
with an
onset of
symptoms
during the
previous 24
hours | 1108
0
(59.5
%) | 51.6
% | 1. | Ticagrel
or (n =
9333)
Clopido
grel (n
= 9291) | Composite of death from vascular causes, myocardial infarction, or stroke. | PLATO
major
bleeding | 9.2
mont
hs | | ROE ET
AL.
2012
(TRILO
GY-
ACS) | ACS patients selected for a final treatment strategy of medical managemen t without revasculariz ation within 10 days after the index event | 9326
(100
%) | 0% | 1. | Prasugr
el (n =
4663)
Clopido
grel (n
= 4663) | Composite of
death from
cardiovascular
causes, nonfatal
myocardial
infarction, or
nonfatal stroke | TIMI
major
bleeding
not
related
to CABG | 17
mont
hs | | SAITO
ET AL.
2014
(PRASFI
T-ACS) | Japanese
ACS
patients | 680
(49.1
%) | 100% | | Prasugr
el
reduced
dose (n
= 685)
Clopido
grel (n
= 678) | Composite of cardiovascular death, nonfatal myocardial infarction, and nonfatal ischemic stroke. | TIMI
major
bleeding
not
related
to CABG | 12
mont
hs | | STUDY
AND
YEAR
OF
PUBLIC
ATION | POPULATI
ON | N OF
PATI
ENT
S
WIT
H
NST
E-
ACS
(%
OF
TOT
AL) | INVA
SIVE
MAN
AGE
MEN
T (%
OF
TOT
AL) | | TMENT
RMS | EFFICACY
OUTCOME | MAJOR
BLEEDI
NG
DEFINIT
ION | FOL
LOW
-UP
DUR
ATI
ON
(ME
DIA
N) | |--|---|--|---|---------------|---|--|---|---| | GOTO
ET AL.
2015
(PHILO) | Japanese,
Korean and
Taiwanese
ACS
patients | 368
(45.9
%) | 86.1
% | = .
2. Clo | grelor (n
401)
pidogrel
: 400) | Time to first
occurrence of MI,
stroke or death
from vascular
causes | PLATO
major
bleeding | 7
mont
hs | | MOTOV
SKA ET
AL.
2017
(PRAGU
E-18) | Patients with
AMI treated
with a
primary PCI
strategy | 72
(5.9
%) | 99.2
% | 1.
2. | Prasugr
el (n =
634)
Ticagrel
or (n =
596) | Occurrence of
cardiovascular
death, non-fatal
MI, or stroke | Not
provided | 12
mont
hs | | PARK
ET AL.
2019
(TICAK
OREA) | Korean ACS
with or
without ST
elevation | 474
(59.3
%) | 85.6
% | = 2.Clopi | grelor (n
400)
dogrel (n
400) | Composite of
death from
cardiovascular
causes, nonfatal
MI, or nonfatal
stroke | PLATO
major
bleeding | 12
mont
hs | | SCHÜP
KE ET
AL.
2019
(ISAR-
REACT
5) | ACS
patients | 2365
(58.9
%) | 79.9
% | 1.
2. | Ticagrel
or (n =
2012)
Prasugr
el (n =
2006) | Composite of
death, myocardial
infarction, or
stroke | BARC
type 3 to
5 | 12
mont
hs | | GIMBEL
ET AL.
2020
(POPUL
AR
AGE) | Patients
aged 70
years or
older with
NSTE-ACS | 1002
(100
%) | 63.8 % | 1. | Clopido
grel (n
= 500)
Ticagrel
or or
prasugr
el (n =
502) | First primary outcome: any bleeding requiring medical intervention, defined as PLATO major or minor bleeding. Second primary outcome: net clinical benefit of all-cause death, myocardial infarction, stroke and PLATO major or minor bleeding | PLATO
major
bleeding | 12
mont
hs | #### Supplementary Material 3: Quality assessment of included studies. # Supplementary Material 4: Assessment of inconsistency, funnel plot and impact of individual studies for the primary efficacy outcome. Table C.1. Node-splitting method for assessment of inconsistency in network meta-analysis. | Comparison | k | prop | NMA | Direct | Indirect | RoR | Z | p-value | |-----------------------------|---|------|------|--------|----------|------|-------|---------| | Clopidogrel :
Prasugrel | 4 | 0.86 | 1.23 | 1.20 | 1.44 | 0.83 | -0.64 | 0.52 | | Clopidogrel :
Ticagrelor | 3 | 0.74 | 0.99 | 1.04 | 0.86 | 1.20 | 0.64 | 0.52 | | Prasugrel :
Ticagrelor | 2 | 0.40 | 0.80 | 0.72 | 0.86 | 0.83 | -0.64 | 0.52 | *k: Number of studies providing direct evidence, prop: Direct evidence proportion, NMA: Estimated treatment effect (HR) in network meta-analysis, Direct: Estimated treatment effect (HR) derived from direct evidence, Indirect: Estimated treatment effect (HR) derived from indirect evidence, RoR: Ratio of ratios (direct versus indirect), z: z-value of test for disagreement (direct versus indirect), p-value: p-value of test for disagreement (direct versus indirect). Figure C.1. Forest plot of the direct and indirect evidence for the individual comparisons. Table C.2. Node-splitting method for assessment of inconsistency in network meta-analysis after excluding patients with conservative management. | Comparison | k | prop | NMA | Direct | Indirect | RoR | z | p-value | |-----------------------------|---|------|------|--------|----------|------|-------|---------| | Clopidogrel :
Prasugrel | 3 | 0.81 | 1.32 | 1.31 | 1.37 | 0.96 | -0.16 | 0.88 | | Clopidogrel :
Ticagrelor | 3 | 0.72 | 0.97 | 0.99 | 0.94 | 1.05 | 0.16 | 0.88 | | Prasugrel :
Ticagrelor | 2 | 0.48 | 0.74 | 0.72 | 0.76 | 0.96 | -0.16 | 0.88 | *k: Number of studies providing direct evidence, prop: Direct evidence proportion, NMA: Estimated treatment effect (HR) in network meta-analysis, Direct: Estimated treatment effect (HR) derived from direct evidence, Indirect: Estimated treatment effect (HR) derived from indirect evidence, RoR: Ratio of ratios (direct versus indirect), z: z-value of test for disagreement (direct versus indirect), p-value: p-value of test for disagreement (direct versus indirect). Figure C.2. Forest plot of the direct and indirect evidence for the individual comparisons after excluding patients with conservative management. Figure C.3. Funnel plot of studies contributing in the network for the primary outcome. Table C.3. Impact of individual studies in the network meta-analysis for the primary efficacy outcome. | Study | Clopidogrel :
Prasugrel | Clopidogrel :
Ticagrelor | Prasugrel :
Ticagrelor | |----------------------|----------------------------|-----------------------------|---------------------------| | Wiviott 2007 | 0.35 | 0.03 | 0.12 | | Wallentin
2009 | 0.07 | 0.56 | 0.39 | | Roe 2012 | 0.36 | 0.03 | 0.12 | | Saito
2014_UA | 0.07 | 0.004 | 0.02 | | Saito
2014_NSTEMI | 0.09 | 0.005 | 0.02 | | Goto 2015 | 0.005 | 0.08 | 0.04 | | Motovska
2017 | 0.006 | 0.01 | 0.03 | | Park 2019 | 0.007 | 0.10 | 0.06 | |--------------|-------|------|------| | Schüpke 2019 | 0.13 | 0.24 | 0.37 | #### Supplementary Material 5: Network meta-analysis of interventions for the cardiovascular death outcome. Figure D.1. Network graph of interventions for the cardiovascular death outcome. | Comparison | Number of
Studies | Direct
Evidence | Random effects model | HR | 95%-CI | |---|----------------------|--------------------|----------------------|--------|--| | Clopidogrel : Pr
Direct estimate
Indirect estimate
Network estimate | 2 | 0.94 | - | - 1.70 | [0.93; 1.22]
[0.99; 2.93]
[0.96; 1.25] | | Clopidogrel : Tie
Direct estimate
Indirect estimate
Network estimate | 2 | 0.90 | | 0.81 | [1.08; 1.55]
[0.47; 1.37]
[1.04; 1.46] | | Prasugrel: Tica
Direct estimate
Indirect estimate
Network estimate | 1 | 0.16 | 0.5 1 2 | 1.21 | [0.45; 1.26]
[0.97; 1.52]
[0.91; 1.38] | Figure D.2. Forest plot of the network estimates of the potent P2Y12 inhibitors for the cardiovascular death outcome. Figure D.3. Funnel plot of studies contributing in the network for the cardiovascular death outcome. Figure D.4. . Forest plot of the network estimates of the potent P2Y12 inhibitors for the cardiovascular death outcome in the sensitivity analysis. Table D.1. Impact of individual studies in the network meta-analysis for the cardiovascular death outcome. | Study | Clopidogrel :
Prasugrel | Clopidogrel :
Ticagrelor | Prasugrel :
Ticagrelor | |-------------------|----------------------------|-----------------------------|---------------------------| | Wiviott 2007 | 0.21 | 0.01 | 0.08 | | Wallentin
2009 | 0.04 | 0.83 | 0.75 | | Roe 2012 | 0.73 | 0.02 | 0.47 | | Schüpke
2019 | 0.06 | 0.10 | 0.16 | | Gimbel 2020 | 0.01 | 0.06 | 0.04 | #### Supplementary Material 6: Network meta-analysis of interventions for the all-cause mortality outcome. Figure E.1. Network graph of interventions for the all-cause death outcome. | Comparison | Number of
Studies | Direct
Evidence | Random effects model | HR | 95%-CI | |--|----------------------|--------------------|----------------------|---------------|--| | Clopidogrel : Po
Direct estimate
Indirect estimate
Network estimate | 1 | 0.72 | * | — 1.76 | [0.68; 1.66]
[0.87; 3.56]
[0.84; 1.78] | | Clopidogrel: Ti
Direct estimate
Indirect estimate
Network estimate | 2 | 0.81 | * | 0.74 | [0.85; 1.77]
[0.35; 1.57]
[0.80; 1.55] | | Prasugrel: Tica
Direct estimate
Indirect estimate
Network estimate | 1 | 0.48 | 0.5 1 2 | 1.16 | [0.38; 1.28]
[0.65; 2.05]
[0.60; 1.38] | Figure E.2. Forest plot of the network estimates of the potent P2Y12 inhibitors for the all-cause mortality outcome. Figure E.3. Funnel plot of studies contributing in the network for the all-cause death outcome. | Comparison | Number of
Studies | f Direct
Evidence | Random effects model | HR | 95%-CI | |--|----------------------|----------------------|----------------------|----|------------------------------| | Clopidogrel : Propriect estimate
Indirect estimate
Network estimate | 0 | 0 | * | | [1.16; 2.92]
[1.16; 2.92] | | Clopidogrel : Ti
Direct estimate
Indirect estimate
Network estimate | 2 | 1.00 | # - | | [1.10; 1.51]
[1.10; 1.51] | | Prasugrel: Tica
Direct estimate
Indirect estimate
Network estimate | 1 | 1.00 | 0.5 1 2 | | [0.45; 1.08]
[0.45; 1.08] | Figure E.4. . Forest plot of the network estimates of the potent P2Y12 inhibitors for the all-cause death outcome in the sensitivity analysis. Table E.1. Impact of individual studies in the network meta-analysis for the all-cause death outcome. | Study | Clopidogrel :
Prasugrel | Clopidogrel :
Ticagrelor | Prasugrel :
Ticagrelor | |-------------------|----------------------------|-----------------------------|---------------------------| | Wallentin
2009 | 0.10 | 0.53 | 0.23 | | Roe 2012 | 0.72 | 0.19 | 0.52 | | Schüpke
2019 | 0.28 | 0.19 | 0.48 | | Gimbel 2020 | 0.04 | 0.28 | 0.09 | ### Supplementary Material 7: Network meta-analysis of interventions for the myocardial infarction outcome. Figure F.1. Network graph of interventions for the myocardial infarction outcome. Figure F.2. Forest plot of the network estimates of the potent P2Y12 inhibitors for the myocardial infarction outcome. Figure F.3. Funnel plot of studies contributing in the network for the myocardial infarction outcome. | Comparison | Number of
Studies | f Direct
Evidence | Random effects model | HR | 95%-CI | |--|----------------------|----------------------|----------------------|---------------|--| | Clopidogrel : Pr
Direct estimate
Indirect estimate
Network estimate | 1 | 0.93 | | - 1.54 | [1.15; 1.51]
[0.95; 2.51]
[1.17; 1.52] | | Clopidogrel : Ti
Direct estimate
Indirect estimate
Network estimate | 2 | 0.77 | * | 0.92 | [0.85; 1.38]
[0.59; 1.44]
[0.84; 1.29] | | Prasugrel: Tica
Direct estimate
Indirect estimate
Network estimate | 1 | 0.30 | * | 0.82 | [0.46; 1.07]
[0.62; 1.08]
[0.62; 0.99] | | | | | 0.5 1 2 | | | Figure F.4. . Forest plot of the network estimates of the potent P2Y12 inhibitors for the myocardial infarction outcome in the sensitivity analysis. Table F.1. Impact of individual studies in the network meta-analysis for the myocardial infarction outcome. | Study | Clopidogrel :
Prasugrel | Clopidogrel :
Ticagrelor | Prasugrel :
Ticagrelor | |-------------------|----------------------------|-----------------------------|---------------------------| | Wiviott 2007 | 0.44 | 0.02 | 0.20 | | Wallentin
2009 | 0.05 | 0.62 | 0.45 | | Roe 2012 | 0.43 | 0.02 | 0.19 | | Schüpke
2019 | 0.12 | 0.19 | 0.31 | | Gimbel 2020 | 0.01 | 0.20 | 0.11 | #### Supplementary Material 8: Network meta-analysis of interventions for the stroke outcome. Figure G.1. Network graph of interventions for the stroke outcome. | Comparison | Number of
Studies | Direct
Evidence | Random effects model | HR | 95%-CI | |--|----------------------|--------------------|----------------------|---------------|--| | Clopidogrel : Pr
Direct estimate
Indirect estimate
Network estimate | 2 | 0.92 | | — 1.28 | [0.80; 1.35]
[0.52; 3.15]
[0.82; 1.36] | | Clopidogrel : Ti
Direct estimate
Indirect estimate
Network estimate | 2 | 0.89 | | 0.80 | [0.72; 1.35]
[0.33; 1.93]
[0.72; 1.30] | | Prasugrel: Tica
Direct estimate
Indirect estimate
Network estimate | 1 | 0.19 | 0.5 1 2 | 0.95 | [0.33; 1.79]
[0.63; 1.43]
[0.63; 1.32] | Figure G.2. Forest plot of the network estimates of the potent P2Y12 inhibitors for the stroke outcome. Figure G.3. Funnel plot of studies contributing in the network for the stroke outcome. | Comparison | Number of
Studies | f Direct
Evidence | Random effects model | HR | 95%-CI | |---|----------------------|----------------------|----------------------|------|--| | Clopidogrel: Pro
Direct estimate
Indirect estimate
Network estimate | 1 | 0.86 | * | 0.95 | [0.62; 1.40]
[0.34; 2.63]
[0.64; 1.37] | | Clopidogrel : Tid
Direct estimate
Indirect estimate
Network estimate | 2 | 0.73 | * | 0.72 | [0.41; 1.30]
[0.28; 1.83]
[0.44; 1.18] | | Prasugrel : Tica
Direct estimate
Indirect estimate
Network estimate | 1 | 0.41 | 0.5 1 2 | 0.78 | [0.33; 1.79]
[0.39; 1.58]
[0.45; 1.33] | Figure G.4. . Forest plot of the network estimates of the potent P2Y12 inhibitors for the stroke outcome in the sensitivity analysis. Table G.1. Impact of individual studies in the network meta-analysis for the myocardial infarction outcome. | Study | Clopidogrel :
Prasugrel | Clopidogrel :
Ticagrelor | Prasugrel :
Ticagrelor | |-------------------|----------------------------|-----------------------------|---------------------------| | Wiviott 2007 | 0.39 | 0.01 | 0.19 | | Wallentin
2009 | 0.05 | 0.81 | 0.70 | | Roe 2012 | 0.53 | 0.01 | 0.29 | | Schüpke
2019 | 0.08 | 0.11 | 0.19 | | Gimbel 2020 | 0.01 | 0.08 | 0.04 | ### Supplementary Material 9: Network meta-analysis of interventions for the stent thrombosis outcome. Figure H.1. Network graph of interventions for the stent thrombosis outcome. Figure H.2. Forest plot of the network estimates of the potent P2Y12 inhibitors for the stent thrombosis outcome. Figure H.3. Funnel plot of studies contributing in the network for the stent thrombosis outcome. Table H.1. Impact of individual studies in the network meta-analysis for the stent thrombosis outcome. | Study | Clopidogrel :
Prasugrel | Clopidogrel :
Ticagrelor | Prasugrel :
Ticagrelor | |-------------------|----------------------------|-----------------------------|---------------------------| | Wiviott 2007 | 0.92 | 0.13 | 0.79 | | Wallentin
2009 | 0.08 | 0.87 | 0.79 | | Schüpke
2019 | 0.08 | 0.13 | 0.21 | #### Supplementary Material 10: Network meta-analysis of interventions for the safety outcomes. Figure I.1. Network graph of interventions for the major bleeding safety outcome. Table I.1. Node-splitting method for assessment of inconsistency in network meta-analysis for the major bleeding outcome | Comparison | k | prop | NMA | Direct | Indirect | RoR | Z | p-value | |-----------------------------|---|------|------|--------|----------|------|-------|---------| | Clopidogrel :
Prasugrel | 2 | 0.75 | 0.87 | 0.76 | 1.32 | 0.58 | -1.11 | 0.27 | | Clopidogrel :
Ticagrelor | 2 | 0.77 | 0.73 | 0.83 | 0.48 | 1.73 | 1.11 | 0.27 | | Prasugrel :
Ticagrelor | 2 | 0.49 | 0.84 | 0.63 | 1.10 | 0.58 | -1.11 | 0.27 | *k: Number of studies providing direct evidence, prop: Direct evidence proportion, NMA: Estimated treatment effect (HR) in network meta-analysis, Direct: Estimated treatment effect (HR) derived from direct evidence, Indirect: Estimated treatment effect (HR) derived from indirect evidence, RoR: Ratio of ratios (direct versus indirect), z: z-value of test for disagreement (direct versus indirect), p-value: p-value of test for disagreement (direct versus indirect). Table I.2. Impact of individual studies in the network meta-analysis for the major bleeding outcome. | Study | Clopidogrel :
Prasugrel | Clopidogrel :
Ticagrelor | Prasugrel :
Ticagrelor | |-------------------|----------------------------|-----------------------------|---------------------------| | Wiviott 2007 | 0.40 | 0.06 | 0.19 | | Wallentin
2009 | 0.08 | 0.45 | 0.21 | | Roe 2012 | 0.35 | 0.05 | 0.16 | | Motovska
2017 | 0.02 | 0.02 | 0.05 | | Schüpke
2019 | 0.22 | 0.21 | 0.44 | | Gimbel 2020 | 0.05 | 0.32 | 0.13 | Figure I.2. Funnel plot of studies contributing in the network for the major bleeding outcome. Figure I.3. Network graph of interventions for the major or minor bleeding safety outcome. Table I.3. Node-splitting method for assessment of inconsistency in network meta-analysis for the major or minor bleeding outcome | Comparison | k | Prop | NMA | Direct | Indirect | RoR | Z | p-value | |-----------------------------|---|------|------|--------|----------|-----|---|---------| | Clopidogrel :
Prasugrel | 2 | 1 | 0.73 | 0.73 | - | - | ı | - | | Clopidogrel :
Ticagrelor | 3 | 1 | 0.78 | 0.78 | - | - | - | - | | Prasugrel :
Ticagrelor | 0 | 0 | 1.07 | - | 1.07 | - | - | - | ^{*}k: Number of studies providing direct evidence, prop: Direct evidence proportion, NMA: Estimated treatment effect (HR) in network meta-analysis, Direct: Estimated treatment effect (HR) derived from direct evidence, Indirect: Estimated treatment effect (HR) derived from indirect evidence, RoR: Ratio of ratios (direct versus indirect), z: z-value of test for disagreement (direct versus indirect), p-value: p-value of test for disagreement (direct versus indirect). Table I.4. Impact of individual studies in the network meta-analysis for the major or minor bleeding outcome. | Study | Clopidogrel :
Prasugrel | Clopidogrel :
Ticagrelor | Prasugrel :
Ticagrelor | |-------------------|----------------------------|-----------------------------|---------------------------| | Wiviott 2007 | 0.60 | 0.00 | 0.46 | | Wallentin
2009 | 0.00 | 0.61 | 0.39 | | Roe 2012 | 0.40 | 0.00 | 0.29 | | Park 2019 | 0.00 | 0.08 | 0.04 | | Gimbel 2020 | 0.00 | 0.31 | 0.16 | Figure I.4. Funnel plot of studies contributing in the network for the major or minor bleeding outcome. ## Supplementary Material 11: Rankogram for every outcome in the main analysis. #### Supplementary Material 12: Grading of evidence. Table K.1. Grading of evidence in the network meta-analysis of P2Y12 inhibitors for the efficacy outcomes in the main analysis | main analysis.
Pairwise | Network meta-analysis | | Downgrading due | | | | |--|-----------------------------|----------------|---------------------------------------|--|--|--| | comparison | estimate | Confidence | to | | | | | - Companicon | Composite efficacy | outcome | | | | | | Mixed evidence. Hazard Ratio (95% Confidence Interval) | | | | | | | | Clopidogrel : | , | | , | | | | | Prasugrel | 1.23 (1.01;1.49) | Low | Heterogeneity | | | | | Clopidogrel :
Ticagrelor | 0.99 (0.78;1.27) | Low | Imprecision
Heterogeneity | | | | | Prasugrel :
Ticagrelor | 0.80 (0.61;1.06) | Low | Imprecision Heterogeneity | | | | | | g of treatments | Moderate | Inconsistency | | | | | ranking | Cardiovascular o | | Inconsistency | | | | | Miyada | evidence. Hazard Ratio (95% | | ntorvall | | | | | |
 | | , | | | | | Clopidogrel :
Prasugrel | 1.09 (0.96;1.25) | Low | Heterogeneity
Incoherence | | | | | Clopidogrel :
Ticagrelor | 1.22 (1.04;1.46) | Low | Heterogeneity
Incoherence | | | | | Prasugrel :
Ticagrelor | 1.12 (0.91;1.38) | Very low | Imprecision Heterogeneity Incoherence | | | | | Rankino | g of treatments | High | - | | | | | · • | All-cause dea | | | | | | | Mixed 6 | evidence. Hazard Ratio (95% | | nterval) | | | | | Clopidogrel :
Prasugrel | 1.23 (0.84;1.78) | Low | Imprecision Heterogeneity | | | | | Clopidogrel :
Ticagrelor | 1.12 (0.80;1.55) | Low | Imprecision Heterogeneity | | | | | Prasugrel :
Ticagrelor | 0.91 (0.60;1.38) | Low | Imprecision | | | | | Ranking | g of treatments | Low | Imprecision
Inconsistency | | | | | | Myocardial infar | ction | - | | | | | Mixed 6 | evidence. Hazard Ratio (95% | | nterval) | | | | | Clopidogrel :
Prasugrel | 1.22 (1.01;1.49) | Low | Heterogeneity | | | | | Clopidogrel :
Ticagrelor | 1.06 (0.84;1.33) | Low | Imprecision
Heterogeneity | | | | | Prasugrel :
Ticagrelor | 0.87 (0.66;1.14) | Low | Imprecision
Heterogeneity | | | | | Ranking of treatments Moderate Inconsistency | | | | | | | | Stroke | | | | | | | | Mixed 6 | evidence. Hazard Ratio (95% | % Confidence I | nterval) | | | | | Clopidogrel :
Prasugrel | 1.06 (0.82;1.36) | Low | Heterogeneity | | | | | Clopidogrel :
Ticagrelor | 0.97 (0.72;1.30) | Low | Heterogeneity | |-----------------------------|-----------------------------|----------------|------------------------------| | Prasugrel :
Ticagrelor | 0.91 (0.63;1.32) | Low | Imprecision
Heterogeneity | | Ranking | g of treatments | Moderate | Imprecision | | | Definite stent thron | nbosis | | | Mixed 6 | evidence. Hazard Ratio (95% | 6 Confidence I | nterval) | | Clopidogrel :
Prasugrel | 2.34 (1.61;3.40) | Low | Heterogeneity | | Clopidogrel :
Ticagrelor | 1.40 (0.86;2.22) | Low | Imprecision
Heterogeneity | | Prasugrel :
Ticagrelor | 0.60 (0.34;1.04) | Low | Imprecision
Heterogeneity | | Ranking | g of treatments | High | - | Imprecision: Confidence intervals include values favoring either treatment. Incoherence: Disagreement between direct and indirect estimates. Heterogeneity: Substantial between-study variance within the comparison. Inconsistency: Evidence of heterogeneity in the network. Table K.2. Grading of evidence in the network meta-analysis of P2Y12 inhibitors for the safety outcomes in the main analysis. | main analysis. | T | | | | | | |---|--------------------------------|----------------------|---|--|--|--| | Pairwise comparison | Network meta-analysis estimate | Confidence | Downgrading due to | | | | | Major bleedings | | | | | | | | Mixed evidence. Hazard Ratio (95% Confidence Interval) | | | | | | | | Clopidogrel :
Prasugrel | 0.87 (0.57;1.33) | 0.87 (0.57;1.33) Low | | | | | | Clopidogrel :
Ticagrelor | 0.73 (0.49;1.11) | Low | Imprecision Heterogeneity Imprecision Heterogeneity | | | | | Prasugrel :
Ticagrelor | 0.84 (0.52;1.38) | Low | | | | | | Ranking | g of treatments | Very low | Imprecision
Indirectness
Inconsistency | | | | | Major or minor bleedings | | | | | | | | Mixed 6 | evidence. Hazard Ratio (95% | 6 Confidence I | nterval) | | | | | Clopidogrel :
Prasugrel | 0.73 (0.57;0.94) | Very low | Heterogeneity
Incoherence | | | | | Clopidogrel :
Ticagrelor | 0.78 (0.63;0.96) | Very low | Within-study bias
Heterogeneity
Incoherence | | | | | Indirect evidence. Hazard Ratio (95% Confidence Interval) | | | | | | | | Prasugrel :
Ticagrelor | 1.07 (0.77;1.47) | Very low | Heterogeneity
Incoherence | | | | | Ranking of treatments Moderate Indirection | | | | | | | Imprecision: Confidence intervals include values favoring either treatment. Incoherence: Disagreement between direct and indirect estimates. Within-study bias: Dominated by evidence at high or moderate risk of bias. Heterogeneity: Substantial between-study variance within the comparison. Indirectness: Absence of agreement in outcome definition. Inconsistency: Evidence of heterogeneity in the network. Table K3. Grading of evidence in the network meta-analysis of $P2Y_{12}$ inhibitors for the outcomes in patients managed invasively (sensitivity analysis). | Pairwise | Network meta- | | Downgrading due | | | | |--|---------------------------|----------------|---|--|--|--| | comparison | analysis estimate | | to | | | | | Composite efficacy outcome | | | | | | | | Mixed evidence. Hazard Ratio (95% Confidence Interval) | | | | | | | | Clopidogrel :
Prasugrel | 1.32 (1.05;1.64) Moderate | | Heterogeneity | | | | | Clopidogrel :
Ticagrelor | 0.97 (0.76;1.25) | Low | Imprecision
Heterogeneity | | | | | Prasugrel :
Ticagrelor | 0.74 (0.56;0.98) | Moderate | Heterogeneity | | | | | Ranking | of treatments | High | - | | | | | | Cardiovascula | r death | | | | | | Mixed | evidence. Hazard Ratio (| 95% Confidence | e Interval) | | | | | Clopidogrel :
Prasugrel | 1.13 (0.84;1.52) | Low | Imprecision
Heterogeneity | | | | | Clopidogrel :
Ticagrelor | 1.13 (0.83;1.55) | Low | Imprecision
Heterogeneity | | | | | Prasugrel :
Ticagrelor | 1.00 (0.70;1.43) | Low | Imprecision | | | | | | of treatments | Moderate | Imprecision | | | | | <u>J</u> | All-cause d | | • | | | | | Mixed | evidence. Hazard Ratio (| | e Interval) | | | | | Clopidogrel :
Prasugrel | 1.83 (1.16;2.91) | Very low | Heterogeneity Incoherence | | | | | Clopidogrel :
Ticagrelor | 1.29 (1.10;1.51) | Very low | Imprecision
Heterogeneity
Incoherence | | | | | Prasugrel :
Ticagrelor | 0.70 (0.45;1.08) | Very low | Heterogeneity Incoherence | | | | | Ranking | of treatments | High | - | | | | | - | Myocardial inf | arction | | | | | | Mixed | evidence. Hazard Ratio (| 95% Confidence | e Interval) | | | | | Clopidogrel :
Prasugrel | 1.33 (1.17;1.52) | Low | Heterogeneity | | | | | Clopidogrel :
Ticagrelor | 1.04 (0.84;1.29) | Low | Imprecision
Heterogeneity | | | | | Prasugrel :
Ticagrelor | 0.78 (0.62;0.99) | Low | Heterogeneity | | | | | Ranking of treatments | | High | - | | | | | Stroke | | | | | | | | Mixed evidence. Hazard Ratio (95% Confidence Interval) | | | | | | | | Clopidogrel :
Prasugrel | 0.94 (0.64;1.37) | Low | Imprecision Heterogeneity | | | | | Pairwise comparison | Network meta-
analysis estimate | Confidence | Downgrading due to | | | | |---|---|------------------|---------------------------|--|--|--| | Clopidogrel : | analysis estimate | | Imprecision | | | | | Ticagrelor | 0.73 (0.45;1.19) | Low | • | | | | | Prasugrel : | | | Heterogeneity Imprecision | | | | | Ticagrelor | 0.78 (0.45;1.33) | Low | Heterogeneity | | | | | | of trootmonts | Moderate | Imprecision | | | | | INalikiliy | U I I I | | | | | | | Definite stent thrombosis Mixed evidence. Hazard Ratio (95% Confidence Interval) | | | | | | | | | | Jo / Corniderice | e intervaij | | | | | Clopidogrel :
Prasugrel | 2.34 (1.61;3.40) | Low | Heterogeneity | | | | | Clopidogrel: | 1.40 (0.86;2.22) | Low | Imprecision | | | | | Ticagrelor | 1.40 (0.00,2.22) | LOW | Heterogeneity | | | | | Prasugrel: | 0.60 (0.24:1.04) | Low | Imprecision | | | | | Ticagrelor | 0.60 (0.34;1.04) | Low | Heterogeneity | | | | | Ranking | of treatments | High | - | | | | | - | Major bleed | | | | | | | Mixed | evidence. Hazard Ratio (| 95% Confidence | e Interval) | | | | | Clopidogrel :
Prasugrel | 0.89 (0.50;1.59) | Low | Imprecision | | | | | Clopidogrel : | 0 = 0 (0 1 = 1 1 0) | | Imprecision | | | | | Ticagrelor | 0.72 (0.45;1.18) | Low | Heterogeneity | | | | | Prasugrel : | 0.00 (0.45.4.47) | | Imprecision | | | | | Ticagrelor | 0.82 (0.45;1.47) | Low | Heterogeneity | | | | | 11009.010 | | | Imprecision | | | | | Ranking | of treatments | Very low | Indirectness | | | | | | | | Inconsistency | | | | | | Major or minor b | oleedings | | | | | | Mixed | evidence. Hazard Ratio (| 95% Confidence | e Interval) | | | | | Clopidogrel: | | | Heterogeneity | | | | | Prasugrel | 0.70 (0.53;0.93) | Very low | Incoherence | | | | | | 0.73 (0.59;0.91) | | Within-study bias | | | | | Clopidogrel : | | Very low | Heterogeneity | | | | | Ticagrelor | | | Incoherence | | | | | Indirect evidence. Hazard Ratio (95% Confidence Interval) | | | | | | | | Prasugrel : | , | | Heterogeneity | | | | | Ticagrelor | 1.05 (0.73;1.50) | Very low | Incoherence | | | | | <u> </u> | Ranking of treatments Moderate Indirectness | | | | | | | raming of treatments involved in the contest | | | | | | | Imprecision: Confidence intervals include values favoring either treatment. Incoherence: Disagreement between direct and indirect estimates. <u>Within-study bias</u>: Dominated by evidence at high or moderate risk of bias. <u>Heterogeneity</u>: Substantial between-study variance within the comparison. <u>Indirectness</u>: Absence of agreement in outcome definition. <u>Inconsistency</u>: Evidence of heterogeneity in the network. #### Supplementary Material 13: Hazard ratios of all outcomes across studies included in the systematic review | Study | Compo
site CV
efficac
y | CV
death | All-
cause
death | MI | Strok
e | Definit
e stent
throm
bosis | Major
bleedi
ng | Major
or
minor
bleedin
g | |---------------------------------|----------------------------------|---------------------------|-------------------------|-------------------------|-------------------------|--------------------------------------|--------------------------|--------------------------------------| | TRITO
N-TIMI
38 | 0.82
(0.73;0.
93) | 0.98
(0.73;1
.31) | - | 0.76
(0.66;
0.87) | 1.07
(0.71;
1.6) | 0.43
(0.29;0
.63) | 1.4
(1.05;1
.88) | 1.43
(1.17;1.
76) | | PLATO
* | 0.83
(0.74;0.
93) | 0.77
(0.64;0
.93) | 0.76
(0.64;
0.9) | 0.86
(0.74;
0.99) | 0.95
(0.69;
1.33) | 0.71
(0.43;1
.17) | 1.07
(0.95;1
.19) | 1.14
(1.03;1.
25) | | TRILO
GY-
ACS** | 0.96
(0.86;1.
07) | 0.93
(0.8;1.
09) | 0.94
(0.82;
1.08) | 0.96
(0.83;
1.11) | 0.89
(0.63;
1.26) | - | 1.23
(0.84;1
.81) | 1.28
(0.95;1.
73) | | PRASF
IT-ACS
(UA) | 0.73
(0.38;1.
43) | 1 | - | - | - | - | 1 | 1 | | PRASF
IT-ACS
(NSTE
MI) | 0.56
(0.31;1.
01) | - | - | - | - | - | - | - | | PHILO | 1.01
(0.45;2.
25) | - | - | - | - | - | - | - | | PRAG
UE-18 | 0.47
(0.09;2.
56) | 1 | - | - | - | - | 3.84
(0.43;3
4.39) | 1 | | TICAK
OREA | 2.11
(1.05;4.
23) | 1 | - | - | - | - | 1 | 2.16
(1.11;4.
23) | | ISAR-
REACT
5 | 1.35
(0.97;1.
86)*** | 1.32
(0.79;2
.2)*** | 1.43
(0.93;
2.21) | 1.43
(0.94;
2.19) | 1.3
(0.44;
2.37) | 1.78
(0.52;6
.08) | 1.9
(0.72;1
.65) | - | | POPula
r AGE | - | 1.19
(0.6;2.
37) | 1.08
(0.68;
1.72) | 1
(0.63;
1.57) | 0.5
(0.17;
1.46) | - | 0.71
(0.47;1
.08) | 0.71
(0.54;0.
94)**** | ^{*}data for the sensitivity analysis were used from Lindholm D et al. Ticagrelor vs. clopidogrel in patients with non-ST-elevation acute coronary syndrome with or without revascularization: results from the PLATO trial. Eur Heart J. 2014 Aug 14;35(31):2083-93. ^{**}excluded from the sensitivity analysis ^{***}provided by Authors of ISAR-REACT 5 ^{****}data for the sensitivity analysis in the Supplement of the main paper