

Figure S1. Flow cytometry and FACS gating strategies, Related to STAR Methods. (A) Gating for flow cytometry analyses shown in Figures 1 and 2. (B) Gating for pmel cell FACS sorting for RNAseq and scRNAseq shown in Figures 1 and 3. (C) Gating for characterization of LN T_{RM} shown in Figure 4. (D) Gating for tetramer staining and phenotyping shown in Figure 5. (E) Gating for CD8 T cell sorting of human T cells for scRNA-seq shown in Figure 7.

Figure S2. Staining controls for pmel populations, Related to Figure 1. (A) Mice with MAV underwent *in vivo*, intravenous staining with anti-CD45 mAb, to differentiate parenchymal vs. perivascular pmel subpopulations in lungs and liver. Histograms are gated on live, CD8⁺Thy1.1⁺ pmel cells in perfused tissue (stained populations are considered perivascular). Data are representative of two experiments each involving n=5 mice. (B) T cells from a naïve pmel mouse were phenotyped; dot plot is gated on live CD8⁺ cells from inguinal LNs. Phenotypes of CD44^{hi} (orange) and CD44^{lo} (red) pmel subsets are shown relative to that of Trm pmel cells from inguinal LNs of a mouse with MAV (blue), for comparison. The experiment was performed twice with similar results. (C) C57BL/6 mice received 10⁴ pmel cells, followed by i.p. infection with 4x10⁵ PFU HSV expressing human gp100. Inguinal LNs were harvested 30 d later and stained for Thy1.1⁺ pmel cells and the indicated phenotypic markers. Representative dot plot is gated on live CD8⁺ cells, and histograms are gated on CD44⁺Thy1.1⁺ pmel cells, as shown. The experiment was performed twice with similar results.

row min row max

PRASP2

MEF2B GPR34 S100A4 CCR2 RB1 SLC26A11 LAT2 LRRN2 PHF1 FGL2

Figure S3. Tissue transcriptional signatures define tumor-specific CD8 T cells in peripheral tissues, Related

to Figure 1. Mice were treated to induce MAV as in Fig. 1A. Thy1.1+ pmel cells were isolated by FACS from RLN and B16 tumors on day 12 (the day of tumor excision), and then from RLN, spleen, skin, lung, liver 45 days post-surgery. Gene expression was determined from FAC-sorted pmel cells (pooled from 5 mice/sample) by single end 75 bp full length poly-A RNA-sequencing, as described in schematic diagram in Figure 2A. Quadruplicate samples were analyzed from each tissue site, as indicated on the top of each row. Genes with a weight of 0.3 and higher (in each tissue relative to other tissues; see STAR Methods) were determined to be tissue specific and are shown above. Heatmaps were generated using browser-based software, Morpheus.

Figure S4. Parabiosis immune equilibration controls, Related to Figures 2 and 6. (A) Experimental schematic depicting the parabiosis surgery with naïve CD45.1 and CD45.2 C56BL/6 mice. Percent of CD8⁺CD45.1⁺ cells was assessed in indicated tissues gated on CD8⁺ cells either (B) 14 days or (C) 30 days post parabiotic surgery. (D) Experimental schematic depicting the parabiosis surgery for testing tumor-specific CD8 T cell residency with naïve recipient mice. (E) Distribution of Thy1.1⁺ pmel cells (gated on CD8⁺) in indicated tissues. (F) Mice were treated as in Figure 6H and rechallenged with $5x10^4$ B16-luciferace cells injected directly into regional LNs (RLN); LN tumor burden was imaged 7 days later. Symbols represent individual mice, with lines joining parabiotic partners. Significance was determined by paired *t* test or Wilcoxon matched pairs test; non-significant (n.s.) indicates p > 0.05. Data shown are from a single experiment (B and C), or pooled from two independent experiments (E and F).

Figure S5. Pmel T cell heterogeneity within each tissue is defined by unique gene expression patterns, Related to Figure 3. As described in Figure 3, FAC-sorted pmel T cells underwent 3'-end single cell RNA-seq using the 10x Genomics platform. For each cluster in Figure 3, gene signatures comprised of the most significantly upregulated genes were defined by the *FindMarkers* build-in function in Seurat. Dot plots depict average Z-transformed normalized expression of the top 20 representative genes in each cluster. Pie charts depict the percentage of cells from each tissue that comprise each cluster.

Figure S6. Gene expression and RNA velocity analyses of single cell RNAseq data, Related to Figure 3. (A) Violin plots depicting average Z-transformed normalized expression of select T_{RM} markers across clusters shown in Figure 3. (B) RNA velocity field projection onto the t-SNE plot of memory T cells shown in in Figure 3. Each dot corresponds to a single cell; arrows depict the local average velocity. Clustering was done using "pagoda2" with velocity estimations determined with "velocyto.R" R packages..

Figure S7. The lymph node T_{RM} gene signature is prognostic in patients with metastatic melanoma, Related to Figure 7. The LN T_{RM} gene signature was generated as described in Figure 7G. (A) Kaplan-Meier plots indicating the prognostic value of stratification based on enrichment of single cell-derived binary LN Trm T cell signatures in regional lymph node metastases for public datasets GSE53118 containing 79 patients, and GSE65904 containing 195 patients. (B) Survival analyses were conducted using TCGA regional LN metastatic specimens, as described in Figure 7H, but with CD8 T cell specific genes (*Cd8a, Cd8b1, Cd3g, Cd3e,* and *Trav7-4*) not added to the signatures. In all analyses, patients were divided into high vs. low enrichment groups based on separation at the median.

Table S1, Related to Figure 3: Comparison of marker expression on pmel cells across methods and tissues

		CD103/Itgae	CD62L/Sell	CD69	CXCR6	CD127	
Tissue	Method						CXCR3
Lymph	Protein (Flow)	High	Low	High	Very High	High	High
Node	Bulk RNA	High	Low	Intermed	Very High	High	Hlgh
	scRNA	High	Absent	Intermed	Very High	High	High
Skin	Protein (Flow)	Very High	Absent	Very High			
	Bulk RNA	High	Absent	High			
	scRNA	High	Absent	High		Protein	
Lung	Protein (Flow)	Intermed	Low	Intermed	expression		
	Bulk RNA	High	Low	Intermed		not	
	scRNA	Intermed	Absent	Intermed		assessed	
Liver	Protein (Flow)	Intermed	Low	Intermed			
	Bulk RNA	Intermed	Low	Intermed			
	scRNA	Intermed	Absent	Intermed			
Spleen	Protein (Flow)	Intermed	Low	Intermed			
	Bulk RNA	Intermed	Intermed	Low			
Naïve	Protein (Flow)	Intermed	High	Low			
	Bulk RNA	Intermed	High	Low			

Expression levels (Very High, High, Intermediate, Low, Absent) are described relative to the following pmel control populations:

	Positive	Negative
Flow cytometry	Skin	Naïve
Bulk RNA	Skin	Naïve & TILs
scRNA	Skin	None

Skin Trm				Lung Circu	n			LN Trm	
ACTB	EMD	JUND	RGS2	ABRACI	ESD	PDI M1	S100A10	ACAP1	LY6G5B
AKAP13	ENO1	KDM6B	RHFB	ACTG1	ESM1	PDLIM2	\$100,110	ACTN2	MALAT1
ALDOA	ERDR1	KI F10	RORA	AIMP1	FIOT1	PGLYRP1	S100A4	AMICA1	MBNI 1
ANXA1	ETS1	KLF6	RPL15	ANXA2	FUT7	PHF5A	S100A6	ARHGEF1	MRPL52
ANXA2	FASL	LCP1	RPL35	ANXA6	GAPDH	РКРЗ	S1PR4	ATXN7L3B	MXD4
ARID5A	FGI2	IDHA	RRAD	AP2S1	GGT1	PLEK	SEC61B	AW112010	MYCBP2
ATF3	FKBP2	LITAF	RSRC2	APRT	GIMAP1	PLP2	SERPINB6A	B4GALNT1	N4BP2L2
ATP2B1	FOS	LMNA	SAMSN1	ARL6IP5	GIMAP7	POLR1D	SERPINB6B	BCL11B	NDUFA3
AY036118	FOSB	LRRC58	SAP18	ARPC1B	GLIPR2	PPP1CA	SH2D1A	CBX3	NDUFA5
B4GALT1	FOSL2	LY6G5B	SAT1	ARPC3	GLRX	PRDX1	SIKE1	CCND2	NKTR
BHLHE40	FTH1	MALAT1	SERTAD1	ARPC5	GLTSCR2	PRELID1	SNRPE	CCR10	NUDCD3
BRD2	FTL1	MIF	SIT1	ATP1B3	GLUD1	PRR13	SRP19	CD27	OGT
BTG1	FUS	MXD4	SLBP	ATP5C1	GM2A	PSMB4	SSR3	CD7	PDCD4
BTG2	GADD45B	МҮН9	SIC38A2	ATP5F1	GMEG	PSMD8	SURF1	CD74	PDIA3
CALM1	GAPDH	NDFIP1	SIC3A2	BAK1	GNA15	PSMF1	TAGI N2	CHD3	PDIA6
CALM2	GCH1	NEURI 3	SMAD7	BC021614	GNB2L1	PYCARD	TKTI 1	CIRBP	PTPN7
CAPG	GEM	NEKBIA	SMCO4	BSCI 2	G7MA	PYHIN1	TMSB4X	CLEC2D	PTPRC
CAPNS1	GM6133		SOCS1	BTE3	GZMB	RAC2	TOMM22	CROT	RAPGEE6
CCDC107	GNB1	NEKBIZ	SOSTM1	CAR5B	GZMK	RACGAP1	ТРРРЗ	CSF1	RBPI
CC14	GPR132	NR3C1	SRSF2		HMGB2	RASA3	Τςρανι32		RGS10
CCND2	GSTP1	NR4A1	STK17B	CCDC12	ICT1	RASGRP2	TWF2	CXCR6	RPI 15
CD28	H3F3B	NR4A2	TAGAP	0015	IFITM1	RBM3	TXN1	FIES	RPI 35
CD401G		NR4A3	TBX21	CCR2	IFITM2	REEP5	TXNDC5	EV/I	RPI 38
CD44			TESC		IFITM3	RILPI 2	LIOCRES1	FAM189B	RPS28
		ORAL1	TGEB1	CD47	IGBP1	RNH1	VIM	FLIRP1	RPS29
CD69	HMGN1		TGIE1			ROM1		FVR	SACH3
CD05	HSD11B1	PDIA3	THY1	CDC25B	ITGR1	RPI 10	WDR55	GRAMD1A	SFM 44
			тмем123		KIHIG	RPI 104		GSTP1	
		DEN1	TMEM256			RDI 22		H2-T23	SIPA1
					KIRE1	PDI 2/		HMGN1	SIEN2
						PDI 28			SP100
						RDI 20			SPCS2
			томме			RPL29			SPRM2
						RDI 20			
								1116	TESC
									TNEAIDO
		PPPIKIOD			NICANED				TSC22D4
								ITGAL	
DUSPI						RPS1/			VUCT
	ILZKG				NACA	RPSZ			
						RP320			
			YBXI	EIF3H	NUCRPI	RPS26			
EIF4A1		RAPGEF6	YWHAZ	EIF3I	NPC2	RPS27L			ZNRF1
	TIPKB	RGLL	2C3H12A			KPS4X		LYDA	
ENIC10	JUNB	KGS1	21736	EPS111	NUD121	RPSA		LYGE	
			ZFP36L1						
			ZEP36L2						
			ZNRF1	<u> </u>				<u> </u>	

Supplemental Table 3, Related to Figure 7: Patient Characteristics							
Patient study identifier	Age	Sex	Treatment	Lymph node metastasis type	Tumor size in LN	Experiment	Data shown in
sd-07-12291B2	58	М	Surgery	sentinel	4.6mm	IHC	Fig. 7A
sd-08-11049F1	57	F	Surgery	sentinel	2.6mm	IHC	not shown
sd-09-24757B1	54	F	Surgery	sentinel	2.9mm	IHC	not snown
sd-08-26200C1	56	М	Surgery	sentinel	2.2mm	IHC	not shown
D16002-652	87	F	11 cycles of pembrolizumab followed by surgery	regional to abdominal oligometastatic lesion	grossly positive	Immunofluorescence	Fig. 7B
D16002-649	72	М	2 cycles of pembrolizumab followed by surgery	regional to lung oligometastatic lesion	grossly positive	single cell RNA/TCR- seq (Figure 7C-F) and Immunofluorescence	Fig. 7C-F