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1 Introduction

The statistical analyses specified in this SAP are implemented in R. The R scripts are hosted on
the Github code repository
(https://github.com/CoVPN/correlates_reporting?2)

2 Antibody Assays and Day 29 Markers

The antibody markers of interest are measured using two different humoral immunogenicity assays
[more detail on assay type (2) can be found in Sholukh et al. (2020)]:

(1) bAbs: Binding antibodies to the vaccine insert SARS-CoV-2 proteins;

(2) Pseudovirus-nAbs: Neutralizing antibodies against viruses pseudotyped with the vac-
cine insert SARS-CoV-2 proteins.

We describe the statistical details needed for data analysis below.

(1) bAb assay: The MSD-ECL Multiplex Assay (MSD-ECL = meso scale
discovery-electrochemiluminescence assay).

The MSD assay measures binding antibody to antigens corresponding to: Spike (an engineered
version of the Spike protein harboring a double proline substitution (S-2P) that stabilizes it in the
closed, prefusion conformation [McCallum et al. (2020)]); the Receptor Binding Domain (RBD) of
the Spike protein; and Nucleocapsid protein (N), which is not contained in any of the COVID-19
vaccines.

The bAD assay readouts are in units AU/ml, where AU stands for arbitrary units from a standard
curve. The process of validating the assay defined a lower limit of detection (LOD), an upper
limit of detection (ULOD), a lower limit of quantitation (LLOQ), an upper limit of quantitation
(ULOQ), and a positivity cut-off for each antigen that defines positive vs. negative response. These
values are as follows:

e bAD Spike:

— Pos. Cutoff = 1204.71 AU/ml

— LOD = 34.18 AU/ml

— ULOD = 19,136,250 AU /ml
LLOQ = 199.64 AU/ml

— ULOQ = 1,128,438.87 AU/ml
e bAb RBD:

— Pos. Cutoff = 517.86 AU/ml

— LOD = 58.59 AU/ml

— ULOD = 8,201,250 AU/ml



— LLOQ = 184.7172 AU /ml
— ULOQ = 598,133.3615 AU /ml

Pos. cutoff = 9779.62 AU/ml
— LOD = 39.06 AU/ml

— ULOD = 21,870,000

— LLOQ = 1870.70 AU/ml

— ULOQ = 239,449.31

The Vaccine Research Center established factors for converting the MSD assay readouts from
AU/ml to WHO International Units/ml. For the three binding antibody variables CoV-2 Spike
IgG, CoV-2 RBD IgG, and CoV-2 N IgG, these conversion factors are 0.0090, 0.0272, and 0.0024,
respectively. These conversion factors are applied, such that all binding Ab readouts are reported in
WHO International Units/ml (BAU/ml), for all analyses. These conversion factors are also applied
to yield the LOD, ULOD, LLOQ, and ULOQ on the WHO BAU/ml scale. The following shows
the assay limits on the BAU/ml scale:

e bAD Spike:
— Pos. Cutoff = 10.8424 BAU/ml
~ LOD = 0.3076 BAU/ml
— ULOD = 172,226.2 BAU/ml
— LLOQ = 1.8429 BAU/ml
— ULOQ = 238.1165 BAU/ml
e bAb RBD:
— Pos. Cutoff = 14.0858 BAU /ml
— LOD = 1.593648 BAU/ml
— ULOD = 223,074 BAU/ml
— LLOQ = 5.0243 BAU/ml
— ULOQ = 172.5755 BAU/ml
e bAb N:
— Pos. Cutoff = 23.4711 BAU/ml
— LOD = 0.093744 BAU/ml
— ULOD = 52,488 BAU/ml
— LLOQ = 4.4897 BAU/ml



— ULOQ = 574.6783 BAU/ml

For the three binding antibody markers, all values below the positivity cut-off are assigned the
value positivity cut-off divided by 2. For immunogenicity reporting, values greater than the ULOQ
are not given a ceiling value of the ULOQ), the actual readouts are used. For the immune correlates
analyses, values greater than the ULOQ are assigned the value of the ULOQ.

(2) Pseudovirus-nAb assay: A firefly luciferase (ffLuc) reporter neutralization assay for measur-
ing neutralizing antibodies against SARS-CoV-2 Spike-pseudotyped viruses.

Based on the assay in the Monogram lab, serum inhibitory dilution 50% titer (ID50) values are
estimated based on a starting serum dilution of 1:40, with a total of ten 3-fold dilutions. Each
sample is diluted initially at 1:20, then diluted serially 3-fold for a total of 10 concentrations. The
starting dilution of 1:20 is reported as 1:40 after addition of the virus. So, the dilution series is 1:40
to 1:787,320 (= 40 * 39). Thus 1:40 is the LOD on the scale of the assay. The process of validating
the assay defined the LOD, LLOQ, and ULOQ for ID50 as follows:

e ID50:
— LOD = 40
— LLOQ = 42
— ULOQ = 9484

ID50 values below the LLOQ are assigned the value LLOQ/2 = 42/2 = 21. For immunogenicity
reporting, values greater than the ULOQ are not given a ceiling value of the ULOQ, the actual

readouts are used. For the immune correlates analyses, values greater than the ULOQ are assigned
the value of the ULOQ.

ID50 values are reported in international units with the following calibration factor, defined using
the D614G strain in the assay:

e Calibration factor ID50: 0.0653

The original readouts are calibrated to the IU scale by multiplying each original ID50 value by
0.0653 (See Feng et al. (2021) Table 2 and Gilbert et al. (2022) Supplementary Material), and
units are reported in international units as TU50/ml for ID50. Consequently, the LOD, LLOQ and
ULOQ for TU50/ml are as follows in International Units:

e TU50/ml:
— LOD = 2.612
— LLOQ = 2.7426

— ULOQ = 619.3052

Based on each immunoassay applied to pairs of serum samples collected from participants on Day 1
(baseline, first dose of vaccination visit) and Day 29 (second dose of vaccination visit), the following
set of antibody markers was defined for immunogenicity and immune correlates analyses.



e For bAb: logip IgG concentration (BAU/ml) at each time point, the difference in logj concen-
tration (Day 29 minus Day 1) representing logj fold-rise in IgG concentration from baseline
to dose two, and the difference in logyp concentration (Day 29 minus Day 1) representing
log1g fold-rise in IgG concentration from baseline to 28 days post dose two. These markers
are defined for each antigen Spike, RBD, and N.

e For PsV nAb: logio serum inhibitory dilution 50% titer (IU50/ml) at each time point, as well
as the logyo fold-rise of this marker over Day 1 to Day 29.

3 Study Cohorts and Endpoints

3.1 Study Cohort for Correlates Analyses

The primary analysis cohort for correlates analyses is baseline SARS-CoV-2 seronegative
participants in the per-protocol cohort, with the per-protocol cohort defined the same as for
the primary analysis of vaccine efficacy in the protocol (Sadoff et al., 2021). We refer to
this cohort representing the primary population for correlates analysis as the Per-Protocol
baseline seronegative (PPBN) Cohort.

Because the primary analysis of vaccine efficacy is in baseline seronegative individuals, CoR
and CoP analyses are only done in baseline seronegative individuals, and the analysis of data
from baseline seropositive individuals is for purposes of immunogenicity characterization.

In baseline seronegative individuals, antibody marker data in placebo recipients are relevant
for verifying the expectation that almost all Day 29 marker responses will be negative, given
the lack of SARS-CoV-2 antigen exposure.

3.2 Study Endpoints

Endpoints for per-protocol correlates analyses are included if they occur at least 7 days after
the Day 29 visit, to help ensure that the endpoint did not occur prior to Day 29 antibody
measurement. Thus participants with a per-protocol endpoint diagnosed up to 6 days post
Day 29 visit, or with any evidence of infection up to 6 days post Day 29 visit (e.g., based on
a NAAT positive test result or an RT-PCR test result), are excluded from the per-protocol
correlates analyses. In addition, the analyses are also done including endpoints starting 1
day after the Day 29 visit, and excluding cases with any evidence of infection by the Day 29
visit. These analyses are justified by their advantage of including more vaccine breakthrough
endpoints (about 35% more), which improves precision of correlates analyses, as well as by
the expectation that most cases diagnosed 1-6 days post Day 29 visit did not have their Day
29 antibody markers perturbed by a natural infection that occurred before the Day 29 visit.
More specifically, it is expected that within the first 5 days of a SARS-CoV-2 infection, the
natural infection is unlikely to make antibodies contributing to the antibody marker level, and
beyond that time point, the natural infection would increasingly contribute to the antibody
level. The analyses that start counting endpoints 7 days or 1 day post Day 29 visit use
separate sets of inverse probability of sampling (IPS) weights. Also note that only endpoints
occurring at least 28 days post first vaccination are included in correlates analyses, consistent



with one of the primary analysis approaches of Sadoff et al. (2021).
Figure 1 defines five study endpoints.

In ENSEMBLE, the primary endpoint is moderate-to-severe infection. This is closely related
to the COVID infection endpoint in Figure 1, except for the exclusion of the mild infections
(see study protocol and study SAP for specific details). For consistency between the primary
analysis and the correlates analysis, the primary study endpoint will be used here. While
the severe COVID endpoint is of paramount clinical importance, the number of events at the
time of the first correlates analysis is too small to assess correlates against this endpoint, such
that correlates analyses for severe COVID will be done once more endpoints have accrued
through longer-term follow-up.

When a correlates analysis is done, all available follow-up for participants is included through
to the minimum of (1) the time of the database lock for the correlates analysis and (2) the
last day of follow-up post Day 29 visit for which stable inference on marginalized cumulative
incidence can be made; call this time the ‘administrative censoring time’. This means that
the time of right censoring for a given failure time endpoint will be the first event of loss to
follow-up or the date of administrative censoring defined as the last date of available follow-
up. For CoP analyses, which use both vaccine and placebo recipient data and leverage the
randomization, follow-up is censored at the time of unblinding if this date occurs earlier. In
general for the first correlates analyses all blinded follow-up is included and no post-unblinding
follow-up is included.

For the first correlates analyses, the administrative censoring time is taken to be a partic-
ipant’s earliest event of January 22, 2021 (date of data base lock for selecting samples for
the correlates study) and 54 days after the Day 29 study visit. 54 days is chosen to address
the fact that the end of follow-up time ty for defining the marginalized cumulative incidence
parameter of interest in the vaccine arm needs to be chosen so that there are a reasonable
number of participants at risk in the subcohort at time tg. We choose ty as the last time
such that 15 participants in the subcohort are still at risk, pooling over the three geographic
regions, which yields ¢ty = 54 days.

3.3 Follow-up Included in the Initial Correlates Analyses

The data lock date for inclusion of (Day 1, Day 29) samples for antibody measurement of
vaccine breakthrough cases was January 22, 2021. All correlates analyses administratively
censor the COVID-19 failure time variable by the calendar date January 22, 2021. Therefore
only vaccine breakthrough cases occurring by January 22, 2021 are included in the analysis.

4 Objectives of Immune Correlates Analyses of a Phase 3 Trial
Data Set

4.1 Characterize Vaccine Immunogenicity

There are two objectives to characterize the binding and neutralizing antibody immunogenic-
ity of the vaccine:
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Stage 1 To characterize vaccine immunogenicity (bAb, PsV nAb) at Days 1 and 29

Stage 2 To characterize vaccine immunogenicity /durability (bAb, PsV nAb) over time (Days 1,
29, 71, time of cross-over and Day 546)

4.2 Correlates of Risk and Correlates of Protection

We broadly classify the proposed analyses into two related categories: correlates of risk
(CoR) and correlates of protection (CoP) analyses. CoR analyses seek to characterize correla-
tions/associations of markers with future risk of the outcome amongst vaccinated individuals
in the study cohort. CoP analyses seek to formally characterize causal relationships among
vaccination, antibody markers and the study endpoint, and use data from both vaccine and
placebo recipients. Table 1 summarizes these objectives and statistical frameworks that are
commonly used to these ends.

The advantage of CoR analyses is that it is possible to obtain definitive answers from the phase
3 data sets, that is one can credibly characterize associations between markers and outcome.
The advantage of CoP analyses is that the effects being estimated have interpretation directly
in terms of how an antibody marker can be used to reliably predict vaccine efficacy (the
criterion for use of a non-validated surrogate endpoint for accelerated approval, Fleming and
Powers (2012)). The disadvantage of CoR analyses are that a CoR may fail to be a CoP,
for example due to unmeasured confounding, lack of transitivity where a vaccine effect on
an antibody marker occurs in different individuals than clinical vaccine efficacy, or off-target
effects (VanderWeele, 2013). The disadvantage of CoP analyses is that statistical inferences
rely on causal assumptions that cannot be completely verified from the phase 3 data, such that
compelling evidence may require multiple phase 3 trials and external evidence on mechanism
of protection (e.g., from adoptive transfer or vaccine challenge trials). Our approach presents
results for both CoR and CoP analyses, seeking clear exposition of how to interpret results,
the assumptions undergirding the validity of the results, and diagnostics of these assumptions
and assessment of robustness of findings to violation of assumptions.

We conjecture that an antibody marker could qualify as a non-validated surrogate endpoint
(meeting accelerated approval criteria) based on meeting all three conditions: (1) demon-
stration of a strong and robust CoR with confounding control; (2) external data supporting
functionality and connection to a mechanism of protection; and (3) CoP analyses supporting
that the biomarker is likely to be a CoP and not only a CoR. Mechanisms of protection as in
(2) may be learned through passive antibody transfer studies and vaccine challenge studies
in animals and/or humans.
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Table 1: Correlates of Risk (CoRs) and Correlates of Protection (CoPs) Objectives for Day 29

Markers
Objective Type Objective
CoRs (Risk Prediction To assess Day 29 markers as CoRs in vaccine
Modeling) recipients

a. Relative risks of outcome across marker levels
b. Absolute risk of outcome across marker levels
c. Machine learning risk prediction for
multivariable markers

CoP: Correlates of VE

To assess Day 29 markers as correlates of VE in

vaccine recipients

a. Principal stratification effect modification analysis

b. Assesses VE across subgroups of vaccine recipients defined by
Day 29 marker level in vaccine recipients

CoP: Controlled
Effects on
Risk and VE

To assess Day 29 markers for how assignment
to vaccine and a fixed marker value would
alter risk compared to assignment to placebo

CoP: Stochastic
Interventional Effects
on Risk and VE

To assess Day 29 markers for how stochastic
shifts in their distribution would
alter mean risk and VE (Hejazi et al. (2021))

CoP: Mediators of VE

To assess Day 29 markers as mediators of VE

a. Mechanisms of protection via natural direct and indirect effects
a. Estimate the proportion of VE mediated by a marker or markers

4.3 Synthesis of the Phase 3 Correlates Analyses for Decisions

Establishment of an immunologic biomarker for approval /bridging applications is generally
not based on pre-fabricated criteria nor a single type of correlates analysis. Therefore, the
goal of the correlates analysis is to generate evidence about correlates from many perspec-
tives, and to synthesize the evidence to support certain decisions. Consequently, we believe
there is value in assessing all of the types of correlates presented in Table 1 in this trial,
given that the analyses address distinct questions. Obtaining a set of results from multiple
distinct approaches that provide complementary and coherent support may increase the rigor
and robustness of an evidence package supporting potential use of an antibody marker as
a validated surrogate (for traditional approval) or as a non-validated surrogate (for acceler-
ated approval) (Fleming and Powers, 2012); these uses of a biomarker are summarized below.
However, the assumptions needed for valid inferences are somewhat different across the meth-
ods, and some of these assumptions have testable implications; therefore examination of the
assumptions may lead to favoring some methods over others, and affect the synthesis and in-
terpretation of results, and moreover if diagnostics support that some necessary assumptions
are infeasible then certain analyses will be canceled, as described below.
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Section 16 summarizes the approach that is used and the interpretation of the set of multiple
correlates of protection methods. Furthermore, depending on the number of study endpoints
in the vaccine and placebo arms at the time a trial delivers primary results, some of the Day
29 marker correlates types defined in Table 1 will be evaluable at the first correlates analyses,
whereas others will not be evaluable until additional evaluable vaccine breakthrough endpoints
have been observed.

As detailed in Table 4, some CoR analyses are done after there are at least 25 evaluable
vaccine breakthrough cases, which is considered to be a minimal number to achieve worthwhile
precision. On the other hand, the most nonparametric/flexible CoR analyses require more
cases, as do the CoP analyses in general, given the need to adjust for all potential confounders
in order to fully identify the causal effects parameters of interest and the greater challenge
in estimation (compared to CoR analysis) posed by the need to deal with missing potential
outcomes.

Finally, we note that meta-analysis of multiple VE trials will provide important empirical
support for potentially establishing an immunologic surrogate endpoint, which underscores
the necessity of standardizing the VE trials (common study endpoints, common labs and
immunoassays, common statistical methods and data analysis).

4.4 Accommodation of Multiple Geographic Regions in the ENSEMBLE
Trial

Primary analysis results on vaccine efficacy have been reported overall and for each of three
major geographic regions: U.S., Central/South America, South Africa. The immunogenicity
analyses will report results separately across the three major geographic regions. The first
immune correlates analyses will be conducted pooling over all geographic regions, to maximize
statistical power, with the Cox-model based controlled vaccine efficacy analyses repeated for
each geographic region separately.

5 Applications of Immune Correlates Analyses: Vaccine Ap-
proval Pathways and Standards of Evidence

Suppose that one or more phase 3 trials demonstrates beneficial vaccine efficacy against the
primary clinical endpoint (e.g., symptomatic infection, i.e. COVID) meeting pre-specified
success criteria, and correlates analyses of Day 29 antibody marker data are conducted based
on the clinical data and antibody data from the phase 3 trial(s). These correlates analyses,
combined with additional data supporting the role of antibody markers as mechanisms of pro-
tection or as surrogates of mechanisms of protection, can buttress two potential applications
of an antibody marker (Table 2).
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Table 2: Two Potential Vaccine Approval Pathways Based on a Day 29 Antibody Marker Endpoint

Traditional If the marker is scientifically well-established to reliably predict vaccine
Approval efficacy, then subsequent efficacy trials may use the marker

as the primary endpoint

a. Same vaccine for different populations

b. Possibly new vaccines in the same class for the same or different populations
Accelerated If the marker is judged reasonably likely to predict vaccine efficacy but not yet
Approval scientifically well established, then accelerated approval based on the marker

endpoint may be possible (requires verification of beneficial clinical VE in

post marketing studies)

a. Same vaccine for different populations

b. Possibly new vaccines in the same class for the same or different populations

Fleming and Powers (2012) defined a wvalidated surrogate as a marker that is appropriate
for use as an outcome measure for traditional approval of a specific class of interventions
against a specific disease, when such interventions are deemed safe and have demonstrated
strong evidence that risks from off-target effects are acceptable. They also defined a non-
validated surrogate as a marker appropriate for use as an outcome measure for accelerated
approval as one established to be “reasonably likely to predict clinical benefit” for a specific
disease setting and class of interventions. These definitions provide two goalposts for immune
correlates analyses of COVID-19 VE trials.

Table 3 summarizes one possible set of requirements for a Day 29 antibody marker to be
accepted as a wvalidated surrogate for a COVID-19 disease endpoint for use in approving
COVID-19 vaccines for specific populations (e.g., SARS-CoV-2 seronegative adults) using
Fleming and Power’s definition. These potential requirements are conjectures provided for
conceptualization purposes, and are not based on COVID-19 regulatory guidance documents.
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Table 3: Potential Traditional Approval Requirements for a Day 29 Antibody Marker

Requirements (1.-6. Required)

Endpoints and Evidence Bar

1. Strong evidence for CoR and CoP
in vaccine recipients in animal
and/or human challenge models

COVID and VL endpoints: Highly
significant and predictive

and Severe COVID : Point estimates
in the right direction

and COV-INF, ASYMP-COV-INF: No
countervailing evidence'

2. Strong evidence that the marker

is a mechanistic CoP or tightly
correlated with a mechanistic CoP
(likely deriving from animal challenge
studies of vaccines or passively
transferred antibodies)

Study endpoints used
in challenge models
such as subgenomic
SARS-CoV-2 RNA

3. Supportive evidence from natural history
studies of CoRs of re-infection in
SARS-CoV-2 infected individuals

Same endpoints as in Phase 3 trial
(COVID , severe COVID ,
ASYMP-COV-INF, COV-INF, VL Dx)

4. Phase 3 trial strong evidence as a
CoR in vaccine recipients

COVID and > 1 other endpoint:

Highly significant and predictive

and Point estimates in the right direction
for the other endpoints

Require consistent results from multiple trials

COVID
Point estimates of association/causal parameters
in the right direction for the other endpoints?

5. Phase 3 trial strong supportive evidence
as CoP, for at least one CoP type,

plus point estimates in the right

direction for the other CoP types

(consistency of evidence) Require consistent results from multiple trials

6. Temporal ordering support for several
of the above results, e.g., CoRs

and CoPs are stronger for COVID
occurrence proximal to vaccination

than distal, synchronized with

pattern of biomarker waning

COVID , severe COVID ,
ASYMP-COV-INF, COV-INF, VL Dx

COVID , severe COVID ,
ASYMP-COV-INF, COV-INF, VL Dx

7. Additional support from non-vaccine
interventions, e.g., demonstration of
a neutralization CoP for a monoclonal Ab

!Countervailing evidence could be any observations that provide evidence against a CoP, e.g.,
relative to Bradford-Hill criteria (see Section 16).
2Because CoPs can differ by study endpoint Plotkin (2010) and vaccine efficacy can differ by
study endpoint, this criterion will not necessarily be important.
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A potential goalpost for a non-validated surrogate for accelerated approval can be conceptu-
alized as the same as that for traditional approval, with modifications:

— The package of evidence for the seven sources listed in Table 3 may be less stringent
quantitatively, and not requiring success on all of the first six categories.

— Source 4 (Phase 3 CoR in vaccine recipients) would need to have strong evidence (highly
statistically significant and highly predictive).

— The support for an immune correlate may be more restricted to a given study endpoint.

— It may no longer be required to have replication of results across two or more Phase 3
trials.

It is hypothesized that a single validated assay will yield a validated or non-validated surrogate
endpoint, e.g., based on binding antibody IgG concentration or serum IU50/ml titer to viruses
pseudotyped with the Spike vaccine insert protein (or live SARS-CoV-2). However, the goal-
posts could potentially also be met by a synthesis biomarker aggregated from measurements
from multiple validated assays if this aggregation substantially improves the correlate (e.g.,
a co-correlate Plotkin (2010); Plotkin and Gilbert (2018)). However, the preferred approach,
for parsimony and practical utility, would be to define a correlate of protection as a single
biomarker derived from a single assay.

6 Timeline/Sequencing of Correlates Analyses

The correlates analyses are initiated by the availability of (a) a data set defined at or after the
primary analysis data set triggered by the accrual of a certain number of primary endpoints
(approximately 150); and (b) Day 1, 29 antibody marker data from correlates-eligible COVID
primary endpoint cases from at least 25 baseline seronegative vaccine recipients. The latter
requirement ensures that there are enough endpoint cases to achieve worthwhile precision for
CoR analyses. The HVTN 505 trial serves as a precedent where 25 evaluable vaccine recipient
cases provided enough data to reasonably characterize correlates of risk for a preventive
candidate HIV vaccine (Janes et al., 2017; Fong et al., 2018; Neidich et al., 2019; Gilbert
et al., 2020b). In addition, simulation studies show that correlates analyses at 20 endpoints
have notably lower precision.

Table 4 shows the minimum number of baseline seronegative vaccine recipient endpoints
evaluable for correlates analyses that are required before conducting the various planned
correlates analyses.
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Table 4: Minimum Numbers of Evaluable Endpoints in baseline seronegative Vaccine Recipients to
Initiate Correlates Analyses

Correlates Analysis Type Number
CoRs (Risk Prediction Modeling)
a. (Semi)parametric models with strongly parametrized associations:

Cox, hinge/threshold logistic regression 25
b. Flexible parametric models: Generalized additive model 35
c. Nonparametric thresholds: Donovan et al. (2019)/

van der Laan et al. (2021) 35
d. Superlearner estimated optimal surrogate Price et al. (2018) 35
CoP: Correlates of VE 50
CoP: Controlled VE 50
CoP: Stochastic Interventional VE 50
CoP: Mediators of VE 50

The values above are minimal numbers, where it is preferable to base correlates analyses
on several hundred vaccine breakthrough cases, for much improved precision of confidence
intervals and statistical power of hypothesis testing procedures.

6.1 Timeline of Statistical Analysis Reports

We summarize the plans for analysis reports over the whole period of the study. When
the Day 1, 29 antibody data from the immunogenicity subcohort are available, the first
immunogenicity report will be produced. When Day 1, 29 antibody data on COVID cases
are also available, the first correlates of risk report will be produced, focusing on Stage 1
data only. When there is enough follow-up to measure antibody markers at the later time
points, additional immunogenicity and correlates reports will be made, including those that
assess outcome-proximal correlates of risk and protection based on Stage 2 data. The initial
correlates reports will only include the symptomatic infection/COVID study endpoint; as
data sets become available for the other endpoints the reports will add correlates analyses
against the secondary endpoints.

7 General Statistical Issues in Immune Correlates Assessment

Throughout this section, we define the asymptomatic infection endpoint as seroconversion
without prior occurrence of the COVID endpoint.

Issue 1: Timing of endpoint definition, accounting for diagnosis at presentation
(i.e., date of virological confirmation of symptomatic COVID — COVID diagnosis)
or during post-COVID-19 diagnosis follow-up.
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— COV-INF: Defined at presentation (if COVID endpoint) or at first positive serotest
visit, whichever occurs first

— COVID: Defined at presentation/virologic confirmation

— Asymptomatic infection: Defined at first positive serotest (without prior COVID
endpoint)

Non-severe COVID: Ascertained by post-COVID diagnosis follow-up, where the fail-
ure time could be defined by the time of resolution of symptoms

— Severe COVID: Occurs at presentation or at any time during post-COVID diagnosis
follow-up

At COVID endpoint diagnosis, participants roll over onto a post-diagnosis follow-up track
(Figure 2). This is irrelevant for analysis of the first three endpoints listed above, but for
the non-severe COVID endpoint and the severe COVID endpoint special considerations are
needed for proper correlates analyses. Survival analysis theory typically requires predictable
processes, such that non-severe COVID and severe COVID would have failure times defined
when the classification of the endpoint is known. However, alternatively, the analysis could
be simplified by defining the failure time for all three endpoints COVID, severe COVID, and
non-severe COVID to be the date of presentation, even though at that time one needs to
look into the future to determine whether the COVID endpoint is severe or non-severe. Such
an approach could be justified by thinking of the data as a competing risks data structure,
where one observes the time to COVID, and each COVID endpoint has an associated binary
endpoint “type”, severe or non-severe. The analyses will use this simplified approach. A
justification of this simplified approach is that severe COVID is a very rare event among
vaccine recipients, and it is the fact of having the event that is important, not whether it
happened at or 9 days post COVID diagnosis, such that using a more refined failure time
would be unlikely to carry additional meaningful information. If greater than 10% of COVID
endpoint cases are missing the endpoint type, then methods accounting for missing endpoint
types will be used (e.g., Heng et al., 2020).

Issue 2: Is the endpoint appropriately analyzed using ordinary survival analysis
or competing risks survival analysis?

For this issue, we consider use of a time-to-event method to assess vaccine efficacy. In general,
a competing risk of a given endpoint of interest is an endpoint that, once it occurs, precludes
the possibility of future occurrence of the other endpoint.

1. COVID is a competing risk for asymptomatic infection
2. Severe COVID is a competing risk for non-severe COVID

Therefore, the asymptomatic infection and non-severe COVID endpoints may be best ana-
lyzed by competing risks methods. For example, instead of estimating cumulative incidence
P(T < t|A = a) for a given randomization arm A = a, where 7' is the time from enrollment
until the endpoint, we analyze cumulative incidence P(T' < t,J = 1|A = a), where T is the
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time to the first event of J = 1 (event of interest) or J = 2 (competing event), and cumulative
VE(t) may be assessed using the parameter

P(T<t,J=1A=1)

P(T<t,J=1A=0)

VE(t) =1 —

In addition, hazard-ratio-based VE may be defined as one minus the cause (J = 1)-specific
hazard ratio (Prentice et al., 1978; Gilbert, 2000).

It is also worth noting that:

1. Asymptomatic infection is not a competing risk for COVID, because participants experi-
encing the asymptomatic infection endpoint continue follow-up for the COVID endpoint
(such that at asymptomatic infection diagnosis it is not known whether the infection is
truly asymptomatic or pre-symptomatic), and it is not certain that seroconversion pre-
vents future COVID (if future knowledge supports this conclusion, then asymptomatic
infection could be treated as a competing risk).

2. Non-severe COVID is not a competing risk for severe COVID. At presentation, if the
COVID event does not qualify as severe, then post-COVID diagnosis follow-up is re-
quired to determine whether the endpoint registers as non-severe or severe. One will
only know the endpoint is not severe after post-COVID diagnosis follow-up is com-
pleted (symptoms resolve), such that the failure time is not known until the end of post
COVID diagnosis follow-up. Therefore, non-severe COVID is not a competing risk for
severe COVID, and the severe COVID endpoint can be analyzed using ordinary survival
analysis ignoring the non-severe COVID endpoint.

In sum, the COV-INF, COVID, and severe COVID endpoints will be analyzed by ordinary
survival analysis methods, whereas the asymptomatic infection and non-severe COVID end-
points will be analyzed using competing risks methods. Moreover, adding nomenclature pre-
cision, for the parent infection endpoint, the daughter endpoints COVID and asymptomatic
infection are semi-competing risks data (nomenclature in the survival analysis literature),
and for the COVID parent endpoint, the daughter endpoints severe COVID and non-severe
COVID are semi-competing risks data.

In addition, one non-clinical endpoint may be important for correlates assessment: SARS-
CoV-2 viral load at COVID diagnosis (VL Dx) (e.g., measured by nasal swab), or alternatively
area under the viral load curve (AUC-VL) from the COVID diagnosis date through to un-
detectable viral load, or to an alternative threshold indicating low viral load. Viral load
endpoints are putative surrogates of disease progression and severity for the individual, and
are also putative surrogates for secondary transmission; moreover the quantitative nature of
viral load endpoints may afford an opportunity to increase statistical power.

Issue 3: Coarseness level of the failure time variable

1. COVID: Event time defined in ‘continuous time’ on the day of virological confirmation.
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2. Asymptomatic infection: Event time defined only at fixed infrequent visits (e.g.,
Month 6, 12, 18, 24).

3. COV-INF: Event time defined as ‘mixed continuous and discrete’, equal to the day of
virological confirmation (if COVID) and by the first seropositive visit (if asymptomatic
infection).

4. Non-severe COVID: Event time may be defined in continuous time, as the number
of days from enrollment to COVID diagnosis plus the number of additional days until
the COVID event is known to be non-severe. However, following the decision made for
Issue 1, we simplify and define the event time at COVID diagnosis.

5. Severe COVID: Event time may be defined in continuous time, as the number of
days from enrollment to COVID diagnosis plus the number of additional days until the
COVID event is known to be severe (which may be zero days). However, following the
decision made for Issue 1, we simplify and define the event time at COVID diagnosis.

Issue 4: Binary endpoint vs. failure time endpoint

In general, in phase 3 trials with prospective follow-up for event occurrence where right-
censoring occurs (either due to administrative censoring or loss to follow-up), it can be ad-
vantageous to conduct data analysis in a survival analysis paradigm. Many of the correlates
analyses are specified as such. However, because the endpoints are rare, and the rate of
loss to follow-up is anticipated to be very low, reliable and interpretable answers may be
obtained based on simpler methods that use binary endpoints, and deal with loss to follow-up
in a cruder way. If retention is very high, such that bias and precision may be minimally im-
pacted by use of a binary endpoint, some of the correlates analyses may use a binary endpoint.
In settings with competing risks, such analyses would treat the endpoint as multinomial and
utilize methodology accordingly.

In sum, correlates methods are needed that consider time-to-event or binary endpoints, with
or without accounting for a competing risk. In addition, the methods need to be able to
handle continuous, discrete, and mixed continuous/discrete failure times.

8 Case-cohort Sampling Design for Measuring Antibody Mark-
ers

Figure 3 illustrates the case-cohort (Prentice, 1986) sampling design that is used for measuring
Day 1, 29 antibody markers (and the later time points at a later point in time) in a random
sample of trial participants. The random sample is stratified by the key baseline covariates:
randomization arm, baseline SARS-CoV-2 serostatus, and 16 baseline demographic covariate
strata defined by all combinations of: underrepresented minority (URM) within the U.S. vs.
non-URM within the U.S. vs. Latin America vs. South Africa participant, age 18-59 vs.
age > 60, and presence vs. absence of comorbidities. This results in a total of 64 sampling
strata. A U.S. participant is classified as a URM if they are at least one of the following races
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and ethnicities: Black or African American, Hispanic or Latinos, American Indian or Alaska
Native, Native Hawaiian, and/or other Pacific Islander. A participant is classified as a Latin
America participant if they enrolled at any site other than a U.S. or South Africa site. For
the sake of defining these baseline strata for sampling into the immunogenicity subcohort, if a
U.S. participant’s race/ethnicity is missing, they are classified as a non-URM (more precisely,
they have not reported being a URM).

Because the design uses a stratified random sample instead of the simple random sample pro-
posed by Prentice (1986), the design may also be referred to as a “two-phase sampling design”
(Breslow et al., 2009b,a), where “phase one” refers to variables measured in all participants
and “phase two” refers to variables only measured in a subset (thus the “case-cohort sample”
constitutes the phase-two data).

The case-cohort design enables obtaining marker data (Day 1, 29) for the immunogenicity
subcohort during early trial follow-up in real-time batches, thereby accelerating the time
until final data set creation and hence data analysis and results on Day 29 marker correlates.
The design allows using the same immunogenicity subcohort to assess correlates for multiple
endpoints. This makes the design operationally simpler than a case-control sampling design.

8.1 Randomly Sampled Subcohort for the Case-Cohort Design

The immunogenicity subcohort was sampled from the subset of participants in the Full Anal-
ysis Set (FAS) cohort used in the primary analysis of vaccine efficacy against the primary
endpoint (with the FAS defined as all randomized participants who received the investiga-
tional product) for whom all of the following information was available: baseline SARS-CoV-2
status; age, race/ethnicity, and heightened COVID at-risk status; and Day 1 and Day 29 sam-
ples collected.

Tables 5 and 6 summarize the planned sizes of the immunogenicity subcohorts for the U.S. as
well as for Latin America and South Africa, by baseline factors used to stratify the random
sampling. In the U.S. subcohort 8 baseline demographic strata are used; each of the Latin
America and South Africa subcohorts includes 4 baseline demographic strata. For U.S. strata,
as in all USG COVID-19 Team trials, a 50:50 balance by underrepresented minority status
Yes:No is specified. The subcohort sampling is implemented to create representative sampling
across the entire period of enrollment. For the sampling into the U.S. region, Minority includes
Blacks or African Americans, Hispanics or Latinos, American Indians or Alaska Natives,
Native Hawaiians, and other Pacific Islanders. Non-Minority includes all other races with
observed race (Asian, Multiracial, White, Other) and observed ethnicity Not Hispanic or
Latino. Therefore Unknown and Not reported have missing values for this sampling stratum
variable, such that these participants are not eligible for sampling into the immunogenicity
subcohort for the U.S. stratum.
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Table 5: Planned U.S. immunogenicity subcohort Sample Sizes by Baseline Strata for Antibody
Marker Measurement

Baseline SARS-CoV-2 Negative? Baseline SARS-CoV-2 Positive®
Bas. Cov. Strata® 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Vaccine 58 58 5H8 58 58 58 58 H8 18 18 18 18 18 18 18 18
Placebo T 7 7 7 7 v 7 7 18 18 18 18 18 18 18 18

!This schema specifies 8 baseline covariate strata for stratified sampling in the U.S. immunogenicity
subcohort:

1 = underrepresented minority (URM) in U.S., Age 18-59, absence of comorbidities; 2 = URM in U.S., Age
18-59, presence of comorbidities; 3 = URM in U.S., Age > 60, absence of comorbidities; 4 = URM in U.S.,
Age > 60, presence of comorbidities; 5 = non-URM in U.S., Age 18-59, absence of comorbidities; 6 =
non-URM in U.S., Age 18-59, presence of comorbidities; 7 = non-URM in U.S.; Age > 60, absence of

comorbidities; 8 = non-URM in U.S.; Age > 60, presence of comorbidities.
2The vaccine group baseline seronegative strata are assigned large sample sizes because the correlates of
risk analysis focuses on baseline seronegative vaccine recipients. The placebo group baseline seronegative
strata
are assigned small sample sizes given the expectation that almost all Day 29 bAb and nAb readouts
will be negative/zero given the absence of prior exposure to SARS-CoV-2 antigens.
3Equal stratum sizes are assigned for the vaccine and placebo groups in order to compare bAb and
nAb responses in previously infected persons, studying potential differences in natural4vaccine-elicited
responses vs. natural-elicited responses.
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Table 6: Planned Latin America and South Africa immunogenicity subcohort Sample Sizes by
Baseline Strata for Antibody Marker Measurement

Baseline SARS-CoV-2 Negative? Baseline SARS-CoV-2 Positive®
Bas. Cov. Strata® 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Vaccine 58 58 5H8 58 58 58 58 H8 18 18 18 18 18 18 18 18
Placebo T 7 7 7 7 v 7 7 18 18 18 18 18 18 18 18

!This schema specifies 8 baseline covariate strata for stratified sampling in the Latin America and South
Africa immunogenicity subcohorts (4 strata per geographic region): 1 = Latin America, Age 18-59, absence
of comorbidities; 2 = Latin America, Age 18-59, presence of comorbidities; 3 = Latin America, Age > 60,
absence of comorbidities; 4 = Latin America, Age > 60, presence of comorbidities; 5 = South Africa, Age
18-59, absence of comorbidities; 6 = South Africa, Age 18-59, presence of comorbidities; 7 = South Africa,
Age > 60, absence of comorbidities; 8 = South Africa, Age > 60, presence of comorbidities.
2The vaccine group baseline seronegative strata are assigned large sample sizes because the correlates of
risk analysis focuses on baseline seronegative vaccine recipients. The placebo group baseline seronegative
strata
are assigned small sample sizes given the expectation that almost all Day 29 bAb and nAb readouts
will be negative/zero given the absence of prior exposure to SARS-CoV-2 antigens.
3Equal stratum sizes are assigned for the vaccine and placebo groups in order to compare bAb and
nAb responses in previously infected persons, studying potential differences in natural+vaccine-elicited
responses vs. natural-elicited responses.

If certain strata do not have enough eligible participants available for sampling, then addi-
tional sampling is done from other strata to keep the total immunogenicity subcohort sample
size close to 1616. A separate USG COVID-19 Team Antibody Marker sampling plan de-
scribes the sampling algorithm employed (available upon request).

8.2 Correlates Objectives Addressed in Two Stages

There are two stages of the correlates analyses. Stage 1 includes antibody marker data from
all COVID and COV-INF cases diagnosed through to the last date of: (1) the time that at
least 25 evaluable vaccine breakthrough COVID endpoint cases are available for analysis; and
(2) the time of a data-cut at or after the primary analysis used to define the data base for
the first correlates analysis. Only Day 1, 29 antibody markers, and COVID and COV-INF
diagnosis time point antibody markers, are measured in Stage 1. The objectives of Stage 1
correlates analyses focus on Day 29 markers, which are the objectives listed in Table 1. Stage
1 focuses on Day 29 markers because in general validated or non-validated surrogate endpoints
for approved vaccines are based on the peak antibody time point, and this approach fits the
priority to develop a validated or non-validated surrogate endpoint as rapidly as possible.

Stage 2 includes antibody marker data from all COVID and COV-INF cases diagnosed after
the Stage 1 cases through to the end of the trial, including all available sampling time points
(67 time points). For immunogenicity subcohort participants, the antibody markers at all
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available time points other than Day 1, 29 are measured for Stage 2 correlates analyses (4-5
additional time points). The Stage 2 clinical endpoint data and antibody marker data enable
assessment of longitudinal antibody markers as outcome-proximal correlates of instantaneous
endpoint risk and as various types of outcome-proximal correlates of protection.

The Stage 1 immunogenicity subcohort sampling plan is finalized prior to or shortly after
study start. The Stage 2 sampling plan is not made until after the results on vaccine efficacy
at the primary analysis are known. The Study Oversight Group may modify the scope of
the set of samples for immunoassay measurements in Stage 2 based on analysis results. The
essential distinguishing mark of Stage 1 vs. Stage 2 is assessment of Day 29 marker correlates
that can be done using antibody data only from Day 1, 29 markers vs. assessment of outcome-
proximal correlates that requires antibody data longitudinally including at endpoint diagnosis
dates.

8.2.1 Prioritize antibody marker measurement at COVID and COV-INF diag-
nosis sampling time points

Conduct of the immunologic assays on diagnosis date samples for all COVID and all COV-
INF endpoint samples is of the highest priority, equal to the priority of conducting the assays
on the Day 1, 29 samples.

9 Unsupervised Feature Engineering of Antibody Markers (Stage
1: Day 1, 29)

9.1 Descriptive Tables and Graphics
9.1.1 Antibody marker data

Binding antibody titers to full length SARS-CoV-2 Spike protein, to the RBD domain of the
Spike protein, and to the Nucleocapsid (N) protein will be measured in all participants in
the immunogenicity subcohort (augmented with infected cases). N-specific binding antibody
titers are not used for correlates analyses or for graphical reporting; these data are only used
for tabular reporting. Binding antibody IgG Spike, IgG RBD, IgG N, as well as fold-rise in
these three markers from baseline, are measured at each pre-defined time point. Indicators
of 2-fold rise and 4-fold rise in IgG concentration (fold rise [post/pre] > 2 and > 4, 2FR
and 4FR) are measured at each pre-defined post-vaccination timepoint. Binding antibody
responders to a given antigen at each pre-defined timepoint are defined as participants with
value above the antigen-specific positivity cut-off. Binding antibody IgG 2FR (4FR) at each
pre-defined timepoint to a given antigen are defined as participants who had baseline values
below the LLOQ with IgG concentration at least 2 times (4 times) above the assay LLOQ), or
as participants with baseline values above the LLOQ with at least a 2-fold (4-fold) increase
in IgG concentration.

Pseudovirus neutralizing antibody IU50/ml titer, as well as fold-rise in TU50/ml titer from
baseline, are measured at each pre-defined time point. Indicators of 2-fold rise and 4-fold rise
in IU50/ml titer (fold rise [post/pre] > 2 and > 4, 2FR and 4FR) are measured at each pre-
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defined post-vaccination timepoint. Neutralization responders at each pre-defined timepoint
are defined as participants who had baseline values below the LLOQ with detectable TU50/ml
neutralization titer above the assay LLOQ, or as participants with baseline values above the
LLOQ with a 4-fold increase in neutralizing antibody titer. Neutralization 2FR (4FR) at
each pre-defined timepoint are defined as participants who had baseline values below the
LLOQ with TU50/ml at least 2 times (4 times) above the assay LLOQ, or as participants
with baseline values above the LLOQ with at least a 2-fold (4-fold) increase in neutralizing
antibody titer.

Note that for defining positive response, 2FR, and 4FR, a reason why values below the LOD
are set to half the LOD before calculating the indicator of response, is to ensure that a vaccine
recipient that has an unusually low antibody readout at baseline and a post-vaccination value
below or near the LOD is not erronesously counted as a responder.

The following list describes the antibody variables that are measured from immunogenicity
subcohort and infection case participants. (The pre-defined time points are Day 1 and Day
29.)

1. Individual anti-Spike antibody concentration at each pre-defined time point

2. Individual anti-Spike antibody fold-rise concentration post-vaccination relative to base-
line at each pre-defined post-vaccination time point

3. Individual anti-RBD antibody concentration at each pre-defined time point

4. Individual anti-RBD antibody fold-rise post-vaccination relative to baseline at each
pre-defined post-vaccination time point

5. Individual anti-N antibody concentration at each pre-defined time point

6. Individual anti-N antibody fold-rise post-vaccination relative to baseline at each pre-
defined post-vaccination time point

7. 2-fold-rise and 4-fold rise (fold rise in anti-Spike antibody concentration [post/pre] > 2
and > 4, 2FR and 4FR) at each pre-defined post-vaccination time point

8. 2-fold-rise and 4-fold rise (fold rise in anti-RBD antibody concentration [post/pre] > 2
and > 4, 2FR and 4FR) at each pre-defined post-vaccination time point

9. 2-fold-rise and 4-fold rise (fold rise in anti-N antibody concentration [post/pre| > 2 and
> 4, 2FR and 4FR) at each pre-defined post-vaccination time point

10. Individual pseudovirus-nAb IU50/ml value at each pre-defined time point

11. Pseudovirus-nAb responders, at each pre-defined timepoint defined as participants who
had baseline values below the LOD with detectable pseudovirus-nAb IU50/ml titers
above the assay LLOQ or as participants with baseline values above the LLOQ with a
4-fold increase in pseudovirus-nAb ITU50/ml titers

Summaries of the immunogenicity data will be reported in tables. In particular, the tables
will include, for each pre-defined post-baseline time point:
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1. For each binding antibody marker, the estimated percentage of participants defined as
responders, and with concentrations > 2x LLOQ or > 4 x LLOQ, will be provided with
the corresponding 95% CIs using the Clopper-Pearson method

2. For the IU50/ml pseudo-virus neutralization antibody marker, the estimated percentage
of participants defined as responders, participants with 2-fold rise (2FR), and partici-
pants with 4-fold rise (4FR) will be provided with the corresponding 95% CIs using the
Clopper-Pearson method

3. Geometric mean titers (GMTs) and geometric mean concentrations (GMCs) will be
summarized along with their 95% CIs using the t-distribution approximation of log-
transformed concentrations/titers (for each of the 3 Spike-targeted marker types in-
cluding bAb and pseudovirus-nAb IU50/ml, as well as for binding Ab to N).

4. Geometric mean titer ratios (GMTRs) or geometric mean concentration ratios (GM-
CRs) are defined as geometric mean of individual titers/concentration ratios (post-
vaccination/pre-vaccination for each injection)

5. GMTRs/GMCRs will be summarized with 95% CI (t-distribution approximation) for
any post-baseline values compared to baseline, and post-Day 29 values compared to
Day 29

6. The ratios of GMTs/GMCs will be estimated between groups with the two-sided 95%
ClIs calculated using t-distribution approximation of log-transformed titers/concentrations
[the groups compared are vaccine recipient Non-Cases vs. vaccine recipient break-
through cases starting 7 days post Day 29 (7+day Cases), and vaccine recipient Non-
Cases vs. vaccine recipient breakthrough cases starting 1 day post Day 29 (1-6day
Cases)].

7. The differences in the responder rates, 2FRs, 4FRs between groups will be computed
along with the two-sided 95% ClIs by the Wilson-Score method without continuity cor-
rection (Newcombe (1998) (the groups for comparison are as described in the previous
bullet).

All of the above point and confidence interval estimates will use inverse probability of antibody
marker sampling weighting in order that estimates and inferences are for the population from
which the whole study cohort was drawn. In two-phase sampling data analysis nomenclature,
the “phase 1 ptids” are the per-protocol individuals excluding individuals with a COVID
failure event or any other evidence of SARS-CoV-2 infection < 7 days post Day 29 visit. The
“phase 2 ptids” are then the subset of these phase 1 ptids in the immunogenicity subcohort
with Day 1 and 29 Ab marker data available. Thus, marker data for the COVID endpoint
cases outside the subcohort will not be used in immunogenicity analyses; these cases are
excluded from immunogenicity analyses. Similarly, for Day 29 marker correlates analyses the
“phase 1 ptids” are the per-protocol individuals excluding individuals with a COVID failure
event or any other evidence of SARS-CoV-2 infection < 7 days post Day 29. The “phase 2
ptids” are then the subset of these phase 1 ptids in the immunogenicity subcohort with Day
1 and Day 29 Ab marker data available. Thus again, marker data for the COVID endpoint
cases outside the subcohort will not be used in immunogenicity analyses; these cases are
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excluded from immunogenicity analyses.

The estimated weight Wsypconort. is the inverse sampling probability weight, calculated as
the empirical fraction (No. phase 1 ptids / No. phase 2 ptids) within each of the baseline
strata [(vaccine, placebo) x (baseline seronegative, baseline seropositive) x (demographic
strata)]. For individuals outside the phase 1 ptids, Wsypconort. 1S assigned the missing value
code NA. All other individuals have a positive value for Wsypcohort.z; including cases not in
the subcohort. This weight is only used for case-blinded immunogenicity inferential analyses.
Note that Wsubcohort.e 1S used for all immunogenicity subcohort immunogenicity analyses,
which are based solely on the immunogenicity subcohort, for Day 1 and Day 29 markers.
(Not used for correlates analyses.)

Tables will be provided separately for (1) baseline seronegative individuals, (2) baseline
seropositive individuals, (3) baseline seronegative individuals by subgroup defined as in Table
7, and (4) baseline seropositive individuals by the same subgroups as in (3). Each table will
show data for all available time points and for each of the vaccine and placebo arms.

Table 7 shows subgroups that are analyzed, within each of the four immunogenicity reports
(overall, U.S. region, South Africa region, Latin America region).
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Table 7: Baseline Subgroups that are Analyzed.!

Age: 18 — 59, > 60

Country: U.S., Argentina, Brazil, Chile, Colombia, Mexico, Peru, South Africa
Heightened risk for Severe COVID: At risk, Not at risk

Age x Risk for Severe COVID:

All 4 combinations of (Age 18-59, Age > 60) x (At risk, Not at risk)

Sex Assigned at Birth: Male, Female

Age x Sex Assigned at Birth:

All 4 combinations of (Age 18-59, Age > 60) x (Male, Female)

Hispanic or Latino Ethnicity: Hispanic or Latino, Not Hispanic or Latino
Race or Ethnic Group:

White Non-Hispanic?, Black, Asian, American Indian or Alaska Native (NatAmer)?
Native Hawaiian or Other Pacific Islander (Paclsl), Multiracial,

Other, Not reported, Unknown

Underrepresented Minority Status in the U.S.:

URM,* Non-URM

Age x Underrepresented Minority Status in the U.S.:

All 4 combinations of (Age 18-59, Age > 60) x (URM, Non-URM)

LAll analyses are done within strata defined by randomization arm and baseline

seropositive /negative status, such that these variables are not listed here as subgroups for analysis.
2White Non-Hispanic is defined as Race=White and Ethnicity=Not Hispanic or Latino. All of the
other Race subgroups are defined solely by the Race variable, with levels Black, Asian, American

Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, Other, Not

reported, Unknown. Only the U.S. region reports results by White Non-Hispanic vs. Community
of Color. Communities of color is defined by the complement of being known White Non-Hispanic.
3 For the Latin America region report only, the American Indian or Alaska Native category is

labeled as “Indigenous South American.”
4 See beginning of Section 8 for a definition.

For comparing antibody levels between groups, the following groups are compared:
— baseline seronegative vaccine vs. baseline seronegative placebo
— baseline seropositive vaccine vs. baseline seropositive placebo

— baseline seronegative vaccine vs. baseline seropositive vaccine

— Within baseline seronegative vaccine recipients, compare each of the following pairs of
subgroups listed in Table 7: Age > 60 vs. age 18-59; risk for severe COVID: at risk vs.
not at risk; age > 60 at risk vs. age > 60 not at risk; age 18-59 at risk vs. age 18-59
not at risk; male vs. female; Hispanic or Latino ethnicity: Hispanic or Latino vs. Not
Hispanic or Latino; Underrepresented minority status: Communities of color vs. White

Non-Hispanic (within the U.S.).
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The entire immunogenicity analysis is done in the per-protocol cohort with both Day 1 and
Day 29 marker data available (the two-phase sample).

9.1.2 Graphical description of antibody marker data

The Day 1, 29 antibody marker data collected from the immunogenicity subcohort partici-
pants will be described graphically. These data are representative of the entire study cohort.
Importantly, only antibody data from the immunogenicity subcohort are included (i.e., no
data from cases outside the subcohort are included). This makes the analyses unsupervised
(independent of case-control status), enabling interrogation and optimization of the antibody
biomarkers prior to the inferential correlates analyses.

Plots are developed for the following purposes. All of the analyses are done separately within
each of the four subgroups defined by randomization arm cross-classified with baseline seroneg-
ative/seropositive status. In addition, many of the descriptive analyses will also be done
separately for each demographic subgroup of interest listed above. For descriptive plots of
individual marker data points that pool over one or more of the baseline strata subgroups,
plots show all observed data points.

For each antibody marker readout, both Day 29 and baseline-subtracted Day 29 readouts are
of interest. We will refer to the latter as ‘delta.” All readouts, including delta, will be plotted
on the logig scale, with plotting labels on the natural scale. As such, delta is logig fold-rise
in the marker readout from baseline.

The following descriptive graphical analyses are done.

1. The distribution of each antibody marker readout at Day 1 and Day 29 will be de-
scribed with plots of empirical reverse cumulative distribution functions (rcdfs) and
boxplots (including individual data points) within each of the four groups defined by
randomization arm (vaccine, placebo) and baseline serostratum (seronegative, seropos-
itive). Inverse probability of sampling into the subcohort weights (Wsypconort.) are used
in the estimation of the rcdf curves; henceforth we refer to these weights as “inverse
probability of sampling” (IPS) weights. Analyses of Day 1 markers always pool across
vaccine and placebo recipients given that the two subgroups are the same at baseline.

2. Plots are arranged to compare each Day 29 marker readout between randomization
arms within each of the baseline seropositive and baseline seronegative subgroups.

3. Plots are also arranged to compare each Day 29 marker readout between baseline
serostatus groups within each randomization arm.

4. The correlation of each antibody marker readout between Day 1 and Day 29, and be-
tween Day 1 and delta, is examined within each of the baseline strata subgroups, and
within each randomization arm and baseline serostratum. Pairs plots/scatterplots will
be used, annotated with baseline strata-adjusted Spearman rank correlations, imple-
mented in the PResiduals R package Li and Shepherd (2012) available on CRAN. For
calculating the correlation within each randomization arm and baseline serostratum,
because PResiduals does not currently handle sampling weights, the correlation esti-
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mates are computed as follows: For each re-sampled data set in the second approach
to graphical plotting, the covariate-adjusted Spearman correlation is calculated. The
average of the estimated correlations across re-sampled data sets is reported.

5. The correlation of each pair of Day 1 antibody marker readouts are compared within
each of the baseline demographic subgroups and baseline serostratum, pooling over the
two randomization arms. Pairs plots/scatterplots and baseline-strata adjusted Spear-
man rank correlations are used, with covariate-adjusted Spearman rank correlations
computed as described above.

6. The correlation of each pair of Day 29 and delta antibody marker readouts are compared
within each of the baseline demographic subgroups, randomization arm, and baseline
serostratum. Pairs plots/scatterplots and baseline-strata adjusted Spearman rank cor-
relations are used, with covariate-adjusted Spearman rank correlations computed as
described above.

9.2 Methods for Positive Response Calls for bAb and nAb Assays

As noted above, binding antibody responders at each pre-defined timepoint are defined as
participants with concentration above the specified positivity cut-off, with a separate cut-off
for each antigen Spike, RBD, N (10.8424, 14.0858, and 23.4711, respectively, in BAU/ml).
This approach is used for each of the Spike and RBD and N protein antigen targets.

Pseudovirus neutralization responders at each pre-defined timepoint are defined as partici-
pants who had baseline TU50/ml values below the LLOQ with detectable ITU50/ml neutraliza-
tion titer above the assay LLOQ), or as participants with baseline values above the LLOQ with
a 4-fold increase in neutralizing antibody titer. Otherwise a value is negative for pseudovirus
neutralization.

9.3 SARS-CoV-2 Antigen Targets Used for bAb and nAb Markers

The homologous vaccine strain antigens (Wuhan) are used for the immune correlates analyses
for the bAb markers, whereas the homologous vaccine strain with D614G mutation (away from
the Wuhan WT strain) is used for the pseudovirus nAb markers.

9.4 Score Antibody Markers Combining Information Across Individual
bAb and nAb Readouts

Day 29 score antibody markers that combine information across the individual markers are
defined and included in the multivariable CoR machine learning analyses, which are not done
based on bAb and nAb markers alone but will await additional markers. In particular, five
score variables are studied:

1. Maximum signal-diversity score calculated as described in He and Fong (2019)

2. First two linear principal components PCA1 and PCA2
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3. Nonlinear extensions of principal components FSDAM1 and FSDAM2 calculated as in
Fong and Xu (2020)

The purpose of these score markers is to seek to maximally capture the main immune response
signal and to study whether there are more than one distinct signals that are associated with
the COVID outcome, and to study whether score markers can provide strengthened associa-
tion with COVID compared to the individual assay markers. The score markers are included
as input features in the machine learning (superlearning) prediction modeling (multivariable
CoR objective).

10 Baseline Risk Score (Proxy for SARS-CoV-2 Exposure and/or
Moderate/Severe COVID-19)

A baseline risk score will be developed based off a pre-specified list of baseline covariates
potentially relevant for SARS-CoV-2 exposure and moderate-to-severe infection risk. This
baseline risk score will be controlled for in correlates analyses to adjust for potential con-
founding.

The risk score is developed using placebo arm data only, restricting to baseline seronegative
per-protocol placebo recipients. The risk score is defined as the logit of the predicted outcome
probability from a regression model estimated using the ensemble algorithm superlearner (i.e.
stacking), where this logit predicted outcome is scaled to have empirical mean zero and
empirical standard deviation one. The settings of superlearner (i.e., loss function, cross-
validation technique, library of learners) that are used for implementation of superlearner for
building a baseline risk score are described in Section 12.6.1.

For predictive modeling of the COVID endpoint, cases are COVID endpoints starting 1 day
post Day 29 visit and non-cases are participants with follow-up beyond 7 days post Day 29
visit that never registered a COVID endpoint.

Independent of the superlearner risk score, important individual risk factors will also be
specified for inclusion as adjustment factors in correlates analyses. In particular, in addition
to the risk score, the at-risk indicator and the two geographic region indicator variables are
adjusted for in all correlates analyses. This choice is justified by the epidemiological data
showing that these variables are strong risk factors for COVID-19 infection, and making use
of the flexibility of super learner to develop a model for how age relates to risk.

Henceforth we refer to the baseline variables that are adjusted for in correlates analyses as
“baseline factors” which, depending on the risk score results and performance, will consist
of either only the individual key risk factors, or key individual risk factors plus the baseline
risk score. For the overall analyses including all geographic regions, some of the selected
individual risk factors may depend on region, for example for the U.S. likely communities of
color status would be included. The selected baseline factors to adjust for are: baseline risk
score and geographic region (U.S., Central/South America, South Africa).

For all overall (all region) correlates analyses conducted using methods that specify baseline
endpoint hazards, a separate baseline hazard will be used for each of the three geographic
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regions U.S., Central/South America, and South Africa. All correlates analyses that adjust
for baseline factors in other ways, will include geographic region as a covariate to adjust for.
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Table 8: List of baseline covariates considered for risk score analysis.

Variable Name

Definition

EthnicityHispanic Indicator ethnicity = Hispanic (1 = Hispanic, 0 = complement)
EthnicityNotreported Indicator ethnicity = Not reported (1 = Not reported, 0 = complement)
Black Indicator race = Black (1=Black, 0=complement)
Asian Indicator race = Asian (1=Asian, 0=complement)
NatAmer Indicator race = American Indian or Alaska Native

(I=NatAmer, 0=complement)
Multiracial Indicator race = Multiracial (1=Multiracial, 0=complement)
Notreported Indicator race = Not reported (1=Notreported, 0=complement)
Unknown Indicator race = unknown (1=Unknown, 0=complement)

URMforsubcohortsampling

Indicator of under-represented minority (1=Yes, 0=No)

HighRiskInd

Baseline covariate indicating > 1 co-existing conditions
(1=yes, 0=no, NA=missing)

Sex Sex assigned at birth (1=female, 0=male/undifferentiated /unknown)
Age Age at enrollment in years (integer ;= 18, NA=missing).

Note that the randomization strata included Age 18-59 vs. Age > 60.
BMI BMI at enrollment (Ordered categorical 1, 2, 3, 4, NA=missing);

1 = Underweight BMI < 18.5; 2 = Normal BMI 18.5 to < 25;

3 = Overweight BMI 25 to < 30; 4 = Obese BMI > 30
Country.X1 Indicator country = Argentina (1 = Argentina, 0 = complement,)
Country. X2 Indicator country = Brazil (1 = Brazil, 0 = complement)
Country.X3 Indicator country = Chile (1 = Chile, 0 = complement)
Country. X4 Indicator country = Columbia (1 = Columbia, 0 = complement)
Country.X5 Indicator country = Mexico (1 = Mexico, 0 = complement)
Country.X6 Indicator country = Peru (1 = Peru, 0 = complement)
Country.X7 Indicator country = South Africa (1 = South Africa, 0 = complement)
Region.X1 Indicator region = Latin America (1 = Latin America, 0 = complement)
Region.X2 Indicator country = Southern Africa (1 = Southern Africa, 0 = complement)

CalDtEnrollIND.X1

Indicator variable representing enrollment occurring between 4-8 weeks
periods of first subject enrolled
(1 = Enrollment between 4-8 weeks, 0 = complement).

CalDtEnrollIND.X2

Indicator variable representing enrollment occurring between 8-12 weeks
periods of first subject enrolled
(1 = Enrollment between 8-12 weeks, 0 = complement).

CalDtEnrollIND.X3

Indicator variable representing enrollment occurring between 12-16 weeks
periods of first subject enrolled
(1 = Enrollment between 12-16 weeks, 0 = complement).

IBinary input variable/s having < 3 cases in the variable = 1 or 0 subgroup will be dropped from

analysis.

2Input variable having > 5% missing values will be dropped from analysis.
3Input variables with < than 5% missing values will be included in analysis upon imputing the
missing values using the mice package in R.
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11

Correlates Analysis Descriptive Tables by Case/Non-Case

Status

The key tables summarizing the distribution of each of the Day 29 antibody markers are
listed below. For each table, for each time point Day 1, Day 29 separately, the positive
response rate with 95% CI, and the GMT or GMC with 95% CI, is reported for each of the
case and non-case groups. In addition, the point and 95% CI estimate of the difference in
positive response rate (non-cases vs. cases) and the GMT or GMC ratio (non-cases/cases),
is reported. Two cases vs. non-cases comparisons are done: 7+day Cases vs. Non-cases, and
14+day Cases vs. Non-cases, with 7+day Cases and 14+day Cases defined below. The same
set of Non-cases is used in each comparison.

1.

Immunogenicity table: Antibody levels in the baseline SARS-CoV-2 seronegative per-
protocol cohort (vaccine recipients). 7+day Cases are baseline seronegative per-protocol
vaccine recipients with the symptomatic infection COVID-19 primary endpoint diag-
nosed starting 7 days after the Day 29 study visit. 1-6day Cases are baseline seronega-
tive per-protocol vaccine recipients with the symptomatic infection COVID-19 primary
endpoint diagnosed starting 1 day after the Day 29 study visit and before 7 days post
Day 29 study visit. Thus 14+day Cases are the union of both the 7+day Cases and
the 1-6day Cases. Non-cases/Controls are baseline seronegative per-protocol vaccine
recipients sampled into the immunogenicity subcohort with no evidence of SARS-CoV-
2 infection up to the end of the correlates study period, which is up to 54 days post
D29 but no later than the data cut (1/22/21).

Antibody levels in the baseline SARS-CoV-2 seropositive per-protocol cohort (vaccine
recipients). Cases are baseline seropositive per-protocol vaccine recipients with the
symptomatic infection COVID-19 primary endpoint diagnosed starting 7 days after the
Day 29 study visit. Non-cases/Controls are baseline seropositive per-protocol vaccine
recipients sampled into the immunogenicity subcohort with no evidence of SARS-CoV-2
infection up to the end of the correlates study period, which is up to 54 days post D29
but no later than the data cut (1/22/21).

Antibody levels in baseline SARS-CoV-2 seropositive placebo recipients. Cases are
baseline seropositive per-protocol placebo recipients with the symptomatic infection
COVID-19 primary endpoint diagnosed any time after D1 or after the Day 29 visit
(by time of antibody measurement). Non-cases/Controls are baseline seropositive per-
protocol placebo recipients sampled into the immunogenicity subcohort with no evidence
of SARS-CoV-2 infection up to the end of the correlates study period, which is up to
54 days post D29 but no later than the data cut (1/22/21).

. Repeat Table 2 above for fold-rise from baseline (of interest given the analysis cohort is

baseline seropositive).

Repeat Table 3 above for fold-rise from baseline (of interest given the analysis cohort is
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baseline seropositive).

The point and confidence interval estimates are computed using inverse probability sampling
weights Wypeonort. for T+day Cases and for Non-cases, and using Wstqrt1.. for 1-6+day Cases
and 7-+day Cases combined, as defined in Section 12.3.1.

12 Correlates of Risk Analysis Plan

This analysis plan for CoRs and CoPs focuses on the COVID primary endpoint, with its
continuous failure times (failure time defined by the day of the event) and no competing
risks.

12.1 CoR Objectives

The following CoR objectives are assessed in baseline seronegative per-protocol vaccine re-
cipients:

1. Univariable CoR To assess each individual Day 29 antibody marker as a CoR of
outcome in vaccine recipients, adjusting for baseline factors

2. Multivariable CoR To build models predictive of outcome based on a set of Day 29
antibody marker readouts, adjusting for baseline factors

12.2 Outline of the Set of CoR Analyses

The univariable CoR, objective is addressed by Cox proportional hazards regression and non-
parametric threshold regression. The multivariable CoR objective is addressed by super-
learning. All of these analyses are implemented in automated and reproducible press-button
fashion.

In addition, supportive exploratory analyses of the univariable CoR objective are conducted
using flexible parametric regression modeling: generalized additive model regression.

12.3 Day 29 Markers Assessed as CoRs and CoPs

The following Day 29 markers are assessed as CoRs and CoPs, usually as quantitative variables
and in some analyses as ordered trinary variables or binary variables, all of which do not
subtract Day 1 (baseline) values:

1. binding Ab to Spike (IgG BAU/ml)
2. binding Ab to RBD (IgG BAU/ml)
3. pseudovirus neutralization IU50/ml

For all univariable CoR analyses (first objective), the non-baseline subtracted versions of the
Day 29 antibody markers are studied; the baseline-subtracted versions are not studied given
that the analyses are done in the baseline seronegative cohort for which Day 1 readouts will
generally be negative. The multivariable machine learning CoR analyses include synthesis
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markers that combine information across the individual markers listed above, as well as
including 2FR and 4FR versions of variables.

12.3.1 Inverse probability sampling weights used in CoR analyses

In section 9.1, estimated inverse probability sampling (IPS) weights Wsypconort.. Were defined
for per-protocol immunogenicity subcohort members, for the purpose of immunogenicity anal-
yses. This section describes two IPS weights that are used for CoR and CoP analyses, the
first for the main analyses that count cases starting 7 days post Day 29 (Wstart7..) and the
second for the sensitivity analyses that count cases starting 1 day post Day 29 (Wsiart1.z)-

Consider the correlates analyses that count cases starting 7 days post Day 29. For baseline
sampling stratum z [(vaccine, placebo) x (demographic strata)], the IPS weight wsari7.2
assigned to a non-case participant in stratum z is defined by Wstart7.0 = 1/Tstart7() = Nz /Ny,
where N, is the number of stratum z vaccine recipient non-cases in the Per-Protocol Baseline
Seronegative (PPBN) cohort and n, is the number of these participants that also have Day
1 and Day 29 marker data available, where participants with any evidence of SARS-CoV-2
infection before 7 days post Day 29 visit are excluded from the counts IV, and n,. For non-case
participant ¢ in the immunogenicity subcohort, Wstert7.i = 1/7start7(X;) denotes the weight
Wstart7.o for this individual’s sampling stratum. All cases are assigned sampling weight Nj/ny
where Njp is the total number of vaccine recipient cases in the PPBN cohort restricting to
cases with event time starting 7 days post Day 29, and n; is the number of these participants
that also had the Day 1 and Day 29 markers measured, and again participants with any
evidence of SARS-CoV-2 infection < 7 days post Day 29 visit are excluded from the counts
N, and ng.

In terms of two-phase sampling data analysis nomenclature, “phase 1 ptids” are defined as
the entire PPBN cohort except excluding participants with any evidence of SARS-CoV-2
infection < 7 days post Day 29 visit. The “phase 2 ptids” are then the subset of these phase
1 ptids with Day 1 and Day 29 Ab marker data available. Thus the weight Wsqr7.. 1S the
inverse sampling probability weight, calculated as the empirical fraction (No. phase 1 ptids
/ No. phase 2 ptids) within each of the baseline negative strata defining the immunogenicity
subcohort sampling. For baseline seronegative individuals outside the phase 1 ptids, Wsyar¢7.2
is assigned the missing value code NA. All other individuals have a positive value for Wstqr7.2-

Next consider the correlates analyses of Day 29 markers that include cases starting 1 day post
Day 29. For baseline sampling stratum x [(vaccine, placebo) x (demographic strata)], the IPS
weight wsiare1.. assigned to a non-case participant in stratum x is defined by Wsart1.0 = 1/
Tstart1(€) = Ny /ny, where N, is the number of stratum x vaccine recipient non-cases in the
PPBN cohort and n, is the number of these participants that also have Day 1 and Day 29
marker data available, where participants with any evidence of SARS-CoV-2 infection before
1 day post Day 29 visit are excluded from the counts N, and n,. For non-case participant ¢ in
the immunogenicity subcohort, Wstart1.i = 1/Tstart1(X;) denotes the weight Wsigre1., for this
individual’s sampling stratum. All 1-64+day Cases and 7+day Cases are assigned sampling
weight Nj/n; where N is the total number of vaccine recipient cases in the PPBN cohort
restricting to cases with event time starting 1 days post Day 29, and n; is the number of these
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participants that also had the Day 1 and Day 29 markers measured, and again participants
with any evidence of SARS-CoV-2 infection < 1 days post Day 29 visit are excluded from the
counts IV, and n.

In terms of two-phase sampling data analysis nomenclature, for the Day 29 marker analyses
“phase 1 ptids” are defined as the entire PPBN cohort except excluding participants with any
evidence of SARS-CoV-2 infection < 1 days post Day 29 visit. The “phase 2 ptids” are then
the subset of these phase 1 ptids with Day 1 and Day 29 Ab marker data available. Thus the
weight Wstart1.0 1S the inverse sampling probability weight, calculated as the empirical fraction
(No. phase 1 ptids / No. phase 2 ptids) within each of the baseline negative strata used in the
sampling design to define the immunogenicity subcohort. For baseline negative individuals
outside the phase 1 ptids, Wstart1.0 is assigned the missing value code NA. All other individuals
have a positive value for Wstgrt1.- In sum, the weights Wstqrt1.» are calculated in the same way
as the weights Wstqrt7.2, €xcept the relevant time window for evidence of infection or COVID
is at least 1 days post Day 29 visit instead of at least 7 days post Day 29 visit.

12.3.2 Choice of regression methods
Time-to-event methods use the Day 29 visit date as the time origin.

The IPW complete-case Cox regression model designed for case-cohort sampling designs will
be used for estimation and inference on hazard ratios of outcomes by Day 29 marker levels,
and for estimation and inference on marginalized marker-conditional cumulative incidence
over time. The models will be fit using the survey R package available on CRAN, and will
adjust for the baseline factors. We use a method from the survey package that assumes
without replacement two-phase sampling and not Bernoulli sampling, which matches the
sampling design and approach to weight estimation (?).

The final time point tr of follow-up for correlates analyses is taken to be 54 days after the
Day 29 visit. Let T be the failure time, S a Day 29 marker of interest, and X the vector of
baseline factors that are adjusted for. With S;(t|s,z) = P(T > t|S = s, X =z, A = 1), the
Cox model fit yields an estimate of S;(t|s, X;) for each individual 7 in the phase-two sample.
The marginalized conditional risk risky(t|s) = Ex[P(T < t|s, X, A = 1)] through time ¢ (for
all times ¢ through ¢z simultaneously) is estimated based on the equation

riski(t]s) = /(I—Sl(t\s,w))dH(x) (1)

where H(-) is the distribution of X in A = 1 individuals.

Given the estimates S (t|s, X;) for each of the n; participants in the PPBN cohort assigned
to the vaccine arm, we then estimate risk(t|s) by G-computation:

riska (t]s) = 3 (1= $1(tls, X,)). 2)
i=1

The bootstrap is used to obtain 95% pointwise confidence intervals for riski(tg|s).
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The bootstrap process will be performed by resampling with replacement the subjects within
the subcohort and the subjects outside the subcohort separately within each stratum and
by resampling with replacement subjects with undetermined stratification variables. Across
all bootstrap samples, the number of participants in each stratum in the immunogenicity
subcohort remains fixed, but the number of cases does not stay the same.

The results of the above Cox modeling will be output in a variety of ways:

1. Plot ﬁgﬁ(tp\s) vs. s with 95% ClIs for continuous S = s varying over its whole
range. Include on the plot the estimate of r/z'gco(t r) with a 95% CI for the placebo arm
(horizontal bands), computed by a Cox model marginalizing over the same baseline
factors as for the analysis of the vaccine arm.

2. Based on a fit of the Cox model to a nominal categorical antibody marker defined as
the tertiles of S, plot riski(t|s) for each category of S values with 95% CIs, for all time
points ¢ from Day 29 through tp. If more than 20% of vaccine recipients have S below
the positive/negative cutoff of the assay, then the categories instead will be (1) values
< cutoff; (2) values below the median of values > cutoff; (3) values above the median of
values > cutoff. Include on the plot the estimated curve @o(t) with 95% ClIs for the
placebo arm, computed by a Cox model marginalizing over the same baseline factors as
for the analysis of the vaccine arm.

3. Tabular reporting of the hazard ratio per 10-fold change in the quantitative Day 29
antibody marker with 95% confidence interval and 2-sided p-value

4. Tabular reporting of the hazard ratio for the Middle and Upper categories of the cate-
gorical Day 29 antibody marker vs. the Lower category, with 95% confidence interval
and 2-sided p-value, as well as a global generalized Wald two-sided p-value for whether
the hazard rate of the endpoint varies across the three categories. The table includes
the attack rate (with no. of cases / no. at risk) through ¢z for each of the three vaccine
marker subgroups and for the placebo arm.

5. Report point and 95% CI estimates for the hazard ratio per 10-fold change in the Day
29 antibody marker, for the entire per-protocol baseline seronegative vaccine cohort and
for each of the baseline demographic strata subgroups defined in Table 7 (reported via
forest plotting).

6. Westfall-Young (1997) g-values and FWER-adjusted p-values for the generalized Wald
tests are included in the table.

The bootstrap is used to calculate 95% pointwise CIs for risk;(tp|s) in s. The 2-sided Wald
p-value for testing the regression coeflicient of the marker in the Cox model provides a valid
test of the null hypothesis Hy : riski(tr|s) = riski(tr) for all s, and is reported.

In addition, point estimates and 95% confidence intervals about risk;(tr) will be computed
by nonparametric monotone-dose response regression, as described in the beginning of Section
15.1.

Moreover, the same Cox model analysis described above will be used to estimate the alter-
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native marginalized conditional risk parameter defined by riski(t|S > s) where risky(¢|S >
s) = Ex[P(T <t|S > s,X,A=1)], which can be estimated by

ni
riski(t]S > 5) = > (1= S1(tS > s, X,)).

=1

This parameter is useful because typically subgroups of interest are defined by having marker
response above a threshold. We will plot riski(tp|S > s) vs. s with 95% CIs for continuous
S with s varying over the range of S. This type of analysis is also included because it
analyzes the same parameter as the nonparametric threshold estimation method described
below, providing a way to address the threshold question both by Cox modeling and by
nonparametric analysis.

If the outcome under study is subject to competing risks, then the Cox model is fit in the
same way, except counting the competing risk as right-censoring. Now the parameter being
estimated is the marginal conditional cumulative incidence function risk; (¢, 1|s) = Ex[P(T <
t,J =1|s,X,A=1)] where J =1 is the outcome of interest.

The Fine-Gray proportional subdistribution hazards model is used to estimate risk; (¢, 1|s, x)
(implemented in the cmprsk R package available on CRAN). While we prefer the interpreta-
tion of cause-specific hazards (Prentice et al., 1978) to subdistribution hazards as in Fine and
Gray (1999) in a rare event situation such as in the COVID-19 VE trials (vaccine arm), the
Fine-Gray method is expected to give similar answers, except it is more easily implemented.
Therefore, we estimate riski(t, 1|s) by G-computation

ni
risky(t, 1]s) = > riski(t, 1]s, X;). (3)
i=1

As for the analyses without competing risks, the bootstrap is used for calculating 95% confi-
dence intervals and for testing Hy : riski(tp, 1|s) = riski(tp, 1) for all s.

12.3.3 Univariate CoR: Nonparametric threshold regression modeling

The van der Laan et al. (2021) extension of the nonparametric CoR threshold estimation
method of Donovan et al. (2019) is applied to each of the non-baseline subtracted Day 29
antibody markers, using the version accounting for right-censoring of some follow-up times,
assessing failure through the fixed time point tr. The analyses adjust for the same baseline
factors X as used in the Cox model CoR analyses.

The extension adjusts for baseline covariates by estimating the conditional mean function
E[I(T < tp)|S > s,X,A = 1] using discrete-SuperLearner and then empirically averaging
over the baseline covariates X to estimate the marginal risk risk;(tp|S > s) = Ex[I(T <
tr)|S > s, X, A = 1] for each threshold s of the the antibody marker in a specified discrete set.
We do not perform pooled regression across the thresholds s, which ensures we are totally
nonparametric in estimating the threshold dependence of Ex[I(T < tp)|S > s, X, A = 1]
on s. The SuperLearner library includes a range of increasingly flexible parametric learners
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including logistic regression (glm), bayesian logistic regression (bayesglm), and L1-penalized
logistic regression (glmnet). (Two of each learner is included in the library, one with only
main-term variables and another with main-term and interaction variables.)

An advantage of the nonparametric CoR threshold method compared to Cox modeling that
specifies a log linear hazard ratio with the marker is that it can potentially detect a threshold of
very low risk. The method is implemented with and without the monotonicity constraint that
riski(tp|S > s) is monotone non-increasing in s, where the results assuming monotonicity
are reported unless there is evidence for violation of this assumption.

The results are reported in the same way that Donovan et al. (2019) reports results in its
Figure 2, where point estimates and simultaneous 95% confidence bands for riski(tg|S > s)
are plotted for a range of threshold values (the simultaneous confidence bands cover the entire
curve in s with at least 95% probability). The method uses the same empirical two-phase
sampling estimated weights (IPS weights) as used for the other univariable IPW complete-
case CoR analyses. In addition, for each pre-specified risk threshold ¢ set to take values over
a grid between 0 and the estimated outcome rate in placebo recipients, the method is applied
to estimate the inverse function s, = inf{s: Ex[I(T <tp)|S > s,A=1,X]| < ¢}, where s is
estimated by substitution of the marginal risk function estimate. Note that the substitution
estimator of s, requires that the marginal risk function is estimated for all thresholds, which
is computationally infeasible. Instead, we estimate the marginal risk function on a sufficiently
large discrete set and linearly interpolate to obtain marginal risk estimates for all thresholds
outside the discrete set. In order for this estimand to be well defined, we operate (for this
estimand only) under the assumption that s — Ex[I(T < tr)|S > s, A = 1, X] is monotone.
For the substitution-based estimator of the inverse function s. to be well-defined, we require
the estimate of s — Ex[I(T < tp)|S > s,A = 1, X] to be monotone as well. If there is
evidence that the function estimate is not monotone then we replace the estimate with its
monotone projection, which preserves its theoretical properties (7).

A plot of point and simultaneous 95% confidence interval estimates of s. (over the grid of ¢
values) is provided to help indicate marker thresholds defining subgroups with very low risk of
outcome. The confidence interval estimates for s. are derived directly from the simultaneous
95% confidence band estimates for the marginal risk function s — Ex[[(T < tp)|S > s, A =
1, X], and therefore its estimates and inference are compatible with those of the marginal risk
function. In particular, no multiple testing adjustments are needed.

The analysis is done using targeted maximum likelihood estimation (TMLE) as described in
van der Laan, Zhang, and Gilbert (2021), and the simultaneous confidence bands are of the
Wald-type, obtained from the asymptotic distribution of the TMLE. As for other correlates
analyses, the baseline risk score and geographic region are adusted for.

12.3.4 P-values and Multiple hypothesis testing adjustment for CoR analysis

In general, p-values are only reported from pre-specified and automated (press-button) anal-
yses. For the CoR analyses, p-values are reported for the univariable Cox regression analyses
of the specified Day 29 antibody marker variables. Two-sided p-values for hypothesis testing
of a Day 29 marker CoR are calculated both for the Cox regression of quantitative markers
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(two-sided Wald tests), and for the Cox regression of markers binned into tertiles (two-sided
Generalized Wald tests). Therefore a total of twelve 2-sided p-values for CoRs are calculated.

It is not completely clear whether to perform multiple hypothesis testing adjustment, given
the expectation that the correlations among the markers are high, and possibly very high,
meaning that multiplicity correction could incur a relatively high cost on the false negative
error rate.

However, given that robust evidence supporting an antibody marker as a CoR will be required
for qualifying a marker, we will conduct multiplicity adjustment for CoR analysis, as the
ability to make an inference that a marker passed pre-specified multiplicity adjusted criteria
should aid an overall evidence package for establishing a validated or non-validated surrogate
endpoint. Therefore, multiplicity adjustment is performed across the twelve 2-sided p-values.

A permutation-based method (Westfall et al., 1993) will be used for both family-wise error
rate (Holm-Bonferroni) and false-discovery rate (q-values; Benjamini-Hochberg) correction.
10* replicates of the data under the null hypotheses will be created by randomly resampling
the immunologic biomarkers with replacement. For each Cox regression CoR analysis the
unadjusted p-value, the FWER-adjusted p-value, and the g-value is reported for whether there
is a covariate-adjusted association, where all p-values and g-values are 2-sided. The FWER-
adjusted p-values and g-values are computed pooling over both the quantitative marker and
tertilized marker CoR analyses. As a guideline for interpreting CoR findings, markers with
FWER-adjusted p-value < 0.05 are flagged as having statistical evidence for being a CoR.
Additionally, markers with unadjusted p-value < 0.05 and g-value < 0.10 are flagged as having
a hypothesis generated for being a CoR.

The FWER adjustment is done for all Day 29 markers among bAb Spike, bAb RBD, and
PsV nAb ID50. It is required that antibody data are available for some of the neutralization
markers before the multiplicity adjustment is performed. The first data analysis has available
the bAb Spike, bAb RBD, and PsV nAb ID50 markers; therefore multiplicity adjustment is
performed for this initial analysis.

12.4 Multivariable CoR: Cox Proportional Hazards Models

Once the complete ADCP data are available, a multivariable Cox model is fit (using the same
fitting approach as for individual markers) that includes the three Day 29 markers bAb RBD,
pseudovirus nAb ID50, and ADCP, with the same baseline prognostic factors adjusted for in
the univariable marker analyses also adjusted for in the multivariable marker analyses. Point
estimates and 95% confidence intervals are reported for the 3 marker hazard ratio parameters.
An unadjusted p-value from a generalized Wald test for whether the set of 3 markers has any
correlation with HIV-1 acquisition is (rejecting the complete null hypothesis that the 3 hazard
ratios are all unity) is reported. The p-values for the individual hazard ratio parameters are
also reported but it is the generalized Wald test p-value that is the pre-specified test for
whether the set of markers correlate with outcome.

In addition, the Cox models will be repeated in exploratory analyses with three separate Cox
models fit for pairs of antibody markers: (1) D29 bAb RBD, D29 PsV nAb ID50; (2) D29 bAb
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RBD, D29 ADCP; (3) D29 PsV nAb ID50, ADCP. Point estimates, 95% confidence intervals,
and unadjusted p-values for the individual hazard ratios are reported for each hazard ratio
parameter.

12.5 Multivariable CoR: Superlearning of Optimal Risk Prediction Models
12.5.1 Objectives

The multivariable CoR objective is addressed through two sub-objectives: first to build an
‘estimated optimal surrogate’ (Price et al., 2018), a model that best predicts the outcome
from Day 29 antibody markers and baseline factors. The second sub-objective is estimation
and inference on variable importance measures for each Day 29 antibody marker, for ranking
of antibody markers by their importance/influence on predicting risk. The analysis plan is
patterned off of the analysis of the HVTN 505 HIV-1 vaccine efficacy trial (Neidich et al.,
2019). For these analyses both baseline-subtracted and non-baseline subtracted versions of
the Day 29 markers are used, in a broader unbiased analysis to build models most predictive
of outcome.

12.5.2 Input variable sets

Day 29 antibody markers are classified into the following antibody marker variable sets, with
individual variables listed within categories:

1. Binding antibody anti-Spike (S-bAb)
a Day 29 anti-Spike IgG concentration
b delta (Day 29 - Day 1) anti-Spike IgG concentration
¢ indicator 2FR anti-Spike IgG concentration
d indicator 4FR anti-Spike IgG concentration
2. Binding antibody anti-RBD (RBD-bAb)
(a) Day 29 anti-RBD concentration
(b) delta anti-RBD concentration
(c) indicator 2FR anti-RBD concentration
(d) indicator 4FR anti-RBD concentration
3. Pseudovirus neutralizing antibody anti-Spike (pseudovirus-nAb)
a Day 29 anti-Spike IU50/ml
b delta anti-Spike IU50/ml
¢ indicator 2FR anti-Spike IU50/ml
d indicator 4FR anti-Spike IU50/ml
4. ADCP score
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a Day 29 ADCP score
b delta ADCP score
¢ indicator 2FR ADCP score
d indicator 4FR ADCP score
5. Functional markers subtracting out binding antibody
a Day 29 logl0 PsV nAb ID50 IU50/ml - Day 29 anti-RBD log10 BAU/ml
b Day 29 logl0 ADCP score - Day 29 anti-RBD log10 BAU/ml

For the primary analyses that only include PPBN vaccine recipients, the markers 1b, 2b, 3b,
and 4b are excluded from the analysis, because for this cohort there is very little potential
independent information in these markers compared to the Day 29 markers (that are not
baseline subtracted).

The baseline factors without any marker data comprise a sixth set of variables to include in
the superlearner modeling.

12.6 Missing data

We expect a small amount of missing data from the three antibody markers (bAb Spike, RBD;
pseudovirus-nAb TU50/ml), with possibly different participants missing data for different
markers. We take the following approach to handle any missing data that occurs.

First, we define the two-phase sampling indicator € as taking value of one if a participant
has Day 1 and Day 29 bAb data for both Spike and RBD, where here we assume that the
MSD platform is highly robust such that it will have nearly 100% complete data for sampled
participants. Second, for the pseudovirus nAb ID50 marker, for participants with ¢ = 1
but the Day 1 and/or Day 29 marker value is missing, we use single imputation to fill in
any missing values, ignoring the uncertainty in the imputations in the analysis, because it
should have negligible impact on results given the small amount of missing data. This process
means that the two-phase data set has a simple ‘all-or-nothing’ missing data pattern where
participants with € = 1 have all markers with Day 1 and Day 29 data, and are included in
IPW complete-case analyses, and participants with ¢ = 0 have some or all markers missing
and are excluded from IPW complete-case analyses. This means that all IPW complete-case
data analyses can use the same empirical frequency (IPS) sampling weights.

12.6.1 Implementation of superlearner

For baseline risk score development, Superlearner is applied to the placebo arm only as
mentioned in Section 10. For multivariable immune correlates of risk/estimated optimal
surrogate development, Superlearner is applied to the vaccine arm only. The following details
are used in the implementation of superlearner of the vaccine arm only:

— Pre-scale each quantitative and ordinal variable to have empirical mean 0 and standard
deviation 1.
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— For the immune correlates analysis, the final library of learners is selected accounting
for the number of phase-two endpoint cases in the vaccine arm. Since for ENSEMBLE,
there are large numbers of endpoint cases in the vaccine arm, 5-fold cross-validation will
be used, and no more than floor(n,/6) input variables will be used in the model where
N, is the number of evaluable vaccine endpoint cases.

— Include learning algorithms with and without screening of variables. Screens used will
be: 1) glmnet (lasso) pre-screening (with default tuning parameter selection), 2) lo-
gistic regression univariate 2-sided p-value screening (at level p < 0.10), and 3) high-
correlation variable screening (described below). For ENSEMBLE there are enough
vaccine breakthrough cases to include the adaptive learners for the overall report but
not for the region-specific reports. All of the selected learners are coded into the Su-
perLearner R package available on CRAN.

— Include high-correlation variable screening, not allowing any pair of input variables to
have Spearman rank correlation » > 0.9. When a pair of variables has r > 0.9, the
variable with the highest ranked signal-to-noise ratio (i.e., biological dynamic range) is
selected; if these data are not available (they are not for ENSEMBLE) or there is a
tie then variables are selected in the following order of priority: first pseudovirus nAb
ID50, second IgG RBD, third IgG Spike. Given than the Spike and RBD variables are
expected to be very highly correlated at Day 29, any model that would consider both
Spike and RBD includes only RBD.

— The superlearner is conducted averaging over 10 random seeds, to make results less
dependent on random number generator seed.

— All of the learners are implemented with IPS weighting, using the IPS weights wgtart7.; =
1/ % start7(X;) described in Section 12.3.1) to account for the two-phase sampling design.
Correspondingly, all endpoints starting 7 days post D29 are included.

— Discrete-SL estimated models, derived using the learning algorithms specified in Table
9, will be used to compare the relative performance for each of the variable sets based
off the estimated CV-AUC with a 95% confidence interval.

— Two levels of cross-validation are used:

x Outer level: CV-AUC computed over 5-fold cross-validation repeated 10 times to
improve stability

* Inner level: 5-fold CV is used.

— Results for comparing classification accuracy of different models are based on point
and 95% confidence interval estimates of cross-validated area under the ROC curve
(CV-AUC) and difference in CV-AUC as a predictiveness metric (Hubbard et al., 2016;
Williamson et al., 2022). Results are presented as forest plots of point and 95% con-
fidence interval estimates similar to those used in Neidich et al. (2019) (Figure 3) and
Magaret et al. (2019). CV-AUC is estimated using the R package vimp available on
CRAN, including the IPS weights that are used for other data analyses.
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— Multivariable CoR analysis using the Superlearner will be run only upon availability of
fuller ADCP marker data.

Table 9 lists the learning algorithms that are applied to estimate the conditional probability
of the outcome based on the input variable sets considered above. Most of the algorithms
are non-data-adaptive type learning algorithms, such as parametric regression models (e.g.,
glms), which are simple, stable and advantageous for an application with limited number of
endpoint events. Data-adaptive type algorithms are also included, for increasing flexibility
of modeling: SL.randomForest, SL.gam, SL.polymars, and SL.xgboost. All of the selected
learners are coded into the SuperLearner R package.

Before fitting the superlearner models to the vaccine arm data, a decision will be made on how
to define the “baseline risk factors” input variable set, based on prediction-accuracy results
of the Superlearner analysis that built the baseline behavioral risk score based on the placebo
arm, as well as on external knowledge of important individual risk factors.

For ENSEMBLE the baseline factors are defined as the baseline risk score, indicator of being
at heightened risk for COVID (a randomization factor) and the two indicators coding for the
three geographic regions.

For the immune correlates objective the superlearner model is fit to each of the following
variable sets, with immunological variables listed in Section 12.5.2:

1. Baseline risk factors

Baseline risk factors and the bAb anti-Spike markers

Baseline risk factors and the bAb anti-RBD markers

Baseline risk factors and the pseudovirus-nAb IU50/ml markers

Baseline risk factors and the ADCP score markers

Baseline risk factors and the functional markers subtracting out binding antibody
Baseline risk factors and the bAb markers and the pseudovirus-nAb IU50/ml markers

Baseline risk factors and the bAb markers and the ADCP score markers

© 2 N o o W

Baseline risk factors and the bAb markers and the pseudovirus-nAb IU50/ml markers
and the difference in these two markers

10. Baseline risk factors and the bAb markers and the ADCP score markers and the differ-
ence in these two markers

11. Baseline risk factors and the pseudovirus-nAb IU50/ml markers and the ADCP markers
12. Baseline risk factors and all individual marker variables

13. Baseline risk factors and the bAb markers and the combination scores across the four
markers [PCA1, PCA2, FSDAM1/FSDAM2 (the first two components of nonlinear
PCA), and the maximum signal diversity score He and Fong (2019)].
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14. Baseline risk factors and the pseudovirus-nAb TU50/ml markers and the combination
scores across the four markers

15. Baseline risk factors and the ADCP score markers and the combination scores across
the four markers

16. Baseline risk factors and all individual marker variables and all combination scores (full
model)

Therefore in total, 16 variable sets are studied. The reason to include the baseline risk
score factors only variable set is to investigate how much incremental improvement in pre-
dicting outcome is obtained by adding antibody marker variables on top of baseline demo-
graphic/exposure factors. The other variable sets are designed to compare the four immunoas-
say types by their predictiveness and to investigate incremental predictive value in using mul-
tiple immunoassays. The final variable set is included as the full model that considers all
variables together, which serves as another reference model.

Table 9: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome, for Building the Baseline Risk Score Based on the Placebo Arm®.

Screens/
Algorithms Tuning Parameters
SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)
SL.bayesglm Low-collinearity and (All, Lasso, LR)
SL.glm.interaction Low-collinearity and (All, Lasso, LR)
SL.glmnet (alpha=1; All)
SL.gam Low-collinearity and (Lasso, LR)
SL.ksvm Low-collinearity and (kernel=“rbfdot”, “polydot”) and (Lasso, LR)
SL.polymars Low-collinearity and (Lasso, LR)
SL.xgboost? All and (maxdepth,shrinkage,balance)= (4, 0.1, no)
SL.ranger? All and balance = no

TAll continuous and ordinal covariates are pre-standardized to have empirical mean 0 and
standard deviation 1.
2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank
correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.

In order to evaluate the relative performance of the Discrete-Superlearner estimated models
for each of the variable sets, derived using the learning algorithms specified in Table 9, the
CV-AUC is estimated with a 95% confidence interval (Hubbard et al., 2016; Williamson et al.,
2022). The point and 95% confidence interval estimates of CV-AUC are reported in a forest
plot, which provide a way to discern which Day 29 antibody assays and readouts/markers
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provide the most information in predicting COVID or other outcomes. The specified library
of learners may be modified prior to SAP finalization (before breaking the blind of case/non-
case status). As noted above CV-AUC is estimated using the R package vimp available on
CRAN, which uses augmented inverse probability weighting to properly estimate CV-AUC
accounting for the two-phase sampling design.

In addition, for selected variable sets, similar forest plots will be made comparing perfor-
mance of the various estimated models (e.g., by individual learning algorithm types such as
lasso), including discrete superlearner and superlearner models. The plot will be examined to
determine which individual learning algorithm types are performing the best. If there is an
interpretable algorithm that has performance close to the best-performing algorithm (which
is most likely to be the superlearner), then it will be fit on the entire data set of vaccine
recipients and the estimated model presented in a table.

Cross-validated ROC curves are plotted for the superlearner estimated models for each of
the input variable sets. In addition, boxplots of cross-validated estimated probabilities of
outcome by case-control status (as estimated from the superlearner models) are plotted.

12.6.2 Variable set and individual variable importance

The importance of variable sets (and individual variables) will be summarized by the esti-
mated gain in population prediction potential (also referred to as the intrinsic importance)
when comparing each variable set plus baseline risk factors to baseline risk factors alone. Pre-
diction potential (predictiveness) will be measured using CV-AUC. Inference on the intrinsic
importance will be based off sample splitting; thus, both the estimated variable importance
and the estimated CV-AUC of each variable set when evaluated on independent data from
the data used to evaluate the CV-AUC of the baseline risk factors will be reported. The
class-balancing versions of SL.xgboost will be dropped from the Super Learner library in the
variable importance computation as the regression carried out to account for the two-phase
sampling will be based on a continuous outcome (so there won’t be any imbalance).

13 Correlates of Protection: Generalities

In general, for all of the correlate of protection analyses, the same antibody markers are
assessed that were analysed as correlates of risk: the Day 29 antibody markers not subtracting
for the Day 1 baseline readout are used. Each of the Day 29 antibody biomarkers is separately
studied as CoPs by the different analysis approaches summarized below.

14 Correlates of Protection: Correlates of Vaccine Efficacy
Analysis Plan

For each of the Day 29 antibody biomarkers, the method of Gilbert et al. (2020b) will be
used to estimate VE(1), VE(0), and (1 — VE(1))/(1 — VE(0)), each with a 95% confidence

interval and a 95% estimated uncertainty interval (EUI), where V E(1) is vaccine efficacy for
the subgroup of vaccine recipients with Day 29 marker if assigned vaccine above a specified
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cut-point value s¢t, and V E(0) is vaccine efficacy for the subgroup of vaccine recipients with
Day 29 marker if assigned vaccine not greater than s.,. The analysis will be done under
the NEH assumption (“no early harm”) of Gilbert et al. (2020). The analysis is done
for the cut-point defined by negative vs. positive for each marker, in particular defined by
the positivity cut-off for bAb Spike and bAb RBD, and defined by the LOD for PsV nAb
ID50. These analyses include p-values testing whether vaccine efficacy is different for vaccine
recipients with negative vs. positive response. In addition, an exploratory analysis without
p-values is done with cut-point defined by each 10th percentile above the positive/negative
dividing line (starting at the 20th percentile at the lowest), up to the 80th percentile. This
analysis method does not require closeout placebo vaccination (CPV) (Follmann, 2006) or
a good baseline immunogenicity predictor of the Day 29 antibody marker. The method is
implemented using code on the correlates_reporting2 Github repository, with applies Bryan
Blette’s R package “psbinary” posted at his Github repository.

A limitation of the Gilbert et al. method is that it only assesses a binary biomarker. Other
analyses will be considered to estimate V E(s) over biomarker values s over the entire range,
treating S as a quantitative or categorical variable, and gaining efficiency by incorporating
CPV and/or putative baseline immunogenicity predictors (BIPs). Based on earlier simulation
studies (Follmann, 2006; Huang et al., 2013, e.g.,), methods that only leverage CPV data tend
to have low power relative to methods that leverage BIP data alone (BIP-only methods) or
both BIP and CPV data (BIP+CPV methods). Therefore, the key for improving efficiency
will be the availability of a BIP. VE curve analysis for continuous S will thus be conducted
contingent on the availability of a BIP that satisfies the R? criterion outlined in Table 11. It
is anticipated that post-crossover immune response marker data will not be available in early
correlates analyses, and so BIP-only methods will be used in these initial analyses. When
CPV data becomes available, new BIP+CPV analyses will be conducted that incorporate
this new information. Details of the BIPs used can be found at the end of this section.

Let Y(a) denote the potential binary outcome of interest if receiving intervention a, with
a = 1,0 standing for assignment to vaccine and placebo, respectively. Let S(a) denote the
potential biomarker value if receiving intervention a. The vaccine efficacy curve (Follmann,
2006; Gilbert and Hudgens, 2008) is defined as the curve of vaccine efficacy as a function of
the immune response biomarker if assigned vaccination (i.e., S(1)): VE(s) =1—- P(Y (1) =
118(1) = s)/P(Y(0) = 1|S(1) = s). It characterizes the percentage reduction in clinical risk
under vaccine assignment compared to under placebo assignment conditional on S(1) and
informs about the magnitude of potential immune response associated with certain levels
of VE. Consider the existence of BIPs X correlated with S(1) and/or a CPV component
in the trial where a subset of placebo recipients free of the outcome are vaccinated and
have their immune response biomarkers measured as substitutes for S(1). Under the NEE
assumption and assuming the set of participants with S(1) available is nested within the set
of participants with BIP measures, the pseudo-score estimation method (Huang et al., 2013;
Zhuang et al., 2019) based on discrete BIP measures allowing for adjustment of X will be
adopted for estimating the risk model P(Y (z) = 1|S(1), X) and subsequently VE(s) = 1 —
JP(Y (1) = 1]5(1),z)dFx(z|S(1))/ [ P(Y(0) = 1]S(1),x)dFx(x|S(1)). Hypothesis testing
will be conducted for testing the null hypothesis that the VE curve is constant (Zhuang
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et al., 2019). Estimated parametric (Gilbert and Hudgens, 2008), semiparametric (Huang
and Gilbert, 2011), or nonparametric (Li and Luedtke, 2020) likelihood estimators of VE
curves will be applied to continuous BIPs. In scenarios where some BIPs are not measured
from all trial participants, VE curve estimators accounting for this monotone missingness
in X and S(1) will be adopted (Huang, 2018). If the data support positive vaccine efficacy
before Day 29, sensitivity analysis approaches will be conducted for VE curve estimation
under the NEH assumption. In the presence of multiple candidate biomarkers and when a
CPV component is present, a multiple imputation approach as proposed in Dasgupta and
Huang (2019) will be utilized to impute missing S(1) data for selecting markers from multiple
candidates and deriving a univariate marker score for VE curve estimation.

Finally, for scenarios with very rare events such that methods described above lack precision
even with a CPV component but where the available BIP still satisfies the R? criterion
outlined in Table 11, we will adopt sensitivity analysis methods that model the placebo risk
conditional on the counterfactual S(1) based on a sensitivity parameter that varies over some
pre-specified range.

Among different strategies to identify BIPs, the following will be tried. First, we will study
Day 1 bAb or nAb response to Ad26 as a BIP for the Day 29 markers of interest. Second,
we will check whether Day 1 bAb or nAb to Nucleocapsid protein is a BIP for the anti-
Spike/anti-RBD Day 29 markers of interest. The rationale for this latter analysis is that
some studies have shown cross-reactive responses to Nucleocapsid protein and to common
circulating human coronaviruses.

We will also evaluate using a multivariate BIP that corresponds to all of these aforementioned
candidate univariate BIPs, which may help to achieve the target R? (see Table 11). When
doing this, a separate BIP W will be used for each vaccine-induced immune response marker
S(1). Let Y(a) be the counterfactual outcome of interest — e.g., a COVID disease endpoint
by a prespecified time — if randomization assignment had been set to A = a. The analyses
conducted will provide unbiased estimates of the estimands of interest when Y (a) L W[S(1)
for a € {0,1}. The BIP W will be a learned function of baseline covariates L — that is,
W = f(L) for a function f that will be learned based on the available data. All available
baseline covariates will be considered for inclusion in L, including age, BMI, Day 1 bAb or
nAb response to Ad26, and Day 1 bAb or nAb to Nucleocapsid protein. If the trial has more
than 100 events on the vaccine arm in the subgroup of interest, then f will be chosen to be
an estimate of the following population-level optimization problem:

minimize E[{S — f(L)}?|A = 1]
subject to f(L) LY|A=1,5.

The rationale for choosing f to (approximately) solve this optimization problem is that the
BIP should be maximally predictive of S, while also satisfying the needed conditional in-
dependence assumption Y (a) L W/|S(1) when a = 1. Moreover, the needed conditional
independence assumption Y (a) L W|S(1) for the case that a = 0 is most plausible when
this assumption is also satisfied for the case that a = 1. Also, because W = f(L) for some
function f, Y(0) L W|S(1) is always more plausible than Y (a) L L|S(1).
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The solution to the above optimization problem is given by:

where 0(¢) := E{S|A = 1,L = ¢}, 7({) := gaity — mpimiy and m(¢) = E[Y|A = 1,L = {].

The following strategy is used to estimate this solution:
1. Obtain an estimate 6 of the function 6 by running a Superlearner of S against L in
the vaccine arm, where inverse probability of sampling weights are used to account for
two-phase sampling of the marker.

2. Obtain an estimate m of m by using Superlearner to regress Y against L in the vaccine
arm.

3. Obtain an estimate 7 via a plug-in estimator, where E[m(L)] is estimated by taking the
empirical mean of m(L).

4. The final estimate f of f is given by

fo) =y - £

where F denotes an empirical expectation.

Each Superlearner will be run using the same library and settings described in Table 9. If
the trial has fewer than 100 events on the vaccine arm, then the function f will be learned
via Step 1 above only — that is, we will take f — 6. All standard errors will be obtained via
the bootstrap, with the above fitting of f redone within each bootstrap sample.

15 Correlates of Protection: Interventional Effects

In these analyses, we seek to understand whether, how, and to what extent Day 29 antibody
markers impact vaccine efficacy in causal ways. We describe three approaches to this problem.
Each involves consideration of a binary counterfactual outcome Y (a, s) (e.g., indicator of the
COVID disease endpoint by a pre-specified time) under a hypothetical intervention that
both sets randomization assignment A = a and sets the Day 29 immunologic marker S to a
fixed value or based upon a random draw from a analyst-specified distribution. Below, we
assume that S is scalar-valued, but some of the approaches below naturally extend to the
case where a vector of immunologic markers are considered (currently such analyses are not
planned). Given the central goal to develop a parsimonious surrogate endpoint based on a
single immunoassay, the main analysis will use each of the methods to assess each of the
quantitative readouts (not baseline-subtracted) separately as CoPs, adjusting for the same
set of baseline covariates as used in the CoR analyses previously described in Section 12.
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15.1 CoP: Controlled Vaccine Efficacy
We first describe the controlled vaccine efficacy curve defined as

P(Y(L,5) =1)

CVE(s) =1— POY(0) = 1)

The value CVE(s) takes represents the relative decrease in endpoint frequency achieved by
administering vaccine and setting Day 29 immunologic marker level to s compared to the
placebo control intervention. Under our approach, the value of CVE(s) is assumed to be
monotone non-decreasing in s; in other words, vaccine efficacy can only potentially be im-
proved by setting greater marker levels. The extent to which the marker plays a role in
determining vaccine efficacy can be determined by the degree of flatness of the graph of
CVE(s) versus s.

In addition, because the primary study cohort for correlates analysis is naive to SARS-CoV-2,
each of the Day 29 markers S has no variability in the placebo arm [all values are ‘negative,’
below the assay cutoff for determining a negative or positive response|. Therefore, advanta-
geously in this setting CVE(s) has a special connection to the mediation literature (Cowling
et al., 2019) where CVE(s < cutof f) is the natural direct effect, and vaccine efficacy is 100%
mediated through S if and only if CVE(s < cutof f) = 0. Thus inference on CVE(s < cutof f)
evaluates full mediation.

Since P(Y(0) =1) = P(Y = 1| A =0) in view of vaccine versus placebo randomization, the
controlled vaccine efficacy CVE(s) at level s can be identified using the fact that

PY(L,s)=1)=E[P(Y =1|S=s,A=1,X)]

whenever Y (1,s) and S are independent given A = 1 and a vector X of covariates, and
P(S=s|A=1,X)> 0 almost surely. In other words, identification of the controlled vaccine
efficacy requires that a rich enough set of covariates be available so that deconfounding of
the relationship between endpoint Y and marker S is possible in the subpopulation of PPBN
vaccine recipients, and that marker level S = s may occur within each subpopulation defined
by values of the covariates X (positivity).

For each s, the identified parameter corresponding to CVE(s) is an irregular parameter within
nonparametric models, making its estimation at root-n rate impossible; this significantly
complicates estimation and inference on CVE(s). Fortunately, the monotonicity of s +—
CVE(s) provides an opportunity to circumvent these difficulties. Similarly to Westling et al.,
2020’s approach for the causal dose-response function, we will use the general methodological
template proposed in Westling and Carone, 2020 to derive (i) a nonparametric Grenander-
type estimator of CVE(s) and (ii) a plug-in confidence interval for CVE(s) based on an
asymptotic Chernoff limit. This estimator will require, as an intermediate step, estimation of
several nuisance functions, including the outcome regression P(Y =1|S =s5,A=1,X = 1)
and the propensity score P(S = s| X = z, A = 1). These nuisance functions will be estimated
using the Superlearner ensembling algorithm with a rich library including both parametric
regression methods as well as flexible machine learning tools. Additionally, this method will
be adapted to cases in which the marker has a mixed distribution involving a point mass at
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the LLOQ/2 value by constructing a nonparametric estimator of CVE(LLOQ/2) using the
method of ? and combining this with the main nonparametric estimator.

The monotonicity-based procedure we apply facilitates statistical inference for CVE(s) for
each s separately, where point estimates and 95% confidence intervals for CVE(s) will be
presented.

We apply the same Cox modeling approach described in Section 12.3.2 to estimate
PY(L,s)=1)=FE[P(Y=1|S=s,A=1,X)],

with 95% confidence intervals, augmented with a sensitivity analysis, with advantages of
harmonization with the CoR analysis, sensitivity analysis that is generally warranted when a
no unmeasured confounders assumption is made, and efficiency gain achieved via the added
modeling assumptions. The sensitivity analysis quantifies the rigor of evidence for a controlled
VE CoP after accounting for potential bias from unmeasured confounding.

Gilbert et al. (2020a) details the sensitivity analysis approach, which was applied to the
CYD14 and CYD15 dengue phase 3 data sets (Moodie et al., 2018); we plan to apply it in
the same way to the COVID-19 data sets (as the structure of the problem is the same). We
summarize here the essential details needed for application to the COVID-19 data sets.

We define S to be a controlled risk CoP if P(Y(1,s) = 1) is monotone non-increasing in s
with P(Y(1,s) = 1) > P(Y(1,s") = 1) for at least some s < s’, where point and 95% confi-
dence interval estimates of P(Y (1,s) = 1) versus s, with built in robustness to unmeasured
confounding, describe the strength of the CoP in terms of the amount and nature of decrease.
Suppose the CoR analysis based on the Cox model is conducted as described in Section 12.3.2.

Let marginalized conditional risk

rar(s) = riski(tp|s)

and controlled risk
ro(s)=P(Y(1,s) =1).

Given that CoR analysis is based on observational data — the biomarker value is not ran-
domly assigned — a central concern is that unmeasured or uncontrolled confounding of the
association between S and Y could render r/(s) # r¢(s), biasing estimates of the controlled
risk curve r¢(s) and of controlled risk ratios of interest

RRc(s1,82) =rc(s2)/ro(s1) -

Because we can never be certain that confounding is adequately adjusted for, sensitivity
analysis is warranted, as considered in extensive literature — see, e.g., VanderWeele and
Ding (2017) and references therein. Sensitivity analysis is useful to evaluate how strong
unmeasured confounding would have to be to explain away an observed causal association,
that is, to determine the strength of association of an unmeasured confounder between S and
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Y needed for the observed exposure-outcome association to not be causal, rys(s) # ro(s).
We follow the recommendation of VanderWeele and Ding (2017) to report the E-value as a
summary measure of the evidence of causality, or, in our application, evidence of whether S
is a controlled risk CoP based on variation in the controlled risk curve. We also include other
closely related measures of sensitivity.

The E-value is the minimum strength of association, on the risk ratio scale, that an unmea-
sured confounder would need to have with both the exposure (S) and the outcome (V) in
order to fully explain away a specific observed exposure—outcome association, conditional on
the measured covariates [VanderWeele and Ding (2017); VanderWeele and Mathur (2020)].
If, as in CoP analyses, the estimated marginalized risk ratio ﬁM(Sl, s9) = Tar(s2)/rar(s1)
for s1 < s9 is less than one, then the E-value for ﬁM(sl, s9) is calculated as

1+ \/1 — ﬁM(sl,Sg)

— 4
RRM(Sl,SQ) ( )

err(s1,52) =

We include the argument (s1, s2) in the notation, with s; < sy by convention, to be clear that
the E-value depends on specification of two specific marker-level subgroups.

To illustrate the interpretation of an E-value, suppose S is binary and regression analysis
yields an estimate RRp(0,1) = 7ar(1)/7ar(0) = 0.40 with 95% confidence interval (CI)
(0.14,0.78). An E-value e(0,1) of 4.4 means that a marginalized risk ratio RRps(0,1) at
the observed value 0.40 could be explained away (i.e., RRc(0,1) = 1.0) by an unmeasured
confounder associated with both the exposure and the outcome by a marginalized risk ratio
of 4.4-fold each, after accounting for the vector X of measured confounders, but that weaker
confounding could not do so.

In addition, we follow the recommendation of VanderWeele and Ding (2017) to also report the
E-value ey (s1, s2) for the upper limit UL(s1, s2) of the 95% CI for the observed marginalized
risk ratio RRys(s1, s2), computed as 1 if UL(sy, s2) > 1 and, otherwise, as

1+ 1 —(/fz(sl,SQ)
ﬁ(sl,b‘g)

)

which in the example equals er(0,1) = 1.88. This E-value for the upper limit indicates,
for given s; < sg, the strength of unmeasured confounding at which statistical significance
of the inference that RRc(s1,52) < 1 would be lost. The two E-values above are useful for
judging how confident we can be that an immunologic biomarker is a controlled risk CoP, with
E-values near one suggesting weak support and evidence increasing with greater E-values.

RRc(s1,52) = (1 = CVE(s2))/(1 — CVE(s1)), evidence for RRc(s1,s2) < 1 is equivalently
evidence for CVE(s1) < CVE(s2). Thus in a placebo-controlled trial RRc(s1,s2) can be
interpreted as the multiplicative degree of superior vaccine efficacy caused by marker level so
vs. marker level s1, and E-values equivalently quantify evidence for whether CV E(s;) differs
from CV E(s2).
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It is also useful to provide conservative estimates of controlled risk ratios and of the controlled
risk curve, accounting for unmeasured confounding. We approach these tasks based on the
sensitivity analysis, or bias analysis, approach of Ding and VanderWeele (2016). We give their
main result and refer readers to the paper for details. We begin by defining two (possibly
context-specific) fixed sensitivity parameters. First, we set RRyp(s1, s2) to be the maximum
risk ratio for the outcome Y comparing any two categories of the unmeasured confounders
U, within either exposure group S = s; or S = s9, conditional on the vector X of observed
covariates. Second, we set RRgy(s1, s2) to be the maximum risk ratio for any specific level of
the unmeasured confounder U comparing individuals with S = s; to those with S = s9, with
adjustment already made for the measured covariate vector X. Thus, RRyp(s1, s2) quantifies
the importance of the unmeasured confounder U for the outcome, and RRgy(s1, s2) quantifies
how imbalanced the exposure/marker subgroups S = s; and S = s9 are in the unmeasured
confounder U. The values RRyp(s1,s2) and RRpy(s1,s2) are always specified as greater
than or equal to one. We suppose that RRy;(s1,s2) < 1 for the fixed values s; < sy — this
is the case of interest for immune correlates.

Define the bias factor

B(S s ) _ RRUD(Sl,SZ)RREU(Sl,SQ)
e RRyp(s1,s2) + RRpy(s1,s2) — 1

for 51 < s9, and define RRY,(s1,52) the same way as RRys(s1, s2), except marginalizing over
the joint distribution of X and U. Then, RRJI{[(Sl,SQ) < RRp(s1,82) x B(s1,82), where
RRY,(s1,82) = E{r(se, X*)}/E{r(s1, X*)} with X* = (X,U) and r conditional risk.Ding
and VanderWeele (2016)

Translating this result to our problem context, under the positivity assumption, we have that
RRY,(s1,82) = RRc(s1, s2) and so, it follows that

RRc(s1,82) < RRp(s1,82) X B(s1,82) - (5)

This inequality states that the causal risk ratio is bounded above by the marginalized risk
ratio multiplied by the bias factor. It follows that a conservative (upper bound) estimate
of RRc(s1,$2) is obtained as ﬁM(Sl,Sg) x B(s1,$2), and a conservative 95% CI is ob-
tained by multiplying each confidence limit for RRy/(s1,s2) by B(s1,s2). These estimates
for RRc(s1,82) account for the presumed-maximum plausible amount of deviation from the
no unmeasured confounders assumption specified by RRyp(s1, s2) and

RREpy(s1,52). An appealing feature of this approach is that the bound (5) holds without
making any assumption about the confounder vector X or the unmeasured confounder U.

The above approach does not directly provide a conservative estimate of the controlled risk
curve r¢(s), because additional information is needed for absolute versus relative risk esti-
mation. To provide conservative inference for 7¢(s), we next select a central value s of S
such that 77 (s°™) matches the observed overall risk, P(Y = 1|4 = 1). This value is a ‘cen-
tral’ marker value at which the observed marginalized risk equals the observed overall risk.
Next, we ‘anchor’ the analysis by assuming r¢o(s™) = rp;(s¢™), where picking the central
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value s°™ makes this plausible to be at least approximately true. Under this assumption,

the bound (5) implies the bounds

rc(s) < ra(s)B(s™,s) if s> g% (6)
1 : cen
ro(s) > TM(S)W if s < s, (7)

Therefore, after specifying B(s°™, s) and B(s°™, s) for all s, we conservatively estimate r.(s)
by plugging 7a/(s) into the formulas (6) and (7). Because B(s1,s2) is always greater than
one for s1 < sg, formula (6) pulls the observed risk 7/(s) upwards for subgroups with high
biomarker values, and formula (7) pulls the observed risk 7/(s) downwards for subgroups
with low biomarker values. This makes the estimate of the controlled risk curve flatter, closer
to the null curve, as desired for a sensitivity /robustness analysis.

To specify B(s1, s2), we note that it should have greater magnitude for a greater distance of s;
from s9, as determined by specifying RRyp(s1, s2) and RRgy(s1, s2) increasing with sg — s1
(for s; < s9). We consider one specific approach, which sets RRyp(s1,s2) = RRpy(s1, s2) to
the common value RRy(s1, s2) that is specified log-linearly: log RRy (s1, s2) = 7y(s2 — s1) for

51 < s2. Then, for a user-selected pair of values s; = s{m and s = ngx with s{m < sgm, we

set a sensitivity parameter RRU(S{M, sgw) to some value above one. It follows that

§2 — 81

log RRy(s1,82) = <M> logRRU(s{m, sgix), s1 < so.
S =5

We anchor the sieve analysis by setting s; = s{ “ at the 15" percentile of the Day 29 antibody
marker and sy = sgm at the 85" percentile of the Day 29 antibody marker.

The sensitivity analysis is done for each of the two Cox model CoR analyses described in Sec-
tion 12.3.2, first for tertiles of the Day 29 marker and second for the quantitative marker. For
the former, E-values are reported for both the point estimate and the upper 95% confidence
limit for RRc(0, 1), where category 1 is the upper tertile, category 0 is the lower tertile, and
the intermediate middle tertile subgroup of vaccine recipients is excluded from the analysis.
In addition, setting RRyp(0,1) = RRpy(0,1) = 2, such that B(0,1) = 4/3, we report con-
servative estimation and inference on the causal risk ratio RR¢(0, 1) and equivalently on the
ratio of controlled vaccine efficacy curves (1 — CVE(1))/(1 — CV E(0)).

Next we repeat the analysis treating S as a quantitative variable, where P(T < t|S =
s,X,A = 1) is again estimated by two-phase Cox partial likelihood regression and now
RRy/(s1,s2) is the marginalized risk ratio between s; and s3. We will plot point and 95%
confidence interval estimates of the observed marginalized risk and controlled risk curves, for
the latter using the sensitivity analysis described in Section 15.1.

For validity the method requires the positivity assumption, and thus the method will only be
applied if the data are reasonably supportive of the positivity assumption. To check positivity,
we study the antibody marker distribution in vaccine recipients within each subgroup of the
covariates X that are adjusted for. For the tertiles analysis we require evidence that within
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each subgroup some vaccine recipients have lower tertile responses and some vaccine recipients
have upper tertile responses. For the quantitative S analysis, we look for evidence that S
varies over its full range within each level of the potential confounders that are adjusted for.

15.2 CoP: Stochastic Interventional Effects on Risk and Vaccine Efficacy

Another approach to studying correlates of protection involves estimating the effect of shifting
the immune response marker distribution in the vaccinated individuals (Hejazi et al., 2021).
Specifically, we can consider the effect on risk of a given endpoint of a controlled intervention
that shifts the distribution of an immune response by d units, where ¢ is an analyst-specified
real number. Considering a counterfactual scenario in which we are able to intervene so as
to modify the immune response induced by the vaccine (e.g., a hypothetical change in dose
or other re-formulation of the vaccine), we take this hypothetical intervention to lead to an
improved (if § > 0) or lessened immune response (if § < 0) relative to the current vaccine (at
d = 0). Using this framework, we can query the counterfactual risk of the endpoint under
this hypothetical vaccine. Using notation established above, this quantity can be expressed
as the mean of the counterfactual variable Y (1, 5(1) + ¢).

This approach is similar to the controlled effects approach described in Section 15.3, but with
an important distinction. In the controlled effects approach, one assumes that it is possible
to set S = s for all individuals in the population. For high values of s, this assumption may
be unrealistic if the vaccine fails to be strongly immunogenic for some subpopulations. On
the other hand, with the interventional approach, it is only required that individuals’ immune
responses be shifted relative to their observed immune response, which may be more plausible
for some vaccines.

Under assumptions (Hejazi et al., 2021), the main two of which being no unmeasured con-
founders and positivity (forms of both are also required for the Controlled VE CoP analyses),
the counterfactual risk of interest E[Y (1, S(1) + §)] is identified by

ElP(Y=1|A=1,8=S+6X=x)| A=1X].

Examining this quantity across a range of § provides insight into the relative contribution of
a given immune response marker in preventing the endpoint of interest.

Hejazi et al. (2021) proposed nonparametric estimators that rely on estimates of the outcome
regression (as described above) and the conditional density of the immune response marker
in vaccinated participants. Their estimators efficiently account for two-phase sampling of
immune responses and are implemented in the txshift package (Hejazi and Benkeser, 2020)
for the R language and environment for statistical computing (R Core Team, 2020), available
via both GitHub at

https://github.com/nhejazi/txshift and the Comprehensive R Archive Network at https:
//CRAN.R-project.org/package=txshift.

These estimators will be applied to each of the Day 29 antibody markers (without baseline
adjustment) controlling for the same set of baseline risk factors that are controlled for in
other analyses previously discussed. As with the mediation analysis approach described in
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Section 15.3, the procedure will leverage low-dimensional risk factors alongside parametric
regression strategies and flexible conditional density estimators for endpoints with fewer than
100 observed cases (pooling over the randomization arms); however, more flexible learning
techniques will be employed for modeling the outcome process for endpoints with a greater
number of observed cases.

In particular, conditional density estimates of immune response markers will be principally
based on a nonparametric estimation strategy that reconstructs the conditional density through
estimates of the conditional hazard of the discretized immune response marker values (He-
jazi et al., 2021); this approach is an extension of the proposal of Diaz and van der Laan
(2011). A Super Learner ensemble (van der Laan et al., 2007) of variants of this nonparamet-
ric conditional density estimator and semiparametric conditional density estimators based on
Gaussinization of residuals will be constructed using the s13 R package (Coyle et al., 2020).
In settings with limited numbers of case endpoints, the outcome process will be modeled as
a Super Learner ensemble of a library of parametric regression techniques (as recommend by
Gruber and van der Laan, 2010), while the library will be augmented with flexible regression
techniques — including lasso and ridge regression (Tibshirani, 1996; Tikhonov and Arsenin,
1977; Hoerl and Kennard, 1970), elastic net regression (Zou and Hastie, 2003; Friedman et al.,
2009), random forests (Breiman, 2001; Wright et al., 2017), extreme gradient boosting (Chen
and Guestrin, 2016), multivariate adaptive polynomial and regression splines (Friedman et al.,
1991; Stone et al., 1994; Kooperberg et al., 1997), and the highly adaptive lasso (van der Laan,
2017; Benkeser and van der Laan, 2016; Hejazi et al., 2020) — as the number of endpoint
cases grows. These algorithm libraries will be coordinated to match those used in other CoP
analyses.

Additionally, we note that P(Y (0) = 1) is estimated in the same way as for the analysis of
controlled vaccine efficacy, thus yielding an estimate of stochastic intervention VE defined by

E[PY=1|A=1,8=5+6X=x)| A=1,X]

SVE() =1— YO = 1)

Output of the analyses will be presented as point and 95% point-wise confidence interval
estimates of E[Y (1,5(1) + ¢)] and of SV E(s) over the values of s for each of the Day 29
antibody markers, for each of a range of § spanning -2 to 2.

Lastly, just as for the controlled VE CoP analyses, these analyses will only be performed if
diagnostics support plausibility of the positivity assumption. Importantly, however, the pos-
itivity assumption for the stochastic interventional effects differs from that usually required.
That is, where the positivity assumption for effects defined by static interventions requires
a positive probability of treatment assignment across all strata defined by baseline factors
(i.e., that a discretized immune response value be possible regardless of baseline factors), the
positivity assumption of these effects is

sieS = s+6e€S|A=1,X=z

for all z € X and ¢ = 1,...n. In particular, this positivity assumption does not require
that the post-intervention exposure density, gos(S —0 | A = 1,X), place mass across all
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strata defined by X. Instead, it requires that the post-intervention exposure mechanism be
bounded, i.e.,

P{QO,S(S_ 4 | A= 1¢X)/QO,S(S | A= 1aX) > O} =1,
which may be readily satisfied by a suitable choice of §.

More importantly, the static intervention approach may require consideration of counterfac-
tual variables that are scientifically unrealistic. Namely, it may be inconceivable to imagine a
world where every participant exhibits high immune responses, given the phenotypic variabil-
ity of participants’ immune systems. This too may be resolved by considering an intervention
d(X), allowing the choice of 0 to be a function of baseline covariates X (Hejazi et al., 2021;
Diaz and van der Laan, 2012; Haneuse and Rotnitzky, 2013; Diaz and van der Laan, 2018).

15.3 CoP: Mediation of Vaccine Efficacy

A classic application of mediation is to decompose the overall VE into so-called natural direct
and indirect effects. We will estimate this decomposition for each Day 29 immune marker
individually, as well as when considering all immune markers together (although this SAP
currently restricts to analysis of the individual markers).

For simplicity, as before, we describe this approach using a binary outcome, noting that
extensions to time-to-event (with competing risks) are possible. The total effect of the vaccine
can be represented by the risk ratio RR = (1 - VE),

_ P(Y(1,5(1)) =1)
= P =1
The natural direct and indirect effects are, respectively,
P(Y(1,5(0)) =1) P(Y(1,5(1)) =1)
P(Y(0,5(0)) =1) P(Y(1,5(0))=1) °

Note that RR = RRpgRRpE, showing that the total effect decomposes into the direct times
indirect effect. Another quantity of interest is the proportion mediated, which we express as

B log(RRpE)
log(RR)

We note that PM=1 if and only if RRpr = 1, i.e., no direct effect means that the marker
fully mediates VE. We will estimate PM defined in this way.

RRpEg =

and RR;pp =

PM=1

As above, we must assume all confounders X of S and Y have been measured. We also assume
there is sufficient overlap of the immunologic marker distributions, and no confounders of the
mediator-outcome relationship that are affected by treatment. Moreover, we require the
assumption

P(S=5s|A=0,X =z)>0implies P(S=s/A=1,X=12) >0 (8)
for all subgroups X = z (i.e., a.e.). Under these assumptions, P(Y (a, S(a’) = 1) is identified
by

E[PY=1|A=4a,5X)|A=d, X].
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In our immune CoP application it is expected that, because the correlates analysis restricts
to SARS-CoV-2 baseline seronegative individuals, the conditional density of the immune
marker in the placebo arm will be a point mass at 0, that is with S taking the value Negative
Response. In other words, we do not expect any placebo recipients to have a positive value
of the immune response marker. This implies the identification result that for a = 0,1,
P(Y(a,S5(0)) = 1) = E[P(Y =1 | A =4a,5S = 0,X)]. While P(Y(0,5(1) = 1) is not
identified, it is not necessary to estimate this term in order for estimation of the parameters
of interest (natural direct effect, natural indirect effect, PM).

For a highly immunogenic vaccine, it may be the case that the needed overlap assumption (8)
will be violated. This could happen, for example if each placebo recipient has immune marker
value Negative Response (which is expected), and every vaccine recipient has immune marker
value Positive Response. We will only include immune markers for mediation analysis if at
least 10% of vaccine recipients have marker value equal to the value in placebo recipients.

? provide a multiply robust targeted minimum loss-based plug-in estimator of natural direct
and indirect effects that is appropriate for case-control sampling. The estimator requires
estimation of several regressions, which are used in an augmented inverse probability of treat-
ment weighted estimator. The propensity score will be estimated by a main terms logistic
regression model to account for chance imbalances across randomization arms. The sequen-
tial outcome regressions used by the approach will be based on a super learner with the 14
algorithms listed in Table 10.

Table 10: Learning Algorithms in the super learner Library for mediation methods!.

Screens?/
Algorithms Tuning Parameters
SL.mean All
SL.glm Low-collinearity and (All, Lasso, LR)
SL.glm.interaction (All, Lasso, LR)
SL.gam Low-collinearity and (Lasso, LR)
SL.glmnet All
SL.xgboost All
SL.ranger All

I some nuisance parameters have binary outcomes, others quantitative. For the former, we used

family = binomial() input to the SuperLearner function; for the latter, we used family =
gaussian().
2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via 10-fold
cross-validation; Low-collinearity = do not allow any pairs of quantitative variables with
Spearman rank correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value
< 0.10.

The estimator is implemented in the natmed2 package available on GitHub

99



(https://github.com/benkeser/natmed2). The baseline covariates X adjusted for are the same
as for the other analyses (i.e. of CoR and of controlled vaccine efficacy).

If there are fewer than 100 observed COVID-19 endpoint cases (pooled over the random-
ization arms), then we will leverage logistic and linear regression models, as appropriate, to
estimate each of the above regressions and only include a low-dimensional set of pre-specified
characteristics in X. In these cases, 95% confidence intervals for RRpg, RRrpg and PM will
be constructed using the percentile-based nonparametric bootstrap.

However, it is known that there are more than 100 COVID-19 endpoint cases (pooled over the
randomization arms), a scenario for which we will instead employ super learning to estimate
the above regression quantities and include a higher dimensional set of potential confounders
in X; the same set of potential baseline potential confounders input into the superlearner
modeling of the placebo arm for building a behavioral risk score. In this case, the super
learner library includes a diversity of pre-specified algorithms. The nonparametric bootstrap
cannot be used to construct confidence intervals, and we will instead rely on Wald-style
confidence intervals with standard errors estimated based on the empirical variance of the
estimators’ estimated influence functions.

There may arise situations in which there is insufficient overlap of the immune response dis-
tribution. For example, if all individuals in the vaccinated arm have a Positive Response
response, while all individuals in the placebo arm have a Negative Response, then the as-
sumption (8) of the above methods will be violated. In fact, the assumption (8) implies that
within every subgroup X = x, there needs to be some vaccinated participants with S below
the LOD. Therefore, for each Day 29 marker, the mediation analysis of the quantitative .S will
only be done if diagnostics support this assumption. We will also conduct an analysis using
a three-category ordinal version of S with the marker threshold defining the lowest category
selected to ensure that some vaccine recipients have values in the lowest category, across the
subgroups; the default for this categorical S will be tertiles and matched to the way that the
three-category variable is analyzed for Cox model correlates of risk analysis.

See Benkeser et al. (rXiv) for additional details about the mediation method that is applied
to the data.

In addition to studying all qualifying individual markers as mediators, once the complete
ADCP marker data are available, the following sets of D29 markers will be assessed for
their joint mediation: (1) bAb RBD, PsV ID50, ADCP; (2) bAb RBD, PsV ID50; (3) bAb
RBD, ADCP; (4) PsV ID50, ADCP. Only one of the bAb markers is included given the high
correlation of the bAb Spike and bAb RBD markers.

16 Summary of the Set of CoR and CoP Analyses and Their
Requirements and Contingencies, and Synthesis of the Results,
Including Reconciling Any Possible Contradictions in Results

Table 11 summarizes all of the Stage 1 / Day 29 marker correlates analyses that are done,
including contingencies for whether and when each analysis is done. The quantitative version
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of each marker S, and the tertiles version of each marker S, is common across all of the
analyses. All of the Day 29 markers are the versions that are not baseline subtracted, given
that the cohort for analysis is baseline seronegative. Most of the analyses focus on univariate
Day 29 markers. The primary reason to do this is the goal to identify a parsimonious correlate
based on a single marker without needing to run the set of assays, and secondary reasons are:
(1) the assay readouts are expected to be highly correlated, especially for the Spike bAb and
RBD bAb readouts from the same MSD platform assay, and (2) there is ample precedent
for univariate markers being accepted as immunological surrogate endpoints for approved
vaccines (Plotkin, 2010).
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Table 11:
ments/Contingencies for Conduct of the Analysis

Summary of Stage 1 Day 29 Marker CoR and CoP Analyses with Require-

Structure Requirements/Contingencies
of Min No. Vaccine
Analysis Day 29 Marker(s) Endpoints Other
CoR Cox Model Tertiles of S! 25 None
Quant. S = s? 25 None
Quant. S > st 25 None
CoR Nonpar. threshold Quant. S > s! 35 None
CoR GAM Quant. S = s? 35 None
CoR Superlearner? Quant. S = s, 2FR, 4FR 35 None
CoP: Correlates of VE Binary S 50 None
Quant. S =s 50 BIP with R? > 0.25
CoP: Controlled VE* Quant. S =s 50 Feasibility of positivity®
Tertiles of S = s 50 Feasibility of positivity®
CoP: Stoch. Interv. VE Quant. S =s 50 Feasibility of positivity®
CoP: Mediators of VE Quant. S =s 50 Feasibility of positivity®
Tertiles of S 50 Feasibility of positivity®

I'These analyses are harmonized in addressing the same scientific question of how does endpoint
risk vary over vaccinated subgroups defined by S above a threshold.
2These exploratory supportive analyses are harmonized in addressing the same scientific question
of how does endpoint risk vary over vaccinated subgroups defined by S equal to a given marker
value.
30nly this Superlearner analysis uses data from multiple assays and multiple readouts as input
features; the other analyses consider one Day 29 biomarker at a time. Both the nonparametric
monotone-constrained method and the Cox model based method are applied. ®The positivity
assumptions are as follows. Controlled VE: P(S = s|A =1, X) > 0 almost surely. Stochastic
Interventional VE: s;, € S — s;+6€S|A=1,X =z forallx € X and i =1,...n. Mediators
of VE: P(S =s|A=1,X) > 0 almost surely and
P(S=5lA=0,X =xz)> implies P(S =s|A=1,X =) > 0. Graphical diagnostic analyses are
used to assess feasibility of each positivity assumption, where the assumption may be more
feasible for S as tertiles than as a quantiative variable. For quantitative S, the assumption is
weaker for the Stochastic Interventional VE analysis, such that it is possible that only this
analysis of the three will be done.

Some of the analyses include parametric assumptions for characterizing associations (Cox
model and threshold analyses, Cox model versions of Controlled VE analyses) and others are
nonparametric or approximately so (all other analyses). If parametric and nonparametric
analyses of the same type (e.g., Cox model vs. nonparametric CoR analysis of the same
association parameter; Controlled VE Cox model vs. nonparametric monotone dose-response)
suggest contradictory results, then the interpretation from the nonparametric analysis will be
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prioritized, given it is more robust and less likely to be an incorrect result. The diagnostic
testing of the parametric assumptions will aid this interpretation. As noted above, if the
nonparametric analysis suggesting a contradictory result requires a positivity assumption,
then its results will only be prioritized if diagnostics support feasibility of the positivity
assumption.

16.1 Synthesis Interpretation of Results

To structure the interpretation of the whole set of CoR and CoP results, we consider the
Bradford-Hill criteria for supporting causality assessments:

1. Temporal sequence of association (vaccination causes generation of antibodies, which
precede occurrence of the clinical disease outcome)

2. Strength of association (CoR magnitude)
3. Consistency of association (across studies and methods)

4. Biological gradient (may be interpreted as dose-response with greater Day 29 antibody
corresponding to lower risk and greater VE)

5. Specificity (that the antibody marker is induced by vaccination not natural infection,
and the antibody impacts the particular clinical endpoint being analyzed)

6. Plausibility [(supported by other COVID vaccines through study in efficacy trials and
challenge (animal or human) trials, and by other potential studies such as natural history
re-infection studies and monoclonal antibody prevention efficacy studies that could be
challenge (animal or human) or field trials])

7. Coherence (the causality assumption does not appear to conflict with current knowledge)

8. Experimental reversibility (if VE wanes to a low level then the antibody marker also
wanes coincidently; if the Day 29 marker is a strong correlate for outcome during the
period of high VE, then it becomes a weaker correlate against endpoints occurring
during the later period of low VE; also could be supported if vaccine breakthrough
cases tend to occur early in follow-up when antibody levels are known to be relatively
low)

9. Analogy (supported by other respiratory virus vaccines, and natural history studies or
challenge studies of other respiratory virus vaccines)

On temporal sequence, because the analyses are done in baseline seronegative individuals,
generally the Day 29 antibody responses must be generated by the vaccine, and if the out-
come occurs well after Day 29, then there is clear temporal ordering of vaccination causing
antibodies followed by outcome. The nuance is outcome cases with event times near 7 days
post Day 29, some of which could have been infected with SARS-CoV-2 prior to Day 29 and
have relatively long incubation periods, possibly perturbing temporal ordering by creating
naturally-induced rather than vaccine-induced antibody. However, the knowledge about the
distribution of the time period between SARS-CoV-2 acquisition and symptomatic COVID,
and the time needed for an infection to create an adaptive immune response, suggests that

63



this issue could only haves a minor impact, and overall the temporal sequence criterion read-
ily holds. Yet, the correlates analysis that stringently only includes cases with documented
antigen negativity at Day 29 may be helpful for evaluating the temporal sequence criterion.

On strength of association, this is directly quantified in all of the analyses as a core output
of each method, quantified by point estimates and confidence interval estimates of covariate-
adjusted association parameters or causal effect parameters.

On consistency of association, checking for similar estimates and inferences across the multiple
vaccine efficacy trials will be relevant. The fact that all of the tested vaccines are designed to
protect through induction of antibody to Spike protein suggest that consistency is plausible.
The vaccine platform needs to be accounted for in this evaluation, where consistency may
be expected for vaccines of a given type (e.g., mRNA vaccines, Spike protein vaccines, viral
vector vaccines with a similar vector), whereas across types a consistent body of evidence
would be very helpful, but not a requirement. FDA guidance has stipulated that a surrogate
endpoint for one vaccine platform is not necessarily expected to hold for another, and that
evidence for one platform would not be seen on its own as support for a surrogate endpoint
for another.

In addition, we will plan to study predictiveness of the estimated optimal surrogate built
on each single trial data set applied to the other trial data sets, quantified by AUC on new
data sets. Moreover, consistency of association may be assessed in another sense - by studying
whether the different CoR methods tend to reveal a consistent directionality and pattern of an
antibody marker correlated with risk, and whether the different CoP methods tend to reveal
a consistent directionality and pattern of an antibody marker connected to vaccine efficacy
(as measured by the various causal effect parameters) and with different versions of vaccine
efficacy. A common core element of all of the CoR and CoP methods is covariate-adjusted
estimation of marker-conditional risk in vaccine recipients, e.g. of marginal conditional risk
Ex[P(T <tp|S=s,A=1,X)|or Ex[P(T <tp|S > s,A=1,X)]. Generally, if an estimate
of this function shows strongly decreasing risk with s, then likely all of the CoR analyses
will detect such a decrease, and the CoP analyses will detect a version of vaccine efficacy
increasing in s. A nuance in looking for consistency of results across methods stems from
the fact that different methods have different power to detect the same effect; because of this
fact, consistency in magnitude (point estimate) and directionality are more important than
consistency in inference/statistical significance.

The fact that all of the methods adjust for the same set of baseline covariates X will aid the
ability to compare the results across methods in an interpretable manner. This discussion
highlights the relevance of adjusting for the same set of baseline covariates across the different
efficacy trials, although our choice to do covariate-adjustment through marginalization (rather
than through conditional association parameters) lends some resilience to this issue.

Our comments on consistency of association have supposed a given study endpoint, such as
COVID. Another dimension of consistency evaluation could include comparing results across
endpoints. On the one hand, consistency in evidence across endpoints could strengthen the
case for a CoP, especially for endpoints in the same ‘class’ such as moderate disease and severe
disease. On the other hand, the greater the difference between endpoints, the less relevant
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consistency may be, because the vaccine may protect through different mechanisms against
each endpoint (one potential example is prevention of asymptomatic infection vs. prevention
of severe disease). Thus evidence for a CoP for a given endpoint should not necessarily be
down-graded based on evidence that the same marker does not appear to be a CoP for another
endpoint.

On biological gradient, many of the methods are flexible and designed to detect a dose-
response pattern of antibody with risk or antibody with vaccine efficacy, with tabular and
graphical output of point and confidence interval estimates designed to reveal dose-response.

On specificity, as noted above antibodies generally are almost surely vaccine-induced given
the analysis is done in baseline seronegative individuals, although with nuance that care is
needed to evaluate whether some vaccine breakthrough cases may have had SARS-CoV-2
acquisition unusually early in follow-up (e.g., prior to second vaccination). In addition, the
assays are validated for measuring specific anti-SARS-CoV-2 antigen response. Moreover,
the Day 29 antibody markers can be verified to be negative in all or almost all baseline
seronegative placebo recipients. Therefore, the specificity criterion should readily hold, with
the proviso of the complication of the possible inclusion of unusually early infections as vaccine
breakthrough cases in some analyses.

On coherence, the results will be interpreted in the light of knowledge of immune correlates
of protection for the same vaccine in animal challenge studies (and human challenge studies
as available), where multiple studies have demonstrated that both binding and neutralizing
antibodies are a correlate of protection.

The results will also be interpreted in light of any knowledge available on passively adminis-
tered SARS-CoV-2 monoclonal antibodies for prevention of SARS-CoV-2 infection or COVID
disease, either in challenge studies (animals or humans) or efficacy trials. In addition, the
results will be interpreted in light of results on the antibody markers as correlates of re-
infection in natural history studies. Note we are cautious to not use correlates studies in
already-infected individuals, because the fact of infection may readily change the nature of a
correlate of protection.

On experimental reversibility, in future analyses we will evaluate whether the strength of
association of the Day 29 CoRs and CoPs weakens when restricting to outcomes occurring
more distal to vaccination. If the vaccine efficacy is found to wane over time, and the antibody
marker wanes over time, then this decrease in the strength of association would be consistent
with antibody as a correlate of protection. In contrast, if vaccine efficacy and antibody waned
over time, but the strength of a Day 29 CoR and CoP was the same regardless of the timing
of outcomes, it might call into question the role of the antibody marker as a CoP. The Stage
2 correlates analyses will also be helpful, where experimental reversibility could be supported
simply by coincident waning of VE and waning antibody.

Experimental reversibility may also be supported by “population-level” correlates analyses,
a term sometimes used in reference to meta-analysis that associates the level of VE with
the population-level of a Day 29 marker across subgroups or trials; e.g. the population-level
Day 29 marker response may be summarized by the geometric mean titer or geometric mean
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concentration. Future analyses of multiple phase 3 trial data sets will apply meta-analysis
surrogate endpoint evaluation methods.

On analogy, perhaps the most relevant vaccines to consider are vaccines against other res-
piratory viruses, including influenza vaccine and RSV vaccines. The fact that neutralizing
antibodies are a CoR and CoP for both inactivated and live virus vaccines supports that neu-
tralizing antibodies can be a CoP for SARS-CoV-2. In addition, there is ongoing correlates of
protection analysis of Novavax’s Phase 3 RSV vaccine efficacy trial, that is evaluating binding
antibody and neutralizing antibody CoRs and CoP correlates for severe respiratory disease
in infants of vaccinated pregnant mothers (submitted). Once those results are available, they
will aid in checking the analogy (and coherence) criterion.

The univariate CoR analyses assess Day 29 antibody biomarkers. The questions arise as to
how do we select which biomarker seems to be the best-supported CoP, and do we need to
be concerned about multiplicity adjustment issues? Given the multifactorial nature of the
assessment involving biology and statistics, we for the most part avoid an approach that
tries to pre-specify a quantitative ranking system; rather our approach presents the results of
each marker side by side and allows human synthesis and interpretation. To guard against
errors in this subjective process, we suggest that consistent results across analyses of a given
trial, and consistent results (and predictive validation) across multiple trials, will provide
particularly strong guidance for interpreting results. For example, if a particular Day 29
antibody marker shows remarkably consistent results in being a strong CoR and supported
CoP but the other readouts do not, it may emerge as the best-supported CoP. In addition, the
superlearning CoR estimated optimal surrogate objective has a special place of importance,
because it includes variable importance quantification, providing some quantitative guidance
on ranking the predictivneness of markers. This variable importance will be defined both
internal to a given trial and based on external validation on the other efficacy trials. The
metrics of CV-AUC and AUC on new trials quantifies evidence for signal in the data in a
way that is protected from risk of false positive results, by virtue of having two layers of
cross-validation used to estimate CV-AUC and hence avoid over-fitting. In addition, the CoR
analyses use multiple hypothesis testing adjustment to help ensure clear signals and not false
positive results (see Section 12.3.4). We also need a plan for minimizing the risk of false
positive results for CoP analyses, which we now address.

16.2 Multiple Hypothesis Testing Adjustment for CoP Analysis

For the univariable CoP analyses of the prioritized set of Day 29 antibody markers among the
specified marker variables, the analysis plan seeks evidence of a CoP through four different
causal effect approaches. Because of this looking for evidence through different lenses, for CoP
analysis we do not focus on family-wise error rate adjustment, because FWER-adjustment
aims to control the risk of making even a single false rejection. Rather, in an effort to build
a body of consistent evidence and to ensure that a large fraction of that evidence is reliable,
for CoP analysis we focus on false discovery rate correction. The multiplicity adjustment is
performed across the Day 29 markers and across the set of CoP methods that are applied, in
a single suite of hypothesis tests with calculation of FDR-adjusted p-values. As a guideline
for interpreting CoP findings (but not meant to be a rigid gateway), markers with unadjusted
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p-value < 0.05 and FDR-adjusted p-value < 0.10 are flagged as having statistical evidence for
being a CoP. These analyses will not be done until the complete marker data for the blinded
phase of the study including the ADCP assay data are available.

17 CoP: Meta-Analysis Analysis Plan

Meta-analysis surrogate endpoint evaluation methods will be applied to the overall ENSEM-
BLE data set, both for assessing peak time point antibody markers (Stage 1) as surrogate
endpoints for COVID and for secondary outcomes, and for assessing the antibody markers
over time (Stage 2) as surrogate endpoints for COVID and for secondary outcomes. Both
individual-level and trial-level meta-analysis will be applied, where the latter studies the as-
sociation of vaccine effects on an antibody marker with vaccine effects on a study outcome,
for example assessing how GMT nAb IU50/ml titer associates with the level of vaccine effi-
cacy against COVID. Meta-analysis has a special role in being the only correlates approach
that can potentially assess immunologic markers as CoPs that are measured using sampling
types that were not stored from most trial participants (e.g., PBMC for measuring T cell
responses). While the current statistical analysis plan focuses on assessing antibody markers
as correlates, in the future plans may be devised to incorporate T cell response data (and
potentially other data types) from phase 1-2 studies into meta-analysis evaluation.

18 Estimating a Threshold of Protection Based on an Estab-
lished or Putative CoP (Population-Based CoP)

For each antibody marker studied as a CoP, we will apply the Chang-Kohberger Jodar et al.
(2003) / Siber Siber et al. (2007) method to estimate a threshold of the antibody marker
associated with the estimate of overall vaccine efficacy observed in the trial.

This method makes two simplifying assumptions: (1) that a high enough antibody marker
value s* implies that individuals with S > s* have essentially zero disease risk (protection)
regardless of whether they were vaccinated; and (2) P(Y =1|S < s*,A=1)/P(Y = 1|5 <
s*,A=0) =1 (zero vaccine efficacy if S < s*). Based on these assumptions, s* is calculated
as the value equating 1 — P(S < s*|A = 1)/P(S < s*|A = 0) to the estimate of overall
vaccine efficacy. This estimate is supplemented by estimating the reverse cumulative distri-
bution function (RCDF) of S in baseline seronegative vaccine recipients and calculating a 95%
confidence interval for the threshold value s* as the points of intersection of the estimated
RCDF curve with the 95% confidence interval for overall vaccine efficacy (as in the figure in
Andrews et al. (2014)).

This method essentially assumes that .S has already been established as a CoP, and under that
assumption estimates a threshold that may be considered as a benchmark / study endpoint for
future immunogenicity vaccine trial applications. It is acknowledged that this approach makes
simplifying assumptions, namely the step-function model that unlikely holds; nonetheless it
may yield a useful benchmark and complementary information on a threshold correlate of
protection.
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19 Considerations for Baseline SARS-CoV-2 Seropositive Study
Participants

As stated above, if enough COVID cases in baseline seropositive vaccine and/or placebo
recipients occur, then additional correlates analyses may be planned in baseline seropositive
individuals. For example, the same or similar correlates of risk analysis plan that is used to
analyze Day 29 marker correlates of risk in baseline seronegative vaccine recipients could be
applied to assess Day 1 marker correlates of risk in baseline seropositive placebo recipients.
In addition, analyses could be done to assess how vaccine efficacy in baseline seropositive
participants varies with Day 1 markers. It is straightforward to make this analysis rigorous
because Day 1 markers are a baseline covariate, such that regression analyses are valid based
on the randomization.

20 Avoiding Bias with Pseudovirus Neutralization Analysis
due to Use of Anti-HIV Antiretroviral Drugs

Because the lentivirus-based pseudovirus neutralization assay uses an HIV backbone, the
presence of anti-retroviral drugs in serum will give a false positive neutralization signal. This
can be easily screened for using an MuLV pseudotype control. Therefore, Day 1 and Day
29 samples of all study participants with data included in correlates analyses will be tested
for presence of anti-retroviral drugs. Participants with any of the samples at Day 1 or Day
29 positive for antiretroviral use are excluded from analyses, for all analyses that include
pseudovirus neutralization. Analyses that do not consider pseudovirus neutralization are
unaffected by this issue.

21 Accommodating Crossover of Placebo Recipients to the
Vaccine Arm

After the primary efficacy endpoint was met per the protocol-defined interim analysis, sup-
porting the issuance on February 27, 2021 of an Emergency Use Authorization (EUA) from
the FDA for the Janssen COVID-19 vaccine, Janssen COVID-19 vaccination was offered to
participants who originally received placebo so that they could have the potential benefit of
vaccination against COVID-19.

For crossed-over placebo recipients who have study visits and blood sample storage on the
same schedule as if they had originally been assigned to the vaccine arm, follow-up data from
the crossed over placebo recipients will be included in the correlates of risk analyses, which
is expected to yield improved power and precision given the expanded sample size of vaccine
recipients.

However, correlates of protection will only be assessed over follow-up through to the point
that there is no longer a placebo cohort under blinded follow-up. Moreover, if immune marker
data from crossed-over placebo recipients are available, then correlate of VE CoP analyses
will be conducted that leverage the additional closeout placebo vaccination data.
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The current SAP restricts to the primary blinded follow-up period.
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SARS-CoV-2 infection

CovID
(Symptomatic infection)

Asymptomatic infection

Severe COVID Non-severe COVID

B

Clinical Endpoint Definition

SARS-CoV-2 infection Positive RNA PCR test or SARS-CoV-2 seroconversion®,
whichever occurs first

COVID (Symptomatic Meeting a protocol-specified list of COVID-19 symptoms with

infection) virological confirmation of SARS-CoV-2 infection (symptom triggered)

Asymptomatic infection SARS-CoV-2 seroconversion® without prior diagnosis of the COVID
endpoint?

Severe COVID COVID endpoint with at least one protocol-specified severe disease
event

Non-severe COVID COVID endpoint with zero protocol-specified severe disease
events

*Seroconversion is assessed via a validated assay that distinguishes natural vs vaccine-induced
SARS-CoV-2 antibodies

T Alternatively, the asymptomatic infection endpoint can also include an RNA PCR+ test result obtained
through testing regardless of symptoms (e.g., as a requirement for travel, return to school or work, or
elective medical procedures) and follow-up to confirm the participant remains asymptomatic

Figure 1: A) Structural relationships among study endpoints in a COVID-19 vaccine efficacy trial.
B) Study endpoint definitions.
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COVID Diagnosis
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ases | s s s s s s e s e e e monitoring through
study completion
If SAR3-CoV-2 negative e Continue safety

on Day 21 ‘ — monitoring through

study completion
@ Collection of data on disease severity (signs, symptoms) via e-Diary
O Obtain sample (nasopharyngeal swabs, anterior nasal swabs, or saliva cups) for SARS-CoV-2 detection by NAAT or antigen testing
‘ Blood draw

*Timed to be as close to Day 28 post-symptom onset as possible
NAAT = nucleic acid amplification test

Figure 2: Example at-COVID diagnosis and post-COVID diagnosis disease severity and virologic
sampling schedule, in a setting where frequent follow-up of confirmed cases can be assured. Partic-
ipants diagnosed with virologically-confirmed symptomatic SARS-CoV-2 infection (COVID) enter
a post-diagnosis sampling schedule to monitor viral load and COVID-related symptoms (types,
severity levels, and durations).
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Whole Study Cohort

SARS-CoV-2
Infection Endpoints
(Symptomatic and
Asymptomatic)

Random
Subcohort

Figure 3: Case-cohort sampling design (Prentice, 1986) that measures Day 1, 29 antibody markers
in all participants selected into the subcohort and in all COVID and COV-INF cases occurring

outside of the subcohort.
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