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This is the supplementary material to the paper entitled “OptDesign: Identifying optimal
strain design strategies for biochemical production”. This material provides bilevel problem
reformulation, lycopene and naringenin biosynthetic pathway, model reduction, and impact of
OptDesign parameters on biochemical production

1 MILP Reformulation of Bilevel Optimisation Problem in Opt-
Design

OptDesign has an important step which is to identify optimal manipulation strategies. This
step involves a bilevel problem as follows:

BP0: max
y+,y−,y×

min
v,∆v

cTP (v + ∆v) (1a)

s.t. ∆vj ≥ δjy+
j + ∆vmin

j (1− y+
j ), j ∈ F+ (1b)

∆vj ≤ −δjy−j + ∆vmax
j (1− y−j ), j ∈ F− (1c)

lbj(1− y×j ) ≤ vj + ∆vj ≤ ubj(1− y×j ), j ∈ F× (1d)

y+
j + y−j + y×j ≤ 1, j ∈ J (1e)∑

j∈F×
yj ≤ K× (1f)∑

j∈F+
y+
j +

∑
j∈F−

y−j +
∑

j∈F×
y×j ≤ Km (1g)

v ∈ FSw, vj + ∆vj ∈ FSm (1h)

where cP is a coefficient vector for the target biochemical. y×j = 1 represents the knockout of

reaction j, leading to zero flux in this reaction as illustrated by constraint (1d). y+
j and y−j are

binary variables representing the flux of reaction j increases and decreases by at least a notice-
able level δj > 0 from the wild type to the production phenotype, respectively. Equivalently,

∗math4neu@gmail.com

S1



y+
j = 1 (y−j =1) implies ∆vj ≥ δj (∆vj ≤ −δj). ∆vmin

j and ∆vmax
j are the lower and upper

bounds of flux change ∆vj , respectively. Special reactions in which fluxes are not allowed to
be decreased (increased), e.g., non-growth associated maintenance, should have a zero value for
the lower (upper) bound of their corresponding ∆v components. Each reaction cannot increase
and decrease flux simultaneously, which implies the constraint (1e). Constraints (1f) and (1g)
limits the allowable number of knockouts and the total number of manipulations. Constraint
(1h) defines the flux space of the wild-type and production strain, respectively. For simplicity,
we replace constraint (1h) by vgr ≥ fgr, vp + ∆vp ≥ fp, subject to mass balance and thermody-
namic constraints, where fgr and fp are the growth rate of the wild type and production rate
of the mutant, respectively. In other words, FSw = {v ∈ Rn|Sv = 0, lbwj ≤ vj ≤ ubwj , j ∈ J},
FSm = {v + ∆v ∈ Rn|S∆v = 0, lbmj ≤ v + ∆v ≤ ubmj , j ∈ J}, where, F+ ∪ F− ∪ F× are the
candidate sets of up-regulation, down-regulation, and knockout, respectively. To achieve the
smallest set of manipulations, we can modify BP0 slightly by subtracting a new item from the
objective as follows:

BP1: max
y+,y−,y×

min
v,∆v

cTP (v + ∆v)− γ
∑
j∈J

(y+
j + y−j + y×j )

 dual variables (2a)

s.t. Sv = 0 [λv] (2b)

S(∆v) = 0 [λ∆v] (2c)

v + ∆v ≥ lbm [α] (2d)

v + ∆v ≤ ubm [β] (2e)

v ≥ lbw [φ] (2f)

v ≤ ubw [ϕ] (2g)

∆vj ≥ δjy+
j + ∆vmin

j (1− y+
j ), j ∈ F+ [ζ] (2h)

∆vj ≤ −δjy−j + ∆vmax
j (1− y−j ), j ∈ F− [η] (2i)

vj + ∆vj = 0, for j ∈ F×&yj = 1 [π] (2j)

y+
j + y−j + y×j ≤ 1, j ∈ J (2k)∑

j∈F×
yj ≤ K× (2l)∑

j∈F+
y+
j +

∑
j∈F−

y−j +
∑

j∈F×
y×j ≤ Km (2m)

(2n)

where γ is a significantly small positive value(e.g., 10−5) to favour the search for the solutions
with fewer manipulations. Thereafter, we can cast the problem using duality theory [Burgard
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et al., 2003] to a single-level mixed-integer optimisation problem (MIP):

MIP: max
y+,y−,y×

cTP (v + ∆v)− γ
∑
j∈J

(y+
j + y−j + y×j )

s.t. Sv = 0

S(∆v) = 0

v + ∆v ≥ lbm
v + ∆v ≤ ubm
v ≥ lbw
v ≤ ubw

∆vj ≥ δjy+
j + ∆vmin

j (1− y+
j ), j ∈ F+

∆vj ≤ −δjy−j + ∆vmax
j (1− y−j ), j ∈ F−

vj + ∆vj ≥ lbj(1− y×j ), j ∈ F×

vj + ∆vj ≤ ubj(1− y×j ), j ∈ F×∑
i∈M

Sijλ
v
i − αj + βj − φj + ϕj = cp,j , j ∈ J \ F×∑

i∈M
Sijλ

v
i − αj + βj − φj + ϕj + πj = cp,j , j ∈ F×∑

i∈M
Sijλ

∆v
i − αj + βj − ζj + ηj = cp,j , j ∈ J \ F×∑

i∈M
Sijλ

∆v
i − αj + βj − ζj + ηj + πj = cp,j , j ∈ F×

−Hy×j ≤ πj ≤ Hy
×
j , j ∈ F

×

− cTP (v + ∆v) = (ubm)Tβ − (lbm)Tα+ (ubw)Tφ− (lbm)Tϕ+ (∆vmax)T η

− (∆vmin)T ζ − (∆vmax + δ)T (y− � η) + (∆vmin − δ)T (y+ � ζ)

y+
j + y−j + y×j ≤ 1, j ∈ J∑

j∈F×
yj ≤ K×∑

j∈F+
y+
j +

∑
j∈F−

y−j +
∑

j∈F×
y×j ≤ Km

y+
j ∈ {0, 1}, y

−
j ∈ {0, 1}, y

×
j ∈ {0, 1}, λ

v
i ∈ R, λ∆v

i ∈ R, αj ≥ 0

βj ≥ 0, phij ≥ 0, ϕj ≥ 0, zetaj ≥ 0, etaj ≥ 0.

where M is the set of indices of metabolites in the network. It can be observed from the above
that there are two non-negative nonlinear terms, highlighted in red, in the constraints. Both
terms are a product of a binary variable and a continuous variable. i.e., z = y · w (y is binary
and w > 0 is continuous). We linearise zj = yjwj as follows:

zj ≥ 0 (3)

zj ≤ wj (4)

zj ≤ Cyj (5)

zj ≥ wj − C(1− yj) (6)

By defining z− = y− � η and z+ = y+ � ζ subject to the above linearisation constraints, the
optimisation problem MIP becomes a standard mixed-integer linear program, which can be
solved by modern MILP solvers efficiently.
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Table S1: Heterologous biosynthesis pathway for naringenin. A list of reactions including
exchange ones added to the iML1515 model.

Reaction name (abbrev.) Reaction formula Subsystems

EX cma e cma e⇐⇒ Flavonoid biosynthesis
CMAt cma e ⇐⇒ cma c Flavonoid biosynthesis
CCL cma c + atp c +coa c −→ amp c + cmcoa c + pi c Flavonoid biosynthesis
CHS 3 malcoa c +cmcoa c −→ 4 coa c + chal c + 3 co2 c Flavonoid biosynthesis
CHI chal c −→ narg c Flavonoid biosynthesis
NARGt chal c ⇐⇒ narg e Flavonoid biosynthesis
EX narg e narg e ⇐⇒ Flavonoid biosynthesis

Table S2: Heterologous biosynthesis pathway for lycopene. A list of reactions including exchange
ones added to the iML1515 model.

Reaction name (abbrev.) Reaction formula Subsystems

crtE frdp c + ipdp c −→ ppi c + ggdp c Carotenoid biosynthesis
crtB 2 ggdp c −→ ppi c + phyto c Carotenoid biosynthesis
crtI 8 nadp c + phyto c −→ 8 nadph c + lyco c Carotenoid biosynthesis
LYCOtex lyco c ⇐⇒ lyco e Carotenoid biosynthesis
EX lyco e lyco e ⇐⇒ Carotenoid biosynthesis

2 Biosynthetic Pathways Added to iML1515
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Model reduction and knockout candidate selection

Model reduction and candidate selection strategies [Feist et al., 2010; Jiang et al., 2020] are
introduced. Specifically, linear reactions (where a metabolite is produced by one reaction and
consumed by another) were compressed and only one reaction was selected from a linear reac-
tion group. Dead end reactions which does not carry fluxes were removed from the metabolic
network. Reactions which are both computationally and experimentally essential (linked to
essential genes) were not considered candidates. Reactions in certain subsystems such as cell
envelope biosynthesis, murein biosynthesis are were considered. Exchange reactions and those
who does not have any associated genes were also not considered. To further reduce the size of
candidates, reactions that participate in high carbon (say 10 carbons) conversion are not likely
to carry significant fluxes and therefore were excluded from consideration. As a result, approx-
imately 300 candidates were obtained for the consideration of knockout. Figure S1 illustrates
the procedure.

Figure S1: Flowchart of model reduction and candidate selection. The number of knockout
candidates (computational cost) reduces with the model reduction steps.
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Figure S2: Influence of threshold δ on succcinate production.
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Figure S3: Influence of threshold δ on lycopene production.

Figure S4: Influence of threshold δ on naringenin production.
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