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MOTIVATION Multiplex tissue imaging (MTI) is transforming biology by linking biomarker expression with
spatial context. As the number of MTI platforms and spatial tissue atlases increases, so toomust the capac-
ity of our methods to ingest and derive insight from these data. Many of the methods used in MTI analysis
are crossovers from other domains like flow cytometry and single-cell genomics, do not scale well, and
might be statistically unfit for atlas-level MTI data, constituting a crucial bottleneck in the search for the
next generation of clinically relevant biomarkers. Here, we address this bottleneck with a computationally
efficient and platform-agnostic MTI data analysis workflow and its proof-of-concept application to human
breast cancer (BC) tissues.
SUMMARY
The emergence of megascale single-cell multiplex tissue imaging (MTI) datasets necessitates reproducible,
scalable, and robust tools for cell phenotyping and spatial analysis. We developed open-source, graphics
processing unit (GPU)-accelerated tools for intensity normalization, phenotyping, and microenvironment
characterization. We deploy the toolkit on a human breast cancer (BC) tissue microarray stained by cyclic
immunofluorescence and present the first cross-validation of breast cancer cell phenotypes derived by using
two different MTI platforms. Finally, we demonstrate an integrative phenotypic and spatial analysis revealing
BC subtype-specific features.
INTRODUCTION

MTI methods like cyclic immunofluorescence (CyCIF) (Lin

et al., 2018; Eng et al., 2020), CO-Detection by indEXing

(CODEX) (Goltsev et al., 2018), multiplex immunohistochem-

istry (mIHC) (Tsujikawa et al., 2017), imaging mass cytometry

(IMC) (Giesen et al., 2014), and multiplex ion beam imaging

(Angelo et al., 2014) enable measurements of the expression

and spatial distribution of tens of markers in tissues, and

have facilitated our understanding of the interactions and rela-

tionships among distinct cell types in diverse tissue microen-

vironments. Nevertheless, for MTI to reach its full potential

as a research paradigm, numerous computational challenges

must be overcome, including (1) reproducible normalization

of single-cell intensity measurements to enable intra- and in-

ter-sample comparisons; (2) robust cell phenotyping at mega-

scale to enable comparison—and soon compilation—of MTI

datasets from different platforms; and (3) the development of

insightful spatial features to characterize the microenviron-
Cell Re
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ment of the tissue or disease of interest, and so enable

discrimination between tissues that vary over important clin-

ical parameters.

The number of single-cell phenotyping algorithms has rapidly

proliferated alongside the development of single-cell cytometry

platforms (Weber and Robinson, 2016; Liu et al., 2019). With so

many options from which to choose, the appropriate choice of

algorithm depends on the questions one hopes to ask of the

data being considered. For instance, prior biological knowledge

can be leveraged by supervised or semi-supervised algorithms

to bias identification toward known cell types of interest. In

contrast, unsupervised algorithms identify cell types by

leveraging only the internal data structure, making them the al-

gorithms of choice in discovery-based studies where relatively

little is known about the underlying biology. Among the unsu-

pervised algorithms, PhenoGraph (Levine et al., 2015) and

FlowSOM (Van Gassen et al., 2015) stand out for their abilities

to precisely identify known cell types with high cluster coher-

ence—i.e., high or low inter- or intra-cluster variance—and
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without the incorporation of prior biological knowledge (Liu

et al., 2019). One notable tradeoff between these two CPU-

executed algorithms is runtime: FlowSOM has a considerably

faster runtime than PhenoGraph (Weber and Robinson, 2016).

The relatively slow runtime of CPU-executed PhenoGraph moti-

vated our GPU-accelerated implementation.

To address these challenges, we present (1) a broadened

application of our data-intrinsic normalization method (Chang

et al., 2020), which leverages the mutually exclusive expression

pattern of marker pairs inMTI stain panels to estimate normaliza-

tion factors without subjective and time-consuming manual

gating; (2) a distributed and graphics processing unit (GPU)-

accelerated implementation of PhenoGraph (Levine et al.,

2015), the popular graph-based algorithm for subpopulation

detection in high-dimensional single-cell data; and (3) an integra-

tive analysis using this toolkit on �1.3 million cells from a 180-

sample, pan-subtype humanBC tissuemicroarray (TMA) dataset

(Figure S1) stained byCyCIF using amarker panel that character-

izes tumor, immune, and stromal compartments (Figure 1A,

STAR Methods). Through consideration of both tissue composi-

tion and architecture, we identify features independent

from hormone receptor (HR) and human epidermal growth factor

receptor 2 (HER2) expression that discriminate between the ca-

nonical BC subtypes.
RESULTS

GPU-accelerated BC cell type identification at
megascale
For robust intensity normalization method for multiplexed imag-

ing (RESTORE) normalization (Chang et al., 2020) of each TMA

core, we leverage the fact that tumor, immune, and stromal cells

exhibit mutually exclusive expression of cell-type-specific

markers, and use a graph-based clustering to define positive

and negative cells and normalization factors (Figure S2A, Table

S1, see subsubsection ‘‘single-cell intensity normalization’’).

When the raw expression vectors of all cells across TMAs are

embedded by t-stochastic neighbor embedding (t-SNE) (van

der Maaten and Hinton, 2008), cells are segregated on the basis

of TMA source (Figure S2B, left), mainly because of batch effect

and in part because of subtype bias within TMAs (Figures S1B

and S1C). Afters normalization, shared cell types between

TMAs are co-embedded (Figure S2B, right) and cell expression

of immune, tumor, and stromal markers is segregated (Fig-

ure S2C), a validation of the normalization process.
Figure 1. GPU-accelerated analysis of single-cell phenotypes across B

(A) Overview of CyCIF analysis workflow. Once TMA cores are stained by CyCIF,

used to define cell phenotypes for analyses of tissue composition and architectu

single-cell Ecad intensities when usingmutually exclusive expression of CD68 to d

details. Box 2 shows benchmarking results for CPU and GPU implementations of

the legacy CPU implementation, our GPU implementation of PhenoGraph is or

standard deviation of three replicate executions, respectively. See also Figure

representative tissue core.

(B) t-SNE embedding of full single-cell CyCIF dataset colored by cell phenotype

(C) Hierarchical clustering of PhenoGraph clusters and CyCIF markers. The color s

each BC subtype is composed, where point size represents the percentage of t

absolute number of cells belonging to each cluster and BC subtype. See also Fi
To define cell types among the �1.3 million cells in the normal-

ized feature table, we first attempted to use the central processing

unit (CPU)-based version of the widely used algorithm Pheno-

Graph (Levineetal., 2015), but found it tobe inefficientat thisscale.

To overcome this computational bottleneck, we re-implemented

PhenoGraph tobeexecutable onGPUs.Using thePython libraries

RAPIDS (Raschkaet al., 2020) andCuPy (Okuta et al., 2017) topar-

allelizeandaccelerateseveral ofPhenoGraph’scomputations (see

subsubsection ’’single-cell phenotyping algorithm selection’’), we

observed multiple orders of magnitude improvement in the algo-

rithm’s speed without sacrificing clustering quality (Figure 1A,

box 2). Our GPU implementation of PhenoGraph is competitive

with FlowSOM in terms of execution time (Figure S3A), which until

now was one of the primary motivations for choosing FlowSOM

over PhenoGraph (Weber and Robinson, 2016; Liu et al., 2019).

Moreover, to ensure that our GPU implementation of PhenoGraph

produced results consistent with the CPU implementation, we

benchmarked each by using synthetic datasets and detected no

significantdifferencebetweenCPUandGPUclusteringmodularity

(Figures S3B–S3D).

Our PhenoGraph implementation identified diverse tumor, im-

mune, and stromal cell types across tissues and BC subtypes

(Figures 1B and 1C). To define phenotypes shared across tis-

sues, metaclusters of similar phenotypes were aggregated on

the basis of the hierarchical clustering of phenotypes based on

their mean marker expression. Although tissues from all BC sub-

types contained similar populations of immune, stromal, and

endothelial cells, differences between BC subtypes were largely

driven by variable tumor cells expression of luminal and basal cy-

tokeratins, HER2, and the HRs estrogen receptor (ER) and PgR,

as previously reported (Jackson et al., 2020).

Identified cell phenotypes are robust against noise and
subsampling
To assess PhenoGraph clustering robustness to sampling shift,

PhenoGraph clusters were derived by using random subsets of

tissues of varying cardinality, from 10% to 90% of all tissues,

and compared the Z-scored mean marker intensities of the Phe-

noGraph-derived clusters from the full reference dataset and

each subset by using pairwise Pearson’s correlation. Even with

heavy subsampling, themedian of themaximumcorrelations be-

tweenmatching clusters from reference-to-sample comparisons

held at �0.75 (Figure S4A), indicating that we are defining a

robust core set of cell phenotypes. Indeed, the major variation

between reference and subsample clusters appeared to be sam-

ple-specific tumor cell phenotypes from the tissues held out from
C clinical subtypes

cells are segmented and cell mean intensities are extracted, normalized, then

re. Box 1 shows an example of RESTORE normalization (Chang et al., 2020) of

erive a normalization factor for Ecad. See Figure S2 for additional normalization

PhenoGraph for phenotyping of simulated single-cell datasets. Compared with

ders of magnitude faster at scale. Points and error bars show the mean and

S3. Box 3 shows the spatial layout of high-dimensional cell phenotypes in a

metacluster. See also Figure S3.

cale represents the Z-scoredmarker expression. The scatterplot displays how

hat BC subtype that is composed of that cluster. The bar plot represents that

gure S4.
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each subsample (Figures S4B and S4C), suggesting that Pheno-

Graph defines robust cell phenotypes that are shared across tis-

sues and is capable of detecting new phenotypes as they are

added to the dataset.

We further assessed the robustness of our identified cell pheno-

types by applying ± 20% noise to normalization factors for each

marker for each core (Figure S4D) and found that phenotypes

are identified as they are sampled andare robust tominor variation

in normalization factors.We simulated ± 20%measurement noise

by multiplying the normalized cell intensity vectors for each tissue

andmarker by a scaling factor drawn uniformly at random from the

range [0.8,1.2] and compared the Z-scored mean marker inten-

sitiesof thePhenoGraph-derivedclusters from theclean reference

and noisy datasets by using pairwise Pearson’s correlation. Even

with these significant perturbations to the intensity profiles of cells,

the median of the maximum correlations between matching clean

and noisy clusters held above 0.8 (Figure S4D), indicating cluster

robustness to differentials in preanalytical variables like tissue fix-

ation or autofluorescence which can affect measured IF intensity

across a TMA.

We acknowledge that segmentation is a critical pre-processing

step that can affect downstream analyses. Instead of comparing

various segmentation methods and downstream analysis results,

we demonstrated robustness of cell types with ± 20% random

noise added to each marker in each core alternatively. This varia-

tion implicitly reflects the mean intensity variation of each marker

expected using different segmentation methods.

Inter-MTI platform benchmarking of cell phenotypes
suggests basis for inter-MTI platform data integration
With the growth of MTI in the cancer research and translational

communities, there is an acute need for robust and integrative

analyses of MTI data across platforms and cohorts (Rozen-

blatt-Rosen et al., 2020). In a step toward addressing that

need, we validated our identified cell types through comparison

with a recently published survey of BC by IMC (Jackson et al.,

2020). Although the total number of cells from each BC subtype

varied between the Basel (IMC) and Oregon Health and Science

University (OHSU) (CyCIF) cohorts (Figure 2A), there was sub-

stantial overlap between the marker panels used for each MTI

platform (Figure 2B). By aligning the cell phenotypes indepen-

dently detected by PhenoGraph in each cohort (Figure 2C), we

found highly correlated clusters for stromal, immune, basal,

and proliferating cell types, among others (Figure 2D), suggest-

ing that shared cell types could be matched across cohorts

and MTI platforms, a necessary step for data integration. We

note that differences between cohort cell types might reflect

the differences between cohort composition with respect to
Figure 2. Cross-validation of BC cell phenotypes between MTI platform

(A) Cellular ratio highlighting compositional differences between Basel (Jackson

(B) The intersection of the IMC and CyCIF marker panels used to stain tissues fr

(C) PhenoGraph cluster matching between Basel and OHSU cohorts. Using only t

using PhenoGraph with the same parameterization, then cohort clusters were

correlation structure. We identified highly correlated clusters between cohorts, i

proliferating cell populations.

(D) Maximum Pearson’s correlation corresponding to inter-cohort cluster matche

interquartile range of the upper and lower quartiles. Outliers are shown as distinc
BC subtype. Consistent between cohorts and platforms, tumor

cells differed more between samples than did immune, stromal,

and endothelial cells (Figures S3E–S3H).

Integrative analysis reveals BC subtype-specific
features of tissue composition and architecture
Although BC is appreciated as a genetically andmorphologically

heterogeneous disease, its clinical subtyping is based on the

expression of relatively few markers, in particular, tumor cell

expression of the hormone receptors for estrogen and proges-

terone (ER and PgR, respectively, or HR, collectively), and hu-

man epidermal growth factor 2 (HER2), which is insufficient to

explain differences in treatment response within each subtype

(Prat et al., 2015). Recent studies using MTI to interrogate intact

BC tissues have found that the spatial contexture of the BC

microenvironment can improve our ability to predict clinical

outcome (Jackson et al., 2020; Keren et al., 2018). However,

because these studies have focused on either disease risk or a

single BC clinical subtype, here we focused on compositional

and spatial features that differentiate between subtypes.

At the composition level, we first considered the tumor cell dif-

ferentiation states of BC subtypes through their expression of

luminal and basal cytokeratins (CKs). Although CK+ cells in

HR�/HER2+, HR+/HER2�, and HR+/HER2+ tissues primarily ex-

pressed luminal CKs 19, 8, and 7, CK+ cells in triple negative

(TN) tissues exhibited significantly greater differentiation state

heterogeneity (Figure 3A), as they expressed many different

combinations of luminal and basal cytokeratins (Figure 3B).

This differentiation state heterogeneity is consistent with the ge-

netic and histological heterogeneity of triple-negative BC (TNBC)

described in other studies (Haupt et al., 2010; Bianchini et al.,

2016). We next determined the composition of each tissue

core with respect to the cell metaclusters we defined above. Hi-

erarchical clustering of cores on the basis of their cell metaclus-

ter densities highlighted the broad variability of cellular composi-

tion within and between BC subtypes (Figures 3C and 3D). When

the cell metaclusters were further aggregated into immune, stro-

mal, and tumor cell types (see subsubsection ‘‘aggregation of

immune, stromal, and tumor cell phenotypes’’), we found the

HR+HER2� tissues to have lower overall immune cell density

than the other BC subtypes, and no differences in stromal or tu-

mor cell density between subtypes (Figure 3E).

Recognizing that cell density measurements fail to capture the

organization of cells in each tissue, we next characterized the

spatial architecturesofBCsubtypesbybuildingcell neighborhood

graphs for each tissue. Given the recent evidence that the quantity

and diversity of BC tumor cell interactionswith other cell types can

inform disease outcome (Jackson et al., 2020; Keren et al., 2018),
s reveals commonalities between two BC cohorts

et al., 2020) and OHSU (this work) cohorts with respect to BC subtype.

om the Basel and OHSU cohorts, respectively.

he intersecting markers, we independently clustered cells from each cohort by

pairwise correlated and hierarchically clustered on the basis of the resulting

ncluding those corresponding to epithelial, immune, stromal, endothelial, and

s. Lines in boxes indicate the medians, and whiskers indicate data within 1.53

t points.
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we first identified the neighboring cells to each tumor cell and

compared the composition of tumor cell neighborhoods across

BC subtypes (Figure 4A). Although most tumor cell interactions

(�70%–80%)arewithother tumorcells typical of theirBCsubtype,

we observed increased tumor-stromal interaction in the

HR+HER2� subtype. When considering tissues that contain an

appreciablepopulationof stromal cells (tissuescomprisingat least

25%stromal cells), we confirmed that therewas significantlymore

stromal mixing with tumor cells in HR+HER2� tissues (Figure 4B).

Importantly, stromal mixing can vary widely between tissues in

spite of their similar stromal densities (Figure 4C), highlighting the

importanceof the spatial context that ispreserved in intact tissues.

Given thatmalignant epithelial cells can suppress fibroblast matu-

ration and thus promote fibroblast aromatase activity (Bulun et al.,

2012), ER+HER2� tumors likely favor more proximal fibroblasts as

asourceofgrowth-inducingestrogen thanotherBCsubtypes,and

might even act to maintain tumor microenvironments with high

stromal mixing (Brechbuhl et al., 2017).

We reasoned thatdifferences in tumor-stromal interactionmight

translate into detectable differences between BC subtypes based

ontheir tumorarchitecturesalone.Tocharacterize the tumorarchi-

tecture of each tissue, we constructed tumor architecture graphs

over which we computed the closeness centrality for each tumor

cell, which quantifies the relative closeness of that tumor cell to

all other tumor cells in the tissue (Figure 4D). Consistent with the

stromal mixing trend observed above, HR+HER2� tissues had a

mean tumor closeness centrality significantly greater than tissues

from the other BC subtypes (Figures 4E and 4F), which is in part a

reflection of HR+HER2� tumor cell nests tending to be separated

by narrower streams of stromal cells than tumor nests in tissues

from other BC subtypes (Figure 4C). In summary, by analyzing

BC tissues with spatially resolved MTI, we have identified inter-

cell phenotype (stromal mixing) and intra-cell phenotype (tumor

closeness centrality) interactions that can be leveraged to help

discriminate between canonical BC subtypes on a basis other

than receptor expression.

DISCUSSION

This work is motivated by an understanding that the spatial

context of the tumor microenvironment in intact cancer tissues
Figure 3. BC subtypes are differentiated by single-cell composition

(A) Epithelial differentiation heterogeneity across BC subtypes. Box plot displaying

the distribution of tissue cores from aBC subtype, and each core is summarized o

Lines in boxes indicate the medians, and whiskers indicate data within 1.53 inte

points. Groupwise comparisons were made by using one-way ANOVA with pairw

HR+HER2+, n = 28). *p < 0.001 for all TN comparisons with other BC subtypes.

(B) UpSet plot summarizing the distribution of CK+ cell types across BC subtype

(C) Cell phenotype density across tissue cores. Bar plot where each bar repres

colored segment represents the density of a particular cell metacluster. Bars are

labeledwith its corresponding subtype, stage, and grade, if a label is available. The

could indicate amechanism of HR repression in some TN andHR�/HER2+ tissues
with association found between TIL-B and high-grade, HR� BC (Garaud et al., 201

that HR+/HER� tissues are immunologically cold compared with TN and HER2+

(D) A selection of representative tissue cores.

(E) The immune, stromal, and tumor densities of tissue cores from each BC subtyp

interquartile range of the upper and lower quartiles. Groupwise comparisons were

0.034, **p < 0.035, ***p < 0.079 (TN, n = 47; HR+HER2�, n = 52; HR�HER2+, n =
enables a more granular definition of disease, and we hope for

the design of more personalized and effective treatments. With

spatially resolved MTI, our analysis makes clear that the cellular

composition of BC tissue can belie important aspects of its

spatial architecture. Ongoingwork involves validating these find-

ings in a cohort with more extensive clinical annotation to assess

their significance to disease outcome between and within BC

subtypes. Although the BC cell phenotypes and architectural

features we have derived will be assets to future BC studies,

our generic toolkit can be used alone or integrated with existing

toolkits (Schapiro et al., 2017) to improve the efficiency and

reproducibility of analytics for any single-cell measurement

platform.

Although we demonstrated the computational efficiency of

GPU-implemented PhenoGraph, graph-based clustering

methods and other extensions could benefit from our imple-

mentation, and the CPU-to-GPU software translation

approach, in general. For instance, some components of Phe-

noGraph (e.g., constructing a k-nearest neighbor graph) are

also implemented as part of Seurat (Butler et al., 2018), a pop-

ular tool for single-cell RNA sequencing analysis. Thus, our

approach could help extended applications like Seurat scale

up for the megascale and greater meta-analyses of the near

future.

Limitations of the study
In this study, we limit our scope to the identification of a robust

BC cell phenotype dictionary and its validation against a BC

cell phenotype dictionary defined by using another MTI platform.

As such, we focus on methodological details, validation, and

demonstration of reproducible, scalable, and robust data anal-

ysis. Although the clinical metadata for the described data

were highly fragmented and limited the application scope of

the study, we envision that the identified BC cell phenotypes

we derive and robustly cross-validate here will be useful to future

MTI-based studies that have more comprehensive clinical meta-

data at their disposal.

Although we acknowledge that segmentation is a critical pre-

processing step that can affect downstream analyses, we feel

that that a broad comparison against state-of-the-art segmenta-

tion methods is beyond the scope of the current study.
CK expression heterogeneity across BC subtypes, where each box represents

n the basis of the entropy of the distribution of CK+ cell types contained within it.

rquartile range of the upper and lower quartiles. Outliers are shown as distinct

ise Tukey post-hoc test (TN, n = 47; HR+HER2�, n = 52; HR�HER2+, n = 53;

s, considering each CK alone (left margin) or in combination (upper margin).

ents a TMA core, the full bar height represents its total cell density, and each

hierarchically clustered on the basis of cell metacluster densities. Each bar is

inset brackets indicate (1) coreswith abundant H3K27me3+ tumor cells, which

(Chen et al., 2016); (2) cores with abundant infiltrating B cells (TIL-B), consistent

9); and (3) cores with relatively low immune density, consistent with the finding

tissues (Ali et al., 2015; Wimberly et al., 2015).

e. Lines in boxes indicate the medians, and whiskers indicate data within 1.53

made by using one-wayWelch ANOVA and Games-Howell post-hoc test. *p <

53; HR+HER2+, n = 28).
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Alternatively, we demonstrated robustness of cell types with

variation added to each marker in each core. This variation

implicitly reflects the mean intensity variation of each marker ex-

pected when using different segmentation methods, indicating

that the methods we propose here are also robust to differences

in segmentation approach.
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Antibodies

Rabbit anti-CD20 (clone EP459Y) Abcam Cat#ab198941

Rabbit anti-CD4 (clone EPR6855) Abcam Cat#ab196147

Rabbit anti-CD44 (clone EPR1013Y) Abcam Cat#ab216647

Rabbit anti-CD45 (clone EP322Y) Abcam Cat#ab214437

Mouse anti-CD68 (clone KP1) Biolegend Cat#916104

Mouse anti-FOXP3 (clone 206D) Biolegend Cat#320102

Rabbit anti-Granzyme B (GRNZB) (clone

EPR20129-217)

Abcam Cat#ab219803

Rabbit anti-Cytokeratin 5 (CK5) (clone

EP1601Y)

Abcam Cat#ab193894

Mouse anti-Cytokeratin 14 (CK14) (clone

LL002)

Abcam Cat#ab212547

Rabbit anti-Cytokeratin 17 (CK17) (clone

EP1623)

Abcam Cat#ab185032

Rabbit anti-Cytokeratin 7 (CK7) (clone

EPR1619Y)

Abcam Cat#ab185048

Rabbit anti-Cytokeratin 8 (CK8) (clone

EP1628Y)

Abcam Cat#ab192467

Mouse anti-Cytokeratin 19 (CK19) (clone

A53-B/A2)

Biolegend Cat#628502

Rabbit anti-E Cadherin (Ecad) (clone

EP700Y)

Abcam Cat#ab201499

Rabbit anti-Androgen Receptor (AR)

(polyclonal)

Sigma-Aldrich Cat#06-680-AF555

Rabbit anti-Estrogen Receptor (ER) (clone

EPR4097)

Abcam Cat#ab205851

Rabbit anti-Progesterone Receptor (PgR)

(clone YR85)

Abcam Cat#ab199455

Mouse anti-HER2 (clone 3B5) Santa Cruz Cat#sc-33684

Mouse anti-aSMA (clone 3B5) Santa Cruz Cat#sc-32251

Rabbit anti-CD31 (clone EPR3094) Abcam Cat#ab218582

Rabbit anti-Vimentin (Vim) (clone D21H3) Cell Signaling Technology Cat#9854

Rabbit anti-Collagen I (ColI) (clone

EPR7785)

Abcam Cat#ab215969

Mouse anti-Collagen IV (ColIV) (clone 1042) ThermoFisher Cat#51-9871-82

Mouse anti-Lamin A/C (LamA/C) (clone

4C11)

Sigma-Aldrich Cat#SAB4200236

Rabbit anti-Lamin B1 (LamB1) (clone

EPR8985(B))

Abcam Cat#ab194106

Rabbit anti-Lamin B2 (LamB2) (clone

EPR9701(B))

Abcam Cat#ab200427

Rabbit anti-H3K4me3 (clone C42D8) Cell Signaling Technology Cat#11960

Rabbit anti-H3K27me3 (clone C36B11) Cell Signaling Technology Cat#5499

Mouse anti-Podoplanin (PDPN) (polyclonal) Biolegend Cat#916606

(Continued on next page)
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Rabbit anti-Cleaved PARP (cPARP) (clone

D64E10)

Cell Signaling Technology Cat#6894

Rabbit anti-gH2AX (clone EP854(2)Y) Abcam Cat#ab195189

Rabbit anti-Ki67 (clone D3B5) Cell Signaling Technology Cat#12075

Mouse anti-PCNA (clone PC10 Cell Signaling Technology Cat#8580

Rabbit anti-pHH3 (clone D2C8) Cell Signaling Technology Cat#3465

Rabbit anti-p-S6 (clone D57.2.2E) Cell Signaling Technology Cat#3985

Biological samples

Breast cancer tissue array US Biomax Inc. BR1201a

Breast cancer tissue array US Biomax Inc. BR1506

Breast cancer tissue array US Biomax Inc. Her2B

Breast cancer tissue array Dowsett et al., 2008 T-ATAC-4A

Chemicals, peptides, and recombinant proteins

SlowFade Gold Antifade Mountant with

DAPI

Life Technologies Cat#S36938

Normal Goat Serum (NGS) Vector Laboratories Cat#S-1000

Bovine Serum Albumin (BSA) Sigma-Aldrich Cat#A7906

Phosphate Buffered Saline (PBS) Fisher Scientific Cat#BP39920

Target Retrieval Solution, pH 9 Agilent Cat#S236784-2

Deposited data

Single-cell feature data (OHSU CyCIF) This paper 10.5281/zenodo.4908899

Single-cell feature data (Basel IMC) Jackson et al., 2020 10.5281/zenodo.3518284

Software and algorithms

PhenoGraph Levine et al., 2015 https://github.com/dpeerlab/phenograph

RESTORE Chang et al., 2020 https://gitlab.com/Chang_Lab/

cycif_int_norm/

Code for analysis and figure generation This paper https://gitlab.com/eburling/BCTMA

CuPy Okuta et al., 2017 https://cupy.dev/

SciPy Virtanen et al., 2020 https://www.scipy.org/

Grapheno This paper https://gitlab.com/eburling/grapheno

NetworkX Hagberg et al., 2008 https://networkx.org/

Pingouin Vallat, 2018 https://pingouin-stats.org/

Seaborn Waskom and the seaborn development

team, 2020

https://seaborn.pydata.org/

Holoviews Rudiger et al., 2019 http://holoviews.org/

Bokeh Bokeh Development Team, 2020 https://docs.bokeh.org

Matplotlib Hunter, 2007 https://matplotlib.org/

Napari Sofroniew et al., 2020 https://napari.org/

RAPIDS Raschka et al., 2020 https://rapids.ai/

Dask Dask Development Team, 2016 https://dask.org/

Other

24x50 mm rectangular #1½ cover glass Corning Cat#2980-245

24x30 mm rectangular #1½ cover glass Corning Cat#2980-243

Slide chambers Bio-Rad Cat#SLF0601

Tabletop incubator Clinical Scientific Equipment Inc. No. 100

Hybridization incubator Robbins Scientific Model 1000

Decloaking chamber Biocare Medical Cat#DC2012
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Young

Hwan Chang (chanyo@ohsu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The single-cell feature data have been deposited on Zenodo and are publicly available as of the date of publication. The DOI is listed

in the key resources table. The code use for analysis and figure generation is publicly available at https://gitlab.com/eburling/BCTMA.

The GPU-accelerated implementation of PhenoGraph is publically available at https://gitlab.com/eburling/grapheno. Any additional

information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Acquisition of breast cancer tissue microarrays (TMAs)
The tissues used in this study are a compilation of multiple TMAs: BR1201a-SG48 (US Biomax Inc., https://www.biomax.us/

BR1201a), BR1506-A019 (US Biomax Inc., https://www.biomax.us/tissue-arrays/Breast/BR1506), Her2B-K154 (US Biomax Inc.,

https://www.biomax.us/tissue-arrays/Breast/Her2B), and the TransATAC TMAs T-ATAC-4A-Left and T-ATAC-4A-Right (Dowsett

et al., 2008). All tissues that were successfully stained and imaged were included in the study, representing 180 tissue cores from

128 patients.

METHOD DETAILS

Preparation and cyclic immunofluorescence (CyCIF) staining of tissues
Formalin-fixed paraffin-embedded (FFPE) human tissues were received mounted on adhesive slides. The slides were baked over-

night in an oven at 55�C (Robbin Scientific, Model 1000) and an additional 30 minutes at 65�C (Clinical Scientific Equipment, NO.

100). Tissues were deparaffinized with xylene and rehydrated with graded ethanol baths. Two step antigen retrieval was performed

in the Decloaking Chamber (Biocare Medical) using the following settings: set point 1 (SP1), 125�C, 30 seconds; SP2: 90�C, 30 sec-

onds; SP limit: 10�C. Slides were further incubated in hot Target Retrieval Solution, pH 9 (Agilent, S236784-2) for 15 minutes. Slides

were then washed in two brief changes of diH2O (�2 seconds) and once for 5 minutes in 1x phosphate buffered saline (PBS), pH 7.4

(Fisher, BP39920). Sections were blocked in 10% normal goat serum (NGS, Vector S-1000), 1% bovine serum albumin (BSA, Sigma

A7906) in PBS for 30 minutes at 20�C in a humid chamber, followed by PBSwashes. Primary antibodies were diluted in 5%NGS, 1%

BSA in 1x PBS and applied overnight at 4�C in a humid chamber, covered with plastic coverslips (Bio-Rad, SLF0601). Following over-

night incubation, tissues were washed 3 x 10 min in 1x PBS. Coverslips (Corning; 2980-243 or 2980-245) were mounted in Slowfade

Gold plus DAPI mounting media (Life Technologies, S36938).

Fluorescence microscopy
Fluorescently stained slides were scanned on the Zeiss AxioScan.Z1 (Zeiss, Germany) with a Colibri 7 light source (Zeiss). The filter

cubes used for image collectionwere DAPI (Zeiss 96HE), Alexa Fluor 488 (AF488, Zeiss 38HE), AF555 (Zeiss 43HE), AF647 (Zeiss 50)

and AF750 (Chroma 49007 ET Cy7). The exposure time was determined individually for each slide and stain to ensure good dynamic

range but not saturation. Full tissue scans were taken with the 20x objective (Plan-Apochromat 0.8NAWD=0.55, Zeiss) and stitching

was performed in Zen Blue image acquisition software (Zeiss).

Quenching fluorescence signal
After successful scanning, slides were soaked in 1x PBS for 10–30 minutes in a glass Coplin jar, waiting until glass coverslip slid off

without agitation. Quenching solution containing 20mM sodium hydroxide (NaOH) and 3% hydrogen peroxide (H2O2) in 1x PBSwas

freshly prepared from stock solutions of 5 M NaOH and 30% H2O2, and each slide placed in 10 ml quenching solution. Slides were

quenched under incandescent light, for 30 minutes for FFPE tissue slides. Slides were then removed from chamber with forceps and

washed 3 x 2min in 1x PBS. The next round of primary antibodies was applied, diluted in blocking buffer as previously described, and

imaging and quenching were repeated over ten rounds for FFPE tissue slides.

Cell segmentation and mean intensity extraction
Cell segmentation andmean intensity extraction were performed as previously described (Eng et al., 2020). The nuclei and cells seg-

mentation are performed using mathematical morphology. The process starts by segmenting the nuclei:
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1. The DAPI image contrast is equalized using contrast-limited adaptive histogram equalization to remove illumination and stain-

ing irregularities.

2. The equalized DAPI image is cleaned by removing noise and artifacts as well as flattening the texture using an alternative

sequential filter (alternation of opening and closing with structuring elements of increasing size).

3. A white top-hat filter is applied to separate the nuclei from the remaining background.

4. Area openings and closings (opening/closing based on the surface instead of a structuring element) are performed to flatten

nuclei texture.

5. An ultimate opening is employed to find nuclei centers.

6. Nuclei centers are used as seeds in a watershed algorithm applied on the Sobel gradient of the original image, which provides

the final nuclei segmentation.

7. For cell segmentation, nuclear segmentation masks are used as seeds in another watershed algorithm applied on a gradients

combination of the markers CD44, CD45, CK7, CK19, and E-cadherin.

Mean intensities for each cell were extracted from the biologically-relevant compartment for each marker, i.e. mean intensities for

markers with known nuclear (cytoplasmic) localization were extracted from nuclear (cytoplasmic) segmentation masks (Table S1).

Cytoplasmic segmentation masks were computed by subtracting nuclear segmentation masks from full cell body segmentation

masks.

Single-cell intensity normalization
Normalization factors for single-cell mean intensities were computed as previously described (Chang et al., 2020) using the putative

mutually-exclusive marker pairs in Table S1. Normalization factors are computed for each pair of reference and mutually-exclusive

markers, and the median of these factors is used to normalize each raw single-cell mean intensity vector for each CyCIF marker and

each TMA core. Raw intensities were normalized using the equation:

bx i;j =
xi;j �minðxi;jÞ
4i;j �minðxi;jÞ; (Equation 1)

where bx i;j and xi;j are the normalized and raw single-cell mean intensity vectors for CyCIF marker i for all cells in tissue core j, respec-

tively, and 4i;j is the corresponding normalization factor determined as described above. Therefore, cells with a normalized intensity

greater than 1 are considered to be above the background intensity level.

Single-cell phenotyping algorithm selection
PhenoGraph was used to define breast cancer cell types in a related study (Jackson et al., 2020), so we opted to use PhenoGraph in

the current study to enable a fair comparison of the cell types defined between studies. Furthermore, the relatively slow runtime of

CPU-executed PhenoGraph motivated our GPU-accelerated implementation.

GPU acceleration of PhenoGraph
Given a cell-by-feature dataframe, the PhenoGraph algorithm (Levine et al., 2015) consists of two primary steps: (1) defining a k-

nearest neighbor graph over all cells that is then refined by computing the Jaccard similarity measure over graph edges, and (2)

partitioning the graph into discrete cell phenotypes through optimization of partition modularity using the Louvain algorithm,

such that cells in the same partition are more connected to each other than to cells of another partition. In the official version

of PhenoGraph (https://github.com/dpeerlab/PhenoGraph), these steps are implemented using a combination of Python and

C++ libraries that execute on CPU. In Figure 1A, we show that PhenoGraph execution time increases exponentially with

increasing dataset size, taking approximately 3 hours to process a synthetic 1 million cell-by-10 feature dataset. Most MTI data-

sets measure tens of features, but CPU-based PhenoGraph was unable to fully process the 1 million cell-by-30- and 50-feature

synthetic datasets in the 8 hours allotted for the experiment. We see such computational bottlenecks—which would be even

further constricted when compiling multiple MTI or cytometry datasets—as a major obstacle to current studies and future

meta-studies of high-dimensional MTI datasets, where rapid iteration will be essential to the validation of cross-platform

data integration techniques.

Owing to recent advances in GPU computing and its ever-broadening adoption in machine learning research, there now exist

accelerated GPU-based analogs of many Python scientific computing libraries (Raschka et al., 2020; Okuta et al., 2017),

including those with which the CPU-based PhenoGraph is implemented. Some of these libraries even allow computation to

be distributed across multiple GPUs (Raschka et al., 2020; Dask Development Team, 2016). We employed two of such libraries,

CuPy (Okuta et al., 2017) and RAPIDS (Raschka et al., 2020), to accelerate each step of the PhenoGraph algorithm and enable

distributed computing over multiple GPUs. For example, for a synthetic dataset containing 50,000 samples and 50 features, the

GPU implementation realizes a 354-fold speed up in the graph building and refinement step (97.3 seconds for CPU vs. 0.275

seconds for GPU) and a 141-fold speed up in the Louvain partitioning step (11.2 seconds for CPU vs. 0.0795 seconds for GPU).

With our GPU implementation, it is now possible to phenotype cells in megascale cytometry datasets in seconds-to-minutes

rather than hours-to-days, and without subsampling. We have packaged our GPU implementation into a Python library called
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grapheno and have adopted the API from the official CPU implementation of PhenoGraph found at https://github.com/dpeerlab/

phenograph. To run a simple clustering of synthetic data:

import cudf

import cuml

import grapheno

X, _ = cuml.make_blobs()

X = cudf.Dataframe.from_records(X)

communities, G, Q = grapheno.cluster(X)

In practice, X can be any single-cell dataframe with cells as rows and features as columns. For a dataframe with N cells,

communities will be a vector of length N specifying the cluster label for each cell. G is a RAPIDS graph object representing the re-

lationships between cells that were used for clustering. Q is the modularity score for the clustering result defined by communities.

Installation instructions and full details about our implementation can be found at https://gitlab.com/eburling/grapheno.

Benchmarking CPU and GPU implementations of PhenoGraph
To ensure that our GPU implementation of PhenoGraph produced results consistent with the CPU implementation, we benchmarked

each using synthetic datasets which varied in terms of number of samples and number of features (Figures S3B–S3D). Synthetic data

were generated using the make_classification function from the RAPIDS library, using the settings n_classes=16, class_sep=4, and

weights=list(np.random.dirichlet(np.ones(16)*5.)) to randomly scale the proportion of samples in each class. Examples of clustering

results for each implementation are shown in Figure S3B. To check for differences in clustering results, we compared the purity and

modularity of clusters derived using either CPU or GPU implementations and the same parameterization (k = 40). Purity measures

the percentage of correctly clustered objects—in this case the percentage of agreement between clustering results from each im-

plementation—and is calculated as:

Purity =
1

N

Xm
i =1

maxj
��ciXtj

�� (Equation 2)

where N is the total number of objects, m is the number of clusters from the CPU implementation, ci is the i-th cluster from the CPU

implementation, and tj is the cluster from the GPU implementation which has themaximum number of objects from the cluster ci. The

CPU and GPU implementations yielded almost identical clustering results, i.e. >= 0:9999 inter-implementation cluster purity for all

combinations of n_sample and n_features (Figure S3C). Modularity (Q) is the quantity optimized by the Louvain algorithm used by

PhenoGraph to partition k-nearest neighbor graphs of cells into clusters of similar cells. As anticipated based on the tight agreement

between cluster results between implementations, we detected no significant difference between CPU and GPU clustering modu-

larity (Figure S3D). Very slight differences between clustering results correspond to a maximum of 0.003% of cells being mis-

matched between implementations and can be attributed to the degeneracy of Louvain partitioning.7.3.9

Single-cell phenotyping and metacluster annotation
Apart from the benchmarking experiment described in Figure 1A, we use only our GPU-based implementation of PhenoGraph

throughout this work. Single-cell phenotypes were defined based on single-cell mean intensity for the 35-marker CyCIF panel

(STAR Methods). Prior to application of PhenoGraph, data were 99.9th-percentile normalized and arcsin transformed (cofactor =

5). Following (Jackson et al., 2020), PhenoGraphwas parameterized (k=40) to over-cluster the data and detect rare cell types. Pheno-

Graph clustering was followed by aggregation of phenotypes into metaclusters based on hierarchical clustering of phenotype mean

marker intensities and to preserve known biological variation.

t-stochastic neighbor embedding (t-SNE)
To enable visualization, the full 35-feature single-cell dataset was reduced to 2 dimensions using the RAPIDS implementation of t-

SNE (van der Maaten and Hinton, 2008) with default parameters except perplexity = 60. Prior to t-SNE processing, data were 99.9th-

percentile normalized and arcsin transformed (cofactor = 5). Plots containing t-SNE embeddings of the full �1.3 million-cell dataset

were created using Datashader (https://github.com/holoviz/datashader).

Cross-platform breast cancer cell phenotype validation
The imaging mass cytometry (IMC) dataset (Jackson et al., 2020) used for our cell phenotype validation experiment was retrieved

from https://zenodo.org/record/3518284. To make a fair comparison between the OHSU (CyCIF) and Basel (IMC) datasets, we inde-

pendently ran PhenoGraph on each using the same parameters (k=40, Louvain partitioning) and only the overlapping features be-

tween IMC and CyCIF stain panels (Figure 2B). The phenotypes derived from each platform were then cross-correlated to identify

inter-platform phenotype matches. Using the clustermap function from seaborn (Waskom and the seaborn development team,

2020), the cross-correlation matrix was then hierarchically clustered with Ward linkage and used to sort the matching clusters be-

tween the two cohort heatmaps.
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Epithelial differentiation heterogeneity
Cells from each core were labeled as positive for each cytokeratin if their mean intensity was greater than the normalization factor

computed for that cytokeratin for that core. The plot from Figure 3B was generated using UpSetPlot (https://github.com/

jnothman/UpSetPlot). The CK heterogeneity of each core was computed by measuring the Shannon entropy of its distribution of

CK-expressing cells. The homogeneity of variances assumption was met, so comparison of the CK heterogeneity over BC subtypes

was made using the pairwise_tukey function from pingouin (Vallat, 2018).

Aggregation of immune, stromal, and tumor cell phenotypes
To enable high-level comparison of cell phenotype distribution over BC subtypes (Figures 3E and 4), cell metaclusters were aggre-

gated into immune, stromal, and tumor groups with the following metacluster membership:

d immune = [B cell/T cell, B cell, T cell/macrophage, T cell, macrophage]

d stromal = [CD44+ endothelial, PDPN+/aSMA+ stromal, ColI+ stromal, Lamin+/Vimentin+ stromal, ColI+/PDPN+ stromal, Vi-

mentin+ stromal, Vimentin+ endothelial]

d tumor = [Ecad+/CK low, CK5+, CK5+/CK14+, myoepithelial, CK+/H3K27me3+, epithelial low, CK14+, Ecad+/CK+, prolifer-

ating, apoptotic, H3K4me3+, HER2+/CK8+, ER+, HER2 low, HER2+/CK+, ER+/PgR+]

Cell phenotype density
The density of each of the 27 cell metaclusters in each tissue corewasmeasured by counting the number of cells of eachmetacluster in

the core, then dividing the count by the area of the convex hull defined by the cell centroids of the core. Tissue cores were then hierar-

chically clusteredbasedon their z-scoredcellmetacluster densities using the clustermap functionwithWard linkage fromseaborn (Was-

kom and the seaborn development team, 2020). The homogeneity of variances assumption was not met, so comparisons of immune,

stromal, and tumor cell densities over BC subtypes were made using the pairwise_gameshowell function from pingouin (Vallat, 2018).

Tumor cell neighborhood interactions
To characterize the microenvironments of tumor cells across BC subtypes, we identified the cell metaclusters of the 10 nearest cells

within 65 mm (double themedian of theminimum tumor-stromal distances across all tissue cores) of each tumor cell. Tumor cells were

then split based on the BC subtype of the tissue fromwhich theywere derived, and counts for eachmetacluster were summed over all

tumor cells such that each metacluster could be represented as a proportion of the total tumor neighborhood for each BC subtype.

To measure the extent of tumor-stromal cell interactions in each tissue core, we computed their stromal mixing scores, an adap-

tation of a previously described cell-cell mixing score (Keren et al., 2018). To focus on cores that had substantial stromal composition,

we first selected cores which are comprised of at least 25%stromal cells and for eachwe defined a 10-nearest neighbor spatial graph

over all cells in that core. Second, we removed edges between cells with an interaction distance greater than 65 mm. Finally, we

computed the stromal mixing score for tissue core j as:

ðstromal mixingÞj =
ð# tumor� stromal interactionsÞj
ð# stromal� stromal interactionsÞj

: (Equation 3)
Tumor graph centrality
To characterize tumor architecture in each tissue core, we considered the spatial interactions between tumor cells only. To account

for variation in tissue core diameter (Figure S1A) which would affect the scale of spatial graph characteristics, we subsampled large

diameter cores to be equal in size to the smallest diameter cores by only considering cells within the 300 mm-radius circle drawn

about the centroid of each core. With the spatially-subsampled cores, we first construct a 4-nearest neighbor spatial graph over

all tumor cells in each core. Here we use k = 4 rather than k = 10 to construct a sparser graph since we are focusing on tumor cells

only. Over this graph we compute the Wasserman-Faust closeness centrality of each cell using the closeness_centrality function

from the Python package networkx (Hagberg et al., 2008). The Wasserman-Faust closeness centrality of cell u is computed as:

CWFðuÞ = n� 1

N� 1

n� 1Pn�1
v = 1dðv; uÞ

; (Equation 4)

where dðv;uÞ is the shortest-path distance between cells v and u, n is the number of cells that can reach u, andN is the number of cells

in the graph. For heatmap visualization, the distribution of tumor cell centrality for each core was max-normalized, converted into a

50-bin histogram over range = (0,1), then hierarchically clustered using the clustermap function from seaborn (Waskom and the sea-

born development team, 2020) with Jensen-Shannon distance and average linkage.

Plotting and visualization
Unless otherwise noted, all plots were generated using Holoviews (Rudiger et al., 2019) with either the Bokeh (Bokeh Development

Team, 2020) or matplotlib (Hunter, 2007) backends. Images of CyCIF-stained tissue cores were generated using napari (Sofroniew

et al., 2020).
Cell Reports Methods 1, 100053, August 23, 2021 e6

https://github.com/jnothman/UpSetPlot
https://github.com/jnothman/UpSetPlot


Report
ll

OPEN ACCESS
Computing hardware
The GPU-accelerated PhenoGraph implementation was developed and deployed on the NVIDIA V100 GPUwith 32 GBmemory, but

the grapheno Python library can be compiled to work with any NVIDIA GPU.

QUANTIFICATION AND STATISTICAL ANALYSIS

For statistical analyses, a p value of less than 0.05 was considered significant. For the groupwise comparisons in Figure 3A, 3E, 4B,

and 4F, we first tested the assumption of homogeneity of variances using the bartlett function from the Python package SciPy (Vir-

tanen et al., 2020). When the assumption was (not) met, we made groupwise comparisons using one-way ANOVA with Tukey-HSD

post-hoc test using the pairwise_tukey (one-way Welch ANOVA with Games-Howell post-hoc test using the pairwise_gameshowell)

function from the Python package pingouin (Vallat, 2018). Additional statistical details can be found in the corresponding figure

legends.
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Figure S1. Overview of TMA composition and CyCIF panel. Related to Figure 1. 
(A) Core diameters split by TMA source and BC subtype. Lines in boxes indicate the medians 
and whiskers indicate data within 1.5 × interquartile range of the upper and lower quartiles. 
Outliers are shown as distinct points. (B) Core count split by TMA source and BC subtype. (C) 
Cell count split by TMA source and BC subtype. 
  



 
  



Figure S2. Cell mean intensity normalization enables batch compilation of TMA data. 
Related to Figure 1 and STAR Methods. 
(A) Example of RESTORE normalization (Chang et al., 2020) of CD4 and CD68 cell mean 
intensities for a single TMA core. Cell mean intensities of these immune markers are plotted 
against the cell mean intensity of epithelial CK19, a mutually exclusive marker. Cells are 
partitioned into positive (blue) and negative (red) populations. Black lines represent the 
computed normalization factors. Cells to the right of each line are above the background 
intensity level for that immune marker. (B) t-SNE embeddings of all cells using either raw (left) 
or normalized (right) cell mean intensities for all markers. Cells are colored according to the 
TMA from which they originate. A strong batch effect is observed before normalization, leading 
to partitioning according to TMA of origin. Following normalization, cell phenotypes shared 
between TMAs are co-localized. However, some TMA-specific partitioning remains due to 
subtype-specific marker bias within TMAs. The coordinates used in the t-SNE plots at right are 
the same as those used in Figure 1B, where cells are colored by metacluster. In the plot in 
Figure 1B, it is clear that the HR+ and HER2+ tumor cells aggregated in the lower left 
correspond to the HR+ and HER2+ TMA cores from the BR1506, Her2B, and T-ATAC cohorts 
from Figure S2B. (C) t-SNE normalized embedding, faceted by marker, showing only cells that 
have a mean intensity above the normalization factor for that marker. Color scale is log-
transformed normalized intensity.  



 



Figure S3. Benchmarking single-cell phenotyping algorithms and implementations. 
Related to Figure 1, Figure 3, and STAR Methods. 
(A) Comparison of execution time between FlowSOM (Van Gassen et al., 2015) and our GPU 
implementation of PhenoGraph. Each boxplot represents the results from 5 replicate 
experiments using the indicated parameters. Lines in boxes indicate the medians and whiskers 
indicate data within 1.5 × interquartile range of the upper and lower quartiles. Outliers are 
shown as distinct points. (B) Benchmarking CPU and GPU  implementations of PhenoGraph 
reveals no appreciable difference in quantitative endpoints between implementations. Scatter 
plots showing t-SNE embeddings of synthetic data, colored based on cluster label defined by 
either implementation. The modularity Q for each clustering result is shown above the plot. (C) 
Boxplot showing the distribution of GPU vs. CPU cluster purity for synthetic data. The line in the 
box indicates the median and whiskers indicate data within 1.5 × interquartile range of the 
upper and lower quartiles. The boxplot is compressed since most of the measurements were 
exactly or very near 1. Outliers are shown as distinct points. (D) Boxplots showing the 
distribution of clustering modularities for either implementation for the same synthetic data 
generated using the indicated number of samples and number of features. Lines in boxes 
indicate the medians and whiskers indicate data within 1.5 × interquartile range of the upper 
and lower quartiles. Outliers are shown as distinct points. Each boxplot represents the results 
from 5 replicate experiments using the indicated parameters. No significant difference was 
observed in modularity between implementations (ANOVA, P=0.999). (E) For both OHSU and 
Basel cohorts, tumor cells differ more between samples than immune, stromal, or endothelial 
cells. The same t-SNE embedding of the OHSU dataset from Figure 1B, but with cells colored 
based on the unique tissue core from which they are derived. (F) The same t-SNE embedding 
of the OHSU dataset from Figure 1B, but with annotations indicating immune, stromal, 
endothelial, and tumor phenotypic regions. (G) A t-SNE embedding of the Basel dataset 
(Jackson et al., 2020) derived using the same parameters as were used for the OHSU t-SNE 
embedding, with cells colored based on the unique tissue core from which they are derived. (H) 
The same t-SNE embedding as in (G), but with annotations indicating immune, stromal, 
endothelial, and tumor phenotypic regions. 



 
  



Figure S4. BC cell phenotypes are robust against subsampling and noise. Related to 
Figure 1 and STAR Methods. 
(A) Maximum Pearson's correlations between full reference cell phenotypes and those derived 
using PhenoGraph on cells from a random fractional sample of TMA cores, iterated five times at 
each fraction level. Lines in boxes indicate the medians and whiskers indicate data within 1.5 × 
interquartile range of the upper and lower quartiles. (B) Phenotype matching between the full 
reference phenotypes and those derived from a 90%-subsampled fraction of TMA cores. 
Phenotypes are ordered by increasing matching correlation. Matching phenotypes are linked by 
a line, and lines are colored to discriminate between adjacent or overlapping links. 40_neighbor 
represents the PhenoGraph cluster labels since we set k=40 when defining the k-nearest 
neighbor graph in the PhenoGraph routine. The colorbar indicates z-scored marker expression. 
(C) The proportion of cells from each reference phenotype that correspond to the 10% of TMA 
cores held out from the 90%-subsampled fraction from (B). Unmatched phenotypes in the full 
reference correspond in part to cells from held-out cores. The dotted line marks the 10% 
threshold. (D) Maximum Pearson's correlation between full reference phenotypes and those 
derived using PhenoGraph on normalized mean intensities from all TMA cores, but with ±20% 
random noise added to each marker in each core. Lines in boxes indicate the medians and 
whiskers indicate data within 1.5 × interquartile range of the upper and lower quartiles. 
  



Reference ME markers      

AR_Nuclei CK5_Ring FOXP3_Nuclei ColIV_Ring    

aSMA_Ring CK14_Ring CD45_Ring CK7_Ring CK5_Ring CK19_Ring  

CD20_Ring CK14_Ring CK7_Ring CK5_Ring CK19_Ring   

CD31_Ring CK5_Ring CK19_Ring CK14_Ring CK7_Ring Ecad_Ring  

CD4_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring Ecad_Ring  

CD44_Ring CK14_Ring CK7_Ring CK5_Ring CK19_Ring CD31_Ring  

CD45_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring CK8_Ring CD31_Ring 

CD68_Ring CK19_Ring CK7_Ring CD31_Ring CK14_Ring   

CK14_Ring CD31_Ring CD68_Ring Vim_Ring aSMA_Ring CD20_Ring CD45_Ring 

CK17_Ring CD31_Ring CD68_Ring Vim_Ring ColI_Ring CD45_Ring  

CK5_Ring CD31_Ring CD68_Ring Vim_Ring CD4_Ring CD45_Ring  

CK19_Ring CD68_Ring CD4_Ring CD31_Ring CD45_Ring   

CK7_Ring CD68_Ring CD4_Ring CD31_Ring CD45_Ring FOXP3_Nuclei  

CK8_Ring CD68_Ring CD4_Ring CD31_Ring CD45_Ring   

ColI_Ring CD45_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring  

ColIV_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring CD68_Ring FOXP3_Nuclei 

cPARP_Nuclei Ki67_Nuclei CK5_Ring CD31_Ring CD68_Ring CK14_Ring  

Ecad_Ring CD68_Ring CD4_Ring CD31_Ring    

ER_Nuclei CD68_Ring CD4_Ring CD31_Ring FOXP3_Nuclei   

FOXP3_Nuclei CK19_Ring CK7_Ring CK5_Ring CK14_Ring CD31_Ring CK8_Ring 

gH2AX_Nuclei CK8_Ring CK14_Ring CK5_Ring CK7_Ring   

GRNZB_Ring CK19_Ring CK7_Ring CK5_Ring CD31_Ring CK14_Ring aSMA_Ring 

H3K27me3_Nuclei CD31_Ring CD68_Ring CD44_Ring    

H3K4me3_Nuclei CD31_Ring CD68_Ring CD44_Ring CK19_Ring   

HER2_Ring CD68_Ring CD44_Ring CD31_Ring Vim_Ring CD4_Ring  

Ki67_Nuclei cPARP_Nuclei      

LamA/C_Nuclei CD68_Ring CD44_Ring CK19_Ring CD45_Ring   

LamB1_Nuclei CD68_Ring CD44_Ring CK19_Ring CD45_Ring CK14_Ring CK7_Ring 

LamB2_Nuclei CD68_Ring CD44_Ring CK19_Ring CD31_Ring CK7_Ring CK14_Ring 

PCNA_Nuclei CK7_Ring CD45_Ring CD31_Ring CD68_Ring CK14_Ring LamB2_Nuclei 

PDPN_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring CD31_Ring CD68_Ring 

PgR_Nuclei CD68_Ring CD4_Ring CD31_Ring CD20_Ring aSMA_Ring Vim_Ring 

pHH3_Nuclei CD31_Ring CK5_Ring CK19_Ring CK14_Ring GRNZB_Ring  

p-S6_Ring CK19_Ring CK5_Ring CK7_Ring CK14_Ring   

Vim_Ring CK19_Ring CK7_Ring CD68_Ring CD45_Ring Ecad_Ring  

 
  



Table S1. Related to Figure 1 and Figure S2. Putative reference and mutually-exclusive (ME) 
marker pairs used for RESTORE normalization of cell mean intensities. Each marker name 
indicates from which compartment its mean intensity was extracted. "Ring" indicates that a 
marker's intensity was extracted from the ring-shaped cytoplasmic segmentation masks derived 
by subtracting the "Nuclei" segmentation masks from "Cell" segmentation masks. 
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