Cell Reports Methods, Volume 1

Supplemental information

Double-jeopardy: scRNA-seq

doublet/multiplet detection

using multi-omic profiling

Bo Sun, Emmanuel Bugarin-Estrada, Lauren Elizabeth Overend, Catherine Elizabeth Walker, Felicia Anna Tucci, and Rachael Jennifer Mary Bashford-Rogers

Supplementary tables

Table S1. The numbers of doublets/multiplets doublets by VDJ-seq and CITE-seq per sample. Related

to Figure 2.

		By sample			By gene expression type							
	Doublet type	HC 1	HC 2	HC 3	B cells	Monocytes/ neutrophils	NK	T cells	mDCs	non-conv. monocytes	pDCs	
	IGH+IGK/L+TRA or TRB	0	1	2	3	0	0	0	0	0	0	
	3 of [IGH,IGK/L,TRA,T RB]	18	19	43	79	1	0	0	0	0	0	
	IGH or IGK/L + TRA or TRB	22	23	54	95	1	0	3	0	0	0	
	2x IGHs	54	12	29	93	2	0	0	0	0	0	
	2x IGK/L	111	43	59	205	6	0	1	0	0	1	
Identified	2x TRBs	9	16	34	0	0	1	57	0	1	0	
by VDJ-seq	2x IGH and 2x IGK/L	27	9	20	56	0	0	0	0	0	0	
	2x TRAs and 2x TRBs	0	0	0	0	0	0	0	0	0	0	
	non-B cell clustered + BCR	66	34	57	0	114	3	20	4	12	4	
	non-T cell clustered + TCR	48	120	221	100	112	138	0	11	27	1	
	Total identified by VDJ-seq	253	210	372	333	225	141	77	15	39	5	
	CD127:CD16	95	118	283	16	110	262	26	1	81	0	
	CD19:CD127	274	203	274	595	103	4	42	0	6	1	
	CD19:CD14	92	40	71	16	162	3	13	1	6	2	
	CD19:CD16	46	34	53	48	53	6	11	0	15	0	
Identified	CD19:CD3	124	91	170	285	51	3	44	0	1	1	
by CITE-	CD19:CD4	185	90	179	232	166	3	33	3	12	5	
seq	CD19:CD56	38	46	51	64	46	6	17	0	2	0	
	CD19:CD8a	62	40	72	91	46	4	31	0	2	0	
	CD4:CD16	348	278	483	10	257	192	32	8	607	3	
	Total identified by CITE-seq	684	517	867	690	382	289	76	11	612	8	
ldentified by MLtiplet	VDJ-seq training set	227	190	374	248	256	142	78	20	42	5	
	CITE-seq training set	775	562	995	821	431	300	87	16	669	8	
	DF training set	782	377	1124	393	585	173	222	358	398	154	
	Total droplets	7674	7024	11382	2982	5346	2461	13964	420	749	158	

Table S2. The number of predicted doublets using different doublet training sets for the healthy

PBMC dataset. Related to Figure 2.

Training set	Number of droplets	Total doublets predicted	Total doublets predicted			Total doublets predicted per cluster						
	used in		HC 1	HC2	нсз	В	Mono	NK	Т	mDC	non-	pDCs
	training set					cells	1		cells	s	conv.	
							neuts				Mono	
VDJ-training.0.2x	139	435	142	105	188	289	82	10	5	3	40	6
VDJ-training.0.4x	278	640	209	165	266	423	123	16	18	28	29	3
VDJ-training.0.6x	416	843	263	218	362	535	167	48	36	22	27	8
VDJ-training.0.8x	555	1037	321	261	455	601 736	194	08	60 73	26	62 53	17
CITE-training.0.2x	414	1891	595	455	841	1090	127	33	9	3	628	1
CITE-training.0.4x	828	2912	918	710	1284	1634	192	407	14	12	650	3
CITE-training.0.6x	1241	3671	1198	907	1566	2035	264	647	26	17	678	4
CITE-training.0.8x	1655	4079	1351	1035	1693	2385	328	634	32	17	679	4
CITE-training.1x DoubletFinder-	2068	4817	453	318	2011	2541	428	1083	3	21	684 521	4
training.0.2x	-100	1574	455	510	005	200	175	0	5	237	521	152
DoubletFinder-	816	2021	723	456	842	551	361	87	10	308	553	151
training.0.4x												
DoubletFinder- training 0.6x	1224	2751	963	635	1153	889	518	261	24	331	575	153
DoubletFinder-	1632	3596	1245	853	1498	1143	678	626	41	342	611	155
training.0.8x												
DoubletFinder-training.1x	2040	4499	1521	1088	1890	1515	904	878	66	356	625	155
VDJ & CITE-training.0.2x	463	2248	551 728	415	806	943	150	10	5	18	642	4
VDJ & CITE-training.0.4x	1389	3293	1069	812	1412	1885	356	289	29	61	663	10
VDJ & CITE-training.0.8x	1852	3947	1324	987	1636	2250	429	495	49	50	667	7
VDJ & CITE-training.1x	2314	4705	1559	1181	1965	2475	569	816	90	73	674	8
VDJ, CITE &	702	2222	755	512	955	784	288	134	11	240	613	152
DoubletFinder- training 0.2x												
VDJ, CITE &	1403	3844	1335	911	1598	1588	502	623	33	291	653	154
DoubletFinder-												
training.0.4x	2104	5460	1500	1204	2270	0154	7.00	1010		226	(70)	1.5.4
VDJ, CITE & DoubletFinder-	2104	5462	1799	1384	2279	2154	769	1313	76	326	670	154
training.0.6x												
VDJ, CITE &	2805	6589	2201	1689	2699	2603	1118	1554	131	343	686	154
DoubletFinder-												
VDJ CITE &	3506	7453	2531	1896	3026	2788	1496	1772	187	365	691	154
DoubletFinder-training.1x	5500	, 100	2001	1070	5020	2700	1.50	1772	107	200	071	
VDJ-training.HC_103	139	570	325	96	149	433	114	2	7	2	11	1
VDJ-training.HC_104	278	439	120	125	194	219	83	41	21	15	56	4
VDJ-training.HC_105	416	596	877	511	306	302	113	76	30	21	32	22
CITE-training.HC 103	828	2285	642	517	921	1403	162	0 99	16	13	658	5
CITE-training.HC_105	1241	3390	873	840	1677	1532	148	1002	39	9	655	5
DoubletFinder-	408	895	565	107	223	226	200	63	18	241	60	87
training.HC_103	Q1 <i>L</i>	1054	201	246	500	01	102	A	20	205	214	140
training.HC 104	810	1030	501	240	309	02	165	4	20	303	514	140
DoubletFinder-	1224	1667	353	452	862	456	365	32	25	297	341	151
training.HC_105												
VDJ & CITE- training HC 103	463	2334	900	518	916	1479	227	6	5	2	614	1
VDJ & CITE-	926	1970	604	493	873	1018	176	71	18	29	654	4
training.HC_104												
VDJ & CITE- training HC 105	1389	2746	758	661	1327	1243	214	570	37	25	649	8
VDJ, CITE &	702	2445	902	564	979	1102	401	14	18	253	541	116
DoubletFinder-	, 52	2110	202	201			.01	• •		200	211	
training.HC_103												
VDJ, CITE & DoubletFindor	1403	2213	723	534	956	837	279	38	31	242	643	143
training.HC 104												
VDJ, CITE &	2104	2930	880	703	1347	1065	475	260	54	300	635	141
DoubletFinder-												
training.HC_105												

Abbreviations:

VDJ-seq.*ax* (where a = 0.2, 0.4, 0.6, 0.8, 1.0) refers to VDJ-identified doublets in the training set with the proportion *a* randomly subsampled.

CITE-seq.*ax* refers to CITE-identified doublets in the training set with the proportion *a* randomly subsampled. **VDJ&CITE-seq.ax** refers to VDJ and CITE-identified doublets in the training set with the proportion *a* randomly subsampled.

VDJ, **CITE & DoubletFinder-training.ax** refers to VDJ, CITE-seq and DoubletFinder-identified doublets in the training set with the proportion *a* randomly subsampled.

METHOD.SampleX (where X = 1, 2, 3 and *METHOD* = VDJ-seq., CITE-seq, VDJ&CITE-seq, VDJ, CITE & DoubletFinder-training) refers to the identified doublets in via the corresponding method for the the training set from only healthy PBMC sample X.

Table S3. The number of total droplets, and identified doublets/multiplets with different methods, and predicted doublets using different doublet training sets for the NSCLC dataset. Related to Figure 4.

		B cell	connective tissue	DC	epithelia	Granulo- cyte	mono./ mac.	NK cell	plasma cell	T cell	Unknown
	All droplets	2327	20	154	1149	148	782	140	147	1813	48
MLtiplet training doublets/ multiplets	VDJ training	26	0	23	19	2	18	4	8	65	3
	DF training	9	0	0	0	1	4	7	0	43	3
	VDJ DF training	33	0	23	19	3	22	7	8	75	6
MLtiplet predictions	VDJ predicted	3	0	4	4	0	2	2	4	16	2
	DF predicted	7	0	1	0	1	0	3	0	19	2
	VDJ DF predicted	3	0	5	4	1	2	2	5	20	2

Supplementary figures

Figure S1. Workflow of MLtiplet doublet/multiplet detection using VDJ-seq and CITE-seq modalities. Related to Figure 1.

(a) Schematic of MLtiplet doublet detection workflow. (bi) Detailed explanation of step CITE-seq positivity thresholds for each antibody for each sample (marked by a * in (a)) using CD3 as an example. For each CITE-seq antibody, the normalised CITE-seq levels between cell populations with high corresponding gene expression (such as T cells for CD3, bii) and low gene expression (such as B cells and myeloid cells) were the input into a linear classifier to determine the optimal threshold for distinguishing the CD3 CITE-seq positive and CD3 CITE-seq negative cells/droplets. Each cell/droplet is then classified to determine whether they are positive (CD3 CITE-seq level greater than threshold) or negative (CD3 CITE-seq level lower than threshold). This is performed for each CITE-seq antibody. (biii) The available CITE-seq probes from the peripheral blood mononuclear cells (PBMCs) from three healthy individuals (https://support.10xgenomics.com/single-cell-vdj/datasets). (c) The percentages of each broad immune cell type per sample annotated through differential gene expression and CITE-seq marker expression. (d) Examples of the CITE-seq levels between CD3, CD4 and CD8 for the healthy individuals 2 and 3 for the B cell cluster, with the red lines corresponding to the CITE-seq positivity thresholds. The equivalent plot for healthy individual 1 is provided in Figure 1.

Figure S2. Doublet/multiplet detection using VDJ-seq and CITE-seq modalities in human healthy PBMCs and MLtiplet training features.

Related to Figure 1.

(a) The UMAP distributions of the CITE-seq doublet droplets (red) and remainder droplets (grey). (b) The UMAP distributions of the BCR/TCR doublet droplets (red) and remainder droplets (grey). (ci) PCA plot of HEK293 cells enriched for apoptotic, proapoptotic, healthy and unsorted populations. (cii) PCA coloured by percentage mitochondrial gene counts of total gene counts. (ciii) PCA coloured by percentage ribosomal gene counts of total gene expression analysis between apoptotic and healthy single cells. (e) Mito-ribo ratio vs. total number of genes detected with corresponding density plots. Inferred doublets assigned to be removed are highlighted in red. Percentages shown are calculated on all cells above the local minimum of a GMM fitted on total genes detected, represented by the dotted vertical line. The mito-ribo ratios for each droplet across (f) cell types and (g) cell cycle phases per healthy PBMC sample (as defined by gene expression). (h) Histogram of doublet prediction probabilities by MLtiplet for (from left to right) all droplets, doublets/multiplets identified by CITE-seq, and droplets that were not identified as doublets/multiplets identified by VDJ-seq or CITE-seq.

Figure S3. Features of training and predicted doublet/multiplet sets. Related to Figure 2.

(a) Percentages of predicted doublets by MLtiplet per cell annotation in healthy scRNA-seq dataset. (b) The relative numbers of RNA molecules (nUMI) and mito-ribo ratio (mitoribo_ratio) per droplet for the VDJ-identified doublets/multiplets, the CITE-seq-identified and DoubletFinder (DF)-identified doublets/multiplets (training) and the resulting predicted doublets/multiplets derived from these training datasets using MLtuplet. "Remainder" refers to droplets that were not identified/predicted to be doublets/multiplets from the VDJ-seq or CITE-seq data. The p-values of the differences between the feature distributions of the doublet/multiplets detected and the remainder of the droplets provided (two-sided Wilcoxon test). Venn diagrams of the numbers of droplets in (c) each training set by method, and (d) predicted from MLtuplet using each training set. (e) Volcano plots of the differential gene expression between droplets predicted to be doublets/multiplets compared to those predicted to be singlets per UMAP cluster. The top 20 genes with a p-value <1e5 are labelled. (f) Heatmap of differential gene expression between predicted singlets and doublets/multiplets per cell type cluster. (g) Heatmap of differential gene expression between predicted singlets and doublets/multiplets per cell type cluster.

Figure S4. MLtiplet training features and predictions from a murine PBMC dataset. Related to Figure 4.

Doublet detection on a murine dataset comprising PBMCs from two mouse strains (BALB/c and C57BL/6. (a) UMAP plots of (left) each mouse sample, (middle) VDJ-seq information, and (right) the annotated cell types. (b) The relative numbers of genes (nFeatures), RNA molecules (nUMI) and mito-ribo ratio (mitoribo_ratio) per cell for (top) each cell type, and (bottom) the VDJ-identified doublets/multiplets. (c) UMAP plot of the doublets identified from (left) DoubletFinder and (right) VDJ-seq heterotypic doublets. (d) The relative numbers of genes (nFeatures), RNA molecules (nUMI) and mito-ribo ratio) per cell for the VDJ-identified doublets/multiplets. (d) The relative numbers of genes (nFeatures), RNA molecules (nUMI) and mito-ribo ratio (mitoribo_ratio) per cell for the VDJ-identified doublets/multiplets, DoubletFinder-identified doublets/multiplets, MLtiplet predicted doublets/multiplets and the remainder (predicted singlets by MLtiplet). (e) UMAP plots of the training and predicted doublets/multiplets using each approach. (f) Heatmap of differential gene expression between murine PBMC between predicted singlets and doublets/multiplets per cell type cluster. (g) Enrichment of IGHV gene usages between doublets and singlets in three healthy peripheral blood samples. Tests performed by MANOVA in R.