Cell Reports Methods, Volume 2

Supplemental information

Principles and pitfalls of high-throughput analysis of microRNA-binding thermodynamics and kinetics by RNA Bind-n-Seq Karina Jouravleva, Joel Vega-Badillo, and Phillip D. Zamore

Table S1. Concentration of de novo identified binding sites in the RNA input pool,

Related to STAR Methods

Concentrations of Isy-6, miR-1, miR-7, miR-124, miR-155, and let-7a^{hsa}, and let-7a^{mmu},

miR-34b and miR-449a sites were calculated in datasets generated in McGeary et al.

(2019) and in this study, respectively.

lsy-6 sites	Concentration (nM)				
8mer	0.071				
7mer-m8	0.216				
7mer-A1	0.141				
6mer	0.571				
6mer-m8	0.791				
6mer-A1	0.699				
5mer-m2.6	2.34				
8mer-w8	0.053				
8mer-b5.6A	0.015				
8mer-b6.7G	0.014				
8mer-x3U	0.067				
8mer-x7A	0.066				
10mer-m11.20	0.002				
miR-1 sites	Concentration (nM)				
8mer	0.069				
7mer-m8	0.206				
7mer-A1	0.221				
6mer	0.656				
6mer-m8	0.748				
6mer-A1	0.637				
5mer-m2.6	1.92				
5mer-A1	2.83				
8mer-w7	0.065				
7mer-w7	0.185				
8mer-b3.4U	0.019				
8mer-b5.6A	0.017				
miR-7 sites	Concentration (nM)				
8mer	0.039				
7mer-m8	0.103				
7mer-A1	0.101				
6mer	0.557				
6mer-A1	0.506				
5mer-m2.6	1.56				
8mer-x7G	0.039				
8mer-b6.7U	0.008				
8mer-b6.7G	0.011				
8mer-b7.8A	0.104				

miR-124 sites	Concentration (nM)
8mer	0.042
7mer-m8	0.152
7mer-A1	0.139
6mer	0.521
6mer-m8	0.559
6mer-A1	0.594
5mer-m2.6	2.12
8mer-w5	0.038
AA-4mer-m5.8	0.606
8mer-b3.4A	0.011
8mer-b3.4C	0.011
8mer-b4.5A	0.011
8mer-b5.6U	0.012
8mer-b5.6G	0.011
8mer-b6.7A	0.011
8mer-b6.7U	0.011
A-7mer-b4.5A-w5	0.011
AA-7mer-b4.5U	0.002
AA-7mer-b5.6A	0.003
AA-7mer-b5.6U	0.002
10mer-m9.18	0.003
10mer-m10.19	0.002
10mer-m11.20	0.003
9mer-m11.19	0.009
miR-155 sites	Concentration (nM)
8mer	0.062
7mer-m8	0.169
7mer-A1	0.173
6mer	0.497
6mer-m8	0.754
8mer-w6	0.046
8mer-x5U	0.053
7mer-A1-x5U	0.015
10mer-m11.20	0.003
10mer-m12.21	0.002
10mer-m13.22	0.002
10mer-m13.22-w17	0.003
9mer-m13.21	0.009
10mer-m14.23	0.003
9mer-m14.22	0.008

let-7a ^{hsa} sites	Concentration (nM)
8mer	0.071
7mer-m8	0.197
7mer-A1	0.121
6mer	0.331
6mer-m8	0.878
6mer-A1	0.716
5mer-m2.6	2.03
5mer-A1	3.16
8mer-w8	0.067
7mer-w8	0.182
8mer-b5.6A	0.018
let-7a ^{mmu} sites	Concentration (nM)
8mer	0.039
7mer-m8	0.106
7mer-A1	0.049
6mer	0.136
6mer-m8	0.574
6mer-A1	0.335
5mer-m2.6	0.935
5mer-A1	2.06
8merw8	0.027
7mer-w8	0.077
8mer-w6	0.046
7mer-w6	0.127
8mer-b5.6A	0.009
10mer-m11.20	0.002
10mer-m12.21	0.001
miR-34b and miR-449a sites	Concentration (nM)
8mer	0.056
7mer-m8	0.149
7mer-A1	0.057
6mer	0.156
6mer-m8	0.645
6mer-A1	0.623
5mer-m2.6	1.78
8mer-w8	0.035
7mer-w8	0.098
8mer-w7	0.062

RISC loading	Sequence					
	Seed; m indicates 2'-O-methyl ribose; p indicates 5' monophosphate					
Guide strand for unlabeled let-7a RISC	pu <u>ga ggu ag</u> u agg uug uau agu					
Guide strand for Alexa let-7a RISC	pU <u>GA GGU AG</u> U AGG UUG UAU AGU-NH ₂					
Guide strand for miR-449a RISC	pu <u>gg cag ug</u> u auu guu agc ugg u					
Guide strand for miR-34b RISC	pA <u>GG CAG UG</u> U AAU UAG CUG AUU GU					
RISC purification	Sequence RNA, DNA; m, 2'-O-methyl; p, 5' phosphate; Bio, Biotin-6-carbon spacer					
Capture Oligo to affinity purify let-7a RISC	Bio-mAmUmA mGmAmC mUmGmC mGmAmC mAmAmU mAmGmC mCmUmA mCmCmU mCmCmG mAmAmC mG					
DNA competitor to elute let-7a RISC	CGT TCG GAG GTA GGC TAT TGT CGC AGT CTA T-Bio					
Capture Oligo to affinity purify miR-449a RISC	Bio-mGmAmU mCmAmA mCmAmA mUmAmA mCmCmC mAmCmC mAmCmU mGmCmC mUmAmU mAmGmA					
DNA competitor to elute miR-449a RISC	BIO-TTA TAG GCA GTG GTG GGT TAT TGT TGA TC					
Capture Oligo to affinity purify miR-34b RISC	Bio-mGmAmU mAmUmU mCmAmA mGmCmU mAmCmC mAmCmC mAmCmU mGmCmC mUmAmU mAmA					
DNA competitor to elute miR-34b RISC	BIO-TTA TAG GCA GTG GTG GTA GCT TGA ATA TC					
RISC quantification	Sequence RNA, DNA; p, 5' phosphate					
DNA probe to quantify total concentration of let-7a RISC by Northern Blot	GAT ACT ATA CAA CCT ACT ACC TCA ACC T					
DNA probe to quantify total concentration of miR-449a RISC by Northern Blot	ATG ACC AGC TAA CAA TAC ACT GCC AAC T					
DNA probe to quantify total concentration of miR-34b RISC by Northern Blot	ATG ACA ATC AGC TAA TTA CAC TGC CTA CT					

Table S2. RNA and DNA Oligos Used in This Study, Related to STAR Methods

RNA target to quantify active concentration of let-7a RISC by double-filter binding	PAAA AUG AUA ACA AGG AUC UAC CUC AAA A						
RNA target to quantify active concentration of miR-449a and miR-34b RISCs by double-filter binding	PAUG AAA UCG AUA UCU AUC ACU GCC AAC U						
CoSMoS	Sequence RNA, DNA; Bio, Biotin-6-carbon spacer; <u>target region</u> ; U, Alexa Fluor 647 deoxyuridine						
Klenow polymerase template to synthesize 3' DNA extension containing 17 Alexa Fluor 647 dyes for let-7a RNA with t10–t19 site adjacent to t3–t6 site	ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT G						
Trap oligonucleotide for the preceding template (fully complementary)	GAC TAA GAC CTA GAT GTA AAT AAC AAC AAT AAC AAC AAT AAC AAC A						
5'-tethered, RNA target with let-7a t10-t19 site adjacent to t3-t6 site and a 3' DNA extension containing 17 Alexa Fluor 647 dyes	BIO-AUU AAA <u>UAU ACA ACC U</u> GA CUA AG <u>A CCU</u> AGA UGU AAA UAA CAA CAA UAA CAA CAA UAA CAA CAA UAA CAA CAA UAA CAA C						
Klenow polymerase template to synthesize 3' DNA extension containing 17 Alexa Fluor 647 dyes for let-7a RNA with 6mer site	ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT G						
Trap oligonucleotide for the preceding template (fully complementary)	TAT ACC TCT CTA GAT GTA AAT AAC AAC AAT AAC AAC AAT AAC AAC A						
5'-tethered, RNA target with let-7a 6mer site and a 3' DNA extension containing 17 Alexa Fluor 647 dyes	BÌO-AUU AAA UAA UGG AGA AUU AAA UA <u>U ACC UC</u> U CUA GAU GUA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC						
Klenow polymerase template to synthesize 3' DNA extension containing 17 Alexa Fluor 647 dyes for other let-7a RNA targets	ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT G						

	GAC	TAA	GAC	GAA	GAT	GTA	AAT	AAC	AAC	AAT	AAC	AAC	AAT	AAC	AAC	AAT	AAC
Trap oligonucleotide for the preceding template	AAC	AAT	AAC	AAC	AAT	AAC	AAC	AAT	AAC	AAC	AAT	AAC	AAC	AAT	AAC	AAC	AAT
(fully complementary)	AAC	AAC	AAT	AAC	AAC	AAT	AAC	AAC	AAT	AAC	AAC	AAT	AAC	AAC	AAT	AAC	AAC
		AAC	AAC	AAT													
5'-tethered RNA target with let-7a t10-t19 site	Bio-	-AUU	AAA	UAU	ACA	ACC	UGA	CUA	AGA	CGA	AGA	UGU	AAA	UAA	CAA	CAA	UAA
and a 3' DNA extension containing 17 Alexa	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA
Eluor 647 dues	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA
	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	U						
5'-tethered RNA target with let-7a 6mer-A1	Bio-	-AUC	UAA	AUA	AAC	CUC	AGA	CUA	AGA	CGA	AGA	UGU	AAA	UAA	CAA	CAA	UAA
site and a 3' DNA extension containing 17	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA
	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA
Alexa Fluor 047 dyes		UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	U						
5'-tethered RNA target with let-7a 6mer-m8	Bio-	-AUU	UCC	AAG	CCU	ACC	UGA	CUA	AGA	CGA	AGA	UGU	AAA	UAA	CAA	CAA	UAA
site and a 2' DNA extension containing 17	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA
Alove Eluer 647 dues	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA
Alexa Fluor 047 dyes	CAA	UAA	CAA	CAA	UAA	CAA	CAA	UAA	CAA	CAA	U						
	Sequence																
RBNS																	
	010	THIO	117.0		000	7.00	7.110		NINTA,			N TN TN T	NTNTNT	NTNTTT	003	7 T T T T	0110
RBNS RNA pool			UAC	AGU	CCG	ACG	AUC	NNN	INININ	NNN	NNN	NNN	NNN	NNU	GGA	AUU	CUC
RBNS RNA pool	GAG	TICC	077														
RBNS RNA pool	GAG	UGC	CAA														
RBNS RNA pool RT primer	GAG GGG CCT	UGC TGG	CAA CAC	CCG	AGA	ATT	CCA										
RBNS RNA pool RT primer	GAG GGG CCT AAT	UGC TGG GAT	CAA CAC ACG	CCG GCG	AGA ACC	ATT ACC	CCA GAG	ATC	TAC	ACG	TTC	AGA	GTT	CTA	CAG	TCC	GAC
RBNS RNA pool RT primer PCR Forward primer	GAG GGG CCT AAT GAT	UGC TGG GAT C	CAA CAC ACG	CCG GCG	AGA ACC	ATT ACC	CCA GAG	ATC	TAC	ACG	TTC	AGA	GTT	CTA	CAG	TCC	GAC
RBNS RNA pool RT primer PCR Forward primer Multiplexing PCR Reverse Primer (XXXXXX	GAG GGG CCT AAT GAT CAA	UGC TGG GAT C GCA	CAA CAC ACG GAA	CCG GCG GAC	AGA ACC GGC	ATT ACC ATA	CCA GAG CGA	ATC GAT	TAC	ACG XXX	TTC	AGA ACT	GTT GGA	CTA GTT	CAG	TCC TGG	GAC CAC

Table S3. Dissociation constants for 3'-only sites, Related to Figure 6

Values are reported in pM. Intervals correspond to 95% confidence intervals on the median.

miRNA	6mer	10mer-m10.19	10mer-m11.20	10mer-m12.21	10mer-m13.22	10mer-m14.23
let-7a ^{mmu}	348 [337,387]	630 [469, 830]	158 [145, 165]	323 [297, 335]	NA	NA
let-7a ^{hsa}	82.5 [81.7, 83.6]	689 [677, 698]	512 [507, 519]	1414 [1379, 1475]	2733 [2699, 2771]	NA
miR-124	475 [472, 478]	110 [89, 141]	226 [221, 233]	635 [624, 643]	1390 [1381, 1401]	NA
miR-155	154 [152, 155]	591 [586, 597]	250 [248, 252]	94.2 [92.7, 95.2]	36.7 [36.3, 37.0]	139 [138, 141]
miR-1	62.1 [62.0, 62.2]	2441 [2402, 2480]	1199 [1181, 1218]	1298 [1281, 1327]	2334 [2282, 2395]	NA
lsy-6	450 [447, 451]	241 [239, 243]	386 [380, 393]	776 [763, 784]	710 [704, 717]	NA
miR-7	140 [140, 140]	2128 [2090, 2175]	1420 [1394, 1439]	1397 [1373, 1414]	1745 [1711, 1771]	2301 [2262, 2338]
miR-34b	167 [720, 733]	3211 [3160, 3271]	726 [720, 733]	998 [986, 1010]	1058 [1049, 1067]	1712 [1702, 1726]
miR-449a	62.4 [57.5, 62.8]	448 [443, 451]	869 [852, 889]	679 [670, 687]	936 [921, 962]	NA

Table S4. Robustness of fitted k_{on} and k_{off} parameters, Related to Figure 7

Maximum likelihood estimation was performed on sub-datasets where each sample was removed one by one. Pearson's *r* was calculated for each of the fifty-five pairwise combinations.

	0 s	15 s	30 s	1 min	2.5 min	5 min	10 min	15 min	30 min	1 h
15 s	1.00									
30 s	0.993	0.993								
1 min	0.999	0.999	0.995							
2.5 min	1.00	1.00	0.993	0.999						
5 min	1.00	1.00	0.993	0.999	1.00					
10 min	1.00	1.00	0.994	0.999	1.00	1.00				
15 min	1.00	1.00	0.993	0.999	1.00	1.00	1.00			
30 min	1.00	1.00	0.993	0.999	1.00	1.00	1.00	1.00		
1 h	1.00	1.00	0.993	0.999	1.00	1.00	1.00	1.00	1.00	
2 h	1.00	1.00	0.993	0.999	1.00	1.00	1.00	1.00	1.00	1.00

SUPPLEMENTAL FIGURES AND LEGENDS

Figure S1. RBNS biases relative to RNA pool design, Related to Figure 1

(A) Frequency of the four nucleotides at each position within the randomized region of RNA molecules. Adenine (orange), uridine (magenta), cytidine (cyan), and guanosine (blue).

(**B**) Distribution of frequencies of 10-nt long motifs within RNA molecules. f_{expected} is the theoretical frequency of a given 10-mer, $1/4^{10} = 9.54 \times 10^{-7}$.

(C) Canonical sites have contiguous pairing (vertical bar) to the miRNA seed (bold), and some include an additional match to miRNA nucleotide 8 or an A opposite miRNA nucleotide g1. B indicates not A, i.e., C, G, or U.

(**D**) Enrichment of canonical sites at each position (counted from the 5' end) within the randomized region of RNA molecules. We note that cytosine—the last nucleotide of the 5' constant region and the t8 nucleotide of let-7a, miR-34b and miR-449a canonical binding sites—is adjacent to a favorable dinucleotide context (McGeary et al., 2019), yielding ~2–3-fold greater enrichment of sites starting at this position.

(E) Rastergram summaries of traces of individual target molecules, each in a single row and sorted according to their arrival time. Blue intervals indicate binding events. Above: representative fluorescence intensity time traces for miRISC (turquoise) binding RNA targets (magenta) with different extents of complementarity to the miRNA guide. Gray, background levels of green fluorescence; black, binding events.

(F) Comparison of RBNS results with and without DNA blocking oligonucleotides. Enrichment of miR-449a canonical sites was 2.5–5-fold greater when DNA blockers were used, reflecting a decreased fraction of RNA with no binding site (right).

Figure S2. RBNS biases relative to technical procedures, Related to Figure 3

(A) Overview of RNA Bind-n-Seq using pull-down on magnetic beads coupled to anti-FLAG antibody.

(B) Enrichment profile of canonical let-7a sites observed at each of the five miRISC concentrations in RBNS including pull-down step, determined as ratio of site frequency in protein sample over site frequency in the RNA pool.

(C) Comparison of binding sites identified by de novo discovery in RBNS including double-filter or pull-down step. Minus sign indicates sites that were not identified by de novo site analysis.

(D) Comparison of dissociation constants estimated from RBNS including double-filter or pull-down step. Error bars indicate 95% confidence intervals on the median. Indicated are the site types showing >2-fold difference. The solid orange and red lines indicate 2-fold and 10-fold difference, respectively. Dashed diagonal lines show y = x.

Figure S3. RBNS biases relative to protein concentration and significance criteria for de novo site discovery, Related to Figure 3

(A) Enrichment of reads containing canonical let-7a sites in no-RISC and guide-only binding reactions. Dashed line indicates y = x.

(B) Comparison of binding sites identified by de novo discovery when using binding reactions of different miRISC concentrations.

(C) Illustration of de novo site discovery algorithm, using enrichment threshold instead of *Z*-score threshold presented in Figure 3C.

(D) Comparison of binding sites identified by de novo discovery in RBNS including double-filter or pull-down step when using enrichment threshold.

(E) Distribution of *Z*-scores in RBNS data including double-filter or pull-down step and choice of the *Z*-score for significance.

Figure S4. Estimation of K_D values by RBNS is robust and reproducible, Related to Figure 4

(A–B) Testing K_D estimation with simulated data. RBNS data were modeled by simulating miRISC binding to RNA pool containing four binding sites and no-site molecules. Stock concentration of miRISC was equal to 2.1 nM (dataset 1) or 8.1 nM (datasets 2 and 3). Each simulated RBNS experiment contained six binding reactions—five logarithmically spaced miRISC dilutions and a no-RISC binding reaction—and RNA pool at 100 nM. Background was set to 0.1 nM and $K_{D, nosite}$ was set to 5 nM. (A) Convergence of a representative MLE fit. (B) Each fitting optimization was performed 1,000 times using a different set of initial parameter values. Intervals correspond to 95% confidence intervals on the median.

(C) To estimate the robustness of fitted parameters, maximum likelihood estimation was performed on sub-datasets where each sample was removed one by one. Pearson's *r* was calculated for each of the fifteen pairwise possibilities.

(D) K_D values for t2–t8, t2–t7 and t2–t6 let-7a targets with different t1 nucleotides. Adenine (orange), uridine (magenta), cytidine (cyan), and guanosine (blue).

(E, F) Measuring k_{on} , k_{off} and K_D values of 6mer, 6mer-A1 and 6mer-m8 let-7a sites by CoSMoS. (F) Representative fluorescence intensity time traces of miRISC (turquoise) binding RNA target (magenta) with different extents of complementarity to the miRNA guide. Gray indicates background levels of green fluorescence, whereas the black line denotes binding events. Cumulative fraction of let-7a-guided AGO2 molecules binding for the first time to a single RNA target and dwell time distribution of these binding events. Data points are plotted in black, and the curve in blue shows the rate of binding or departure after correcting for non-specific association of miRISC with the glass surface. k_{on} and k_{off} values were derived from data collected from >900 individual RNA target molecules; standard error from bootstrapping is reported.

15

Figure S5. Sequence-specific differences in miRNA affinities, Related to Figure 6

(A) Dissociation constants fitted for AGO2 miR-1, lsy-6 and miR-155 RBNS from a prior study (McGeary et al., 2019). On the left is pairing of enriched sites identified by de novo site discovery. Enrichment profile of canonical sites is shown on the right. (B) The relationship between the observed and predicted *K*_D values for t2–t8, t2–t7, t2–t6 and t3–t8 binding sites of eight miRNAs. While affinity increased with increased predicted by nearest-neighbor free energy was significant only for 7mer-m8 binding sites. Nearest neighbor analysis predicts that miR-449, the most stably pairing miRNA in our study, should bind much more tightly to its targets than lsy-6: >17,500-fold for a 6mer, >8,300-fold for a 5mer-m2.6, and >4,200-fold for 6mer-m8 sites. Yet when bound to AGO2, the actual ratios of the affinities of the two miRNAs are quite small: 6.9-fold for a 6mer, 2.6-fold for a 5mer-m2.6, and 0.97-fold for 6mer-m8 sites. In other words, AGO2 reduces the dynamic range of intrinsic differences in seed-pairing stabilities by several orders of magnitude.

Error bars indicate 95% confidence intervals of the median.

Jouravleva et al., Figure S5

Figure S6. Dissociation constants of enriched sites estimated for miR-7, miR-124, miR-34b, miR-449a and let-7a RBNS datasets, Related to Figure 6

Dissociation constants fitted for AGO2 miR-7 and miR-124 RBNS from a prior study (McGeary et al., 2019) (A), and miR-34b (B), miR-449a (C) and let-7a (D) from this study. Error bars indicate 95% confidence intervals on the median. (A, B and D) Pairing is shown for enriched sites identified by de novo site discovery. (C) Pairing of enriched sites as in (B). (A and B) Enrichment profile of canonical sites is shown on the right.

Jouravleva et al., Figure S6

Α				
miR-7	5 ' –UGGAAGACUAGUGAUUUUGUUGU	8mer∙	trial 1	trial 2
9 mor		7mer-m8•	100	•
7mer-m8	CCUUCUG	8mer-b6.7U•	ŧ	
7mer-A1	ACCUUCU	8mer-b7.8A •	Ë 10	• • •
6mer	CCUUCU	7mer-A1•		• • • •
5mer-m2.6	CCUUC	6mere	Ē .	• • •
8mer-b6.7G	ACCUUCGUG	6mer-A1 •		
8mer-b6.7U	ACCUUCUUG	5mer-m2.6 •		• • • • • • •
8mer-b7.8A				
onier-x/G	ACCOUCGG	1 10 100 1,000 <i>K</i> (pM)) U.UT	4GO2 miR-7 (AU)
miR-124	5 ' – UAAGGCACGCGGUGAAUGCCAA	8mer•		
		AA-7mer-b5.6U•		
8mer	AUUCCGUG	7mer-m8→		
7mer-m8 7mer-A1	AUUCCGU	AA-7mer-b5.6A		
6mer	UUCCGU	8mer-b6.7U•		
6mer-m8	UCCGUG	10mer-m10.19 —		
6mer-A1 5mer-m2 6	AUUCCG	AA-7mer-b4.5U• 8mer-b5.6LL		
AA-4mer-m5.8	CGUGAA	7mer-A1 •		
8mer-w5	AUUCUGUG	9mer-m11.19		
8mer-b3.4A	AUUACCGUG	10mer-m11.20 ←		
8mer-b3.4C 8mer-b4.5A	AUUCCCGUG	10mer-m9.18		
AA-7mer-b4.5U	UUCUCGUGAA	6mer-m8•	trial 1	trial 2
A-7mer-b4.5A-w5	UUCAUGUGA	8mer-w5-	100 -	•
AA-7mer-b5.6U	UUCCUGUGAA	6mer-A1 e	₽	
AA-7 mer-b5.6A 8mer-b5.6G	AUUCCIGUG	6mer.e	Len -	• • • • • •
8mer-b5.6U	AUUCCIGUG	A-7mer-b4.5A-w5 -	년 10 -	
8mer-b6.7A	AUUCCGAUG	8mer-b4.5A -		
8mer-b6.7U	AUUCCGIUG	8mer-b3.4C ●		
10mer-m10.19	GCCACUUACG	5mer-m2.6	1 _E •	• •
10mer-m11.20	CCACUUACGG		t	
9mer-m11.19	CCACUUACG	1 10 100 1,000	0.01 (0.1 0.01 0.1
B			7	4002 min-124 (40)
miR-34b		8mor •		
11111-040		7mer-m8 ₀	¹⁰⁰ trial 1	εtrial 2
8mer	ACCGUCAC	7mer-A1 •		
7mer-m8	CCGUCAC	8mer-w8 •	a la	
7mer-A1	ACCGUCA	/ mer-w8 • 6mer •	Ĕ 10 F	
6mer	CCGUCA	8mer-w7 •	- rict	• •
6mer-m8	CGUCAC	6mer-A1 •	E .	
8mer-w8	ACCGUCAU	5mer-m2.6 ●	1	
7mer-w8	CCGUCAU		Ē	E
8mer-w7	ACCGUCGC	1 10 100 1,000	10 100	1,000 10 100 1,000
5mer-m2.6	CCGUC	К _D (рМ)	AG	iO2 miR-34b (pM)
С	D	8mer	let Ze E	
-	Ð	7mer-m8 ⊷	let-/a 5	
		8mer-w8 •	8mer	ACUCCAUC
miR-449a 5'-UGO	GCAGUGUAUUGUUAGCUGGU	8mer-w6 •	7mer-m8	CUCCAUC
8mer •		10mer-m11.20 ●	7mer-A1	ACUCCAU
7mer-m8 •		8mer-b5.6A •	6mer	CUCCAU
7mer-A1	•	7mer-w8 •	6mer-m8	
8mer-w8	• 	7mer-w6 -●	omer-Al 8mer-w/8	ACUCCAUII
	Smer •	6mer •	7mer-w8	CUCCAUU
81	mer-w7 •	6mer-A1 •	8mer-w6	ACUCCGUC
	6mer-A1 ●	6mer-m8 •	7mer-w6	ACUCCGU
	omer-m2.6 • 6mer-m8 •	5mer-m2.6 • 5mer-Δ1 •	5mer-A1	ACUCC
			5mer-m2.6	CUCCA
1 10	100 1,000	1 10 100 1,000	8mer-b5.6A	ACUCCAAUC
	K (pM)	^{k20} (pM)	Tumer-m11.20	CCAACAUAUC

Figure S7. Estimation of k_{on} and k_{off} values by RBNS, Related to Figure 7

(A) Overview of RNA Bind-n-Seq extended to kinetic studies.

(B) Testing k_{on} and k_{off} estimation with simulated data. RBNS data were modeled by simulating miRISC binding to RNA pool containing four binding sites and no-site molecules. Total miRISC concentration was equal to 0.15 nM. Background was set to 0.1 nM. Dataset 1 contains binding sites with similar k_{off} but different k_{on} values. Dataset 2 contains binding sites with similar k_{off} values. Estimated absolute values of kinetic parameters are not accurately recovered from the ground truth.

(C) k_{on} values for let-7a 7mer-A1, 6mer-A1 and 5mer-A1 sites separated into 4⁴ = 256 sites according to the dinucleotide sequences immediately flanking the 5' and the 3' ends of the site. To increase statistical power, we classified these 256 sites into 5 bins based on the number of A/U and G/C nucleotides and determined k_{on} for each. Error bars indicate 95% confidence intervals on the median. G and C flanking nucleotides reduced k_{on} , likely by stabilizing RNA secondary structures that occlude the binding site. This effect of flanking dinucleotides on k_{on} was consistent among the three site types, but was greater for shorter, lower-affinity sites: for the 7mer-A1 sites, the most favorable (A/U-rich) contexts were just twice as fast as the most detrimental (G/C-rich), but for the 5mer-A1 sites, the A/U-rich contexts were 29-fold faster than the G/C-rich. Similarly, k_{on} for a 7mer-A1 bracketed by di-adenosines was 7-fold faster than when flanked by di-guanosines; for the 5mer-A1 flanked by di-adenosines was ~93-fold faster than with di-guanosines.

