Cell Reports Methods, Volume 1

Supplemental information

Macrophage calcium reporter mice reveal

immune cell communication in vitro and in vivo

Nika Taghdiri, David M. Calcagno, Zhenxing Fu, Kenneth Huang, Rainer H. Kohler, Ralph Weissleder, Todd P. Coleman, and Kevin R. King

SUPPLEMENTARY INFORMATION (SI)

Supplemental Figure 1 Design, construction, and characterization of a Csf1r^{Cre}GCaMP5^{fl} calcium reporter for non-destructive quantification of innate immune cell dynamics, Related to Figure 1. A) Illustration of mouse breeding strategy. Csf1r-cre mice were crossed with floxed-STOP GCaMP5 inducible reporter mice to create an innate immune cell specific reporter. B) Cartoon illustrating that tdTomato is constitutively expressed as a reference and dynamic calcium-dependent GCaMP signals are quantified ratio-metrically C) Spatial distribution of tdTomato+ cells in solid organs (heart, spleen, kidney, lung) at low (left), medium (middle), and high (right) magnification (scale bars from left to right, 500μ m, 100μ m and 10μ m). D) Gating strategy for flow sorting of immune subsets. E) Percentage of total tdTomato^{high} cells in the peripheral blood from the Csf1r^{Cre}GCaMP5^{fl} mouse. F) Percentage of each subset in each tissue compartment that is tdTomato+.

Supplemental Figure 2 Csf1r^{Cre}GCaMP5^{fl} sampling frequency determination, Related to Figure 2. A) Calcium elevations were recorded from a population of cells at 15Hz. B) Quantification of calcium fluorescence versus time for multiple cells across time at 15Hz. C) Down-sampling was performed, and every 7th sample was plotted to show the similarity of calcium elevation tracings. This led to selection of 2Hz as the sampling frequency used throughout the manuscript.

Supplemental Figure 3 Example of Csf1r^{Cre}GCaMP5^{fl} macrophage calcium reporter dynamics following immunogenic double-stranded DNA stimulation in vitro, Related to Figure 2. A) Montage of time-lapse imaging. Newly calcium-overloaded macrophages indicated in a, b, and c precipitate non-fatal calcium fluctuations in neighboring macrophages. B) Heatmap illustration of hierarchically clustered macrophage dynamics.

Supplemental Figure 4 Histograms of in vivo Csf1^{Cre}GCaMP5^{fl} calcium reporter dynamics, Related to Figure 5. A) Histogram illustrating distribution of number of calcium elevations per cell per 5-minute interval. B) Histogram illustrating distribution of number of active cells per box per 5-minute interval.

SUPPLEMENTAL MOVIES

M1a. Csf1r^{Cre}GCaMP5^{fl} Macrophages – vehicle control stimulation, Related to Figure 1. **M1b.** Csf1r^{Cre}GCaMP5^{fl} Macrophages - dsDNA stimulation, Related to Figure 1. (0.008 Hz sampling) *in vitro*

M2. Csf1r^{Cre}GCaMP5^{fl} macrophages - complexed dsDNA stimulation, Related to Figure 2. (15 Hz sampling) *in vitro*

 M3a. Csf1r^{Cre}GCaMP5^{fl} macrophages - vehicle control stimulation, Related to Figure 2.
M3b. Csf1r^{Cre}GCaMP5^{fl} macrophages - complexed dsDNA stimulation, Related to Figure 2.
(2 Hz sampling) *in vitro*

M4. Csf1r^{Cre}GCaMP5^{fl} reporter - MC38-H2B-mCherry tumor cells, Related to Figure 3. (2 Hz sampling) *in vivo*

M5. Csf1r^{Cre}GCaMP5^{fl} reporter - MC38-H2B-mCherry tumor cells, Related to Figure 5. (2 Hz sampling) *in vivo*

M6a. Csf1r^{Cre}GCaMP5^{fl} reporter - MC38-H2B-mCherry tumor cells, Related to Figure 3.
M6b. Csf1r^{Cre}GCaMP5^{fl} reporter - MC38-H2B-mCherry tumor cells, Related to Figure 3.
(2 Hz sampling)
in vivo