Cell Reports Methods, Volume 1

Supplemental information

CUT&Tag-BS for simultaneous profiling of histone modification and DNA methylation with high efficiency and low cost Ruifang Li, Sara A. Grimm, and Paul A. Wade

Figure S1. Evaluating the consistency of histone modification enrichments between CUT&Tag-BS and conventional methods, CUT&Tag_nonBS and ChIP-seq, Related to Figure 3. (A) Non-overlapped peaks show much lower enrichment signals than common peaks in the comparison of CUT&Tag-BS with CUT&Tag_nonBS. The gray dashed line represents random background. (B) Density-scatter plots displaying correlation of peak signals between CUT&Tag-BS and ChIP-seq. Each dot represents an individual peak with viridis color scale indicating density. Pearson's *r* value was shown at the top of each plot.

Figure S2. CUT&Tag-BS simultaneously measures DNA methylation, Related to Figure 4. (A) M-bias plots showing averaged CpG methylation rates per position along the reads. (B) Histograms displaying the distribution of methylation levels of individual CpGs at H3K4me1-, H3K9me3-, or H3K27me3-peaks with minimum coverage of 1×, 5×, or 10×.

Figure S3. Density scatter plot displaying correlation of methylation at H3K4me1-CpGs between CUT&Tag-BS and WGBS, Related to Figure 4. Only CpGs at H3K4me1-peaks with minimum coverage of $5 \times$ in both datasets were included. Each dot represents an individual CpG with viridis color scale indicating density. Pearson's *r* value was shown at the top of the plot.

Sampla	minimum CpG depth			
Sample	1×	5×	10×	
CnT-BS_run1 (PE36)	945,053	227,952	52,984	
	77.1%	18.6%	4.3%	
CnT-BS_run2 (PE76)	1,129,111	526,411	182,927	
	92.1%	43.0%	14.9%	

H3K4me1-CpGs (1,225,519)

H3K9me3-CpGs (591,273)

aamala	minimum CpG depth		
sample	1×	5×	10×
CnT-BS_run1 (PE36)	317,347	18,541	1,487
	53.7%	3.1%	0.3%
CnT-BS_run2 (PE76)	522,923	165,672	28,568
	88.4%	28.0%	4.8%

Figure S4. Coverage of CpGs at H3K4me1- or H3K9me3-peaks when using different sequencing read length (PE36 vs. PE76), Related to Figure 5. The number and percentage of CpGs at H3K4me1- or H3K9me3-peaks with minimum coverage of 1×, 5×, or 10× were shown.

H3K27me3-CpGs (1,843,093)					
Sampla	minimum CpG depth				
Sample	1×	5×	10×		
CnT-BS_H3K27me3_4K	222,370	1,726	20		
	12.1%	0.1%	0.0%		
CnT-BS_H3K27me3_20K	1,137,938	293,835	71,560		
	61.7%	15.9%	3.9%		
CnT-BS_H3K27me3_100K	1,681,526	970,830	624,006		
	91.2%	52.7%	33.9%		
CnT-BS_H3K27me3_250K	1,747,774	1,155,472	784,908		
	94.8%	62.7%	42.6%		

Figure S5. Robustness and input requirement of CUT&Tag-BS, Related to Figure 7. (A) UCSC genome browser view of H3K27me3 coverage tracks at chr6:48,879,717-55,974,833 generated with different numbers of input cells in CUT&Tag-BS. (B) The number and percentage of CpGs at H3K27me3-peaks with 1×, 5×, or 10× minimum coverage in each sample.

В

Table S1. List of oligonucleotides used in this study, related to STAR Methods.

Oligo/Primer name	Sequence (5' to 3')	Modifications
Tn5mC-Apt1	TcGTcGGcAGcGTcAGATGTGTATAAGAGAcAG	c: 5C-methylated
Tn5mC1.1-A1block	pCTGTCTTTATACAddC	p: phosphate, ddC: dideoxycytidylate
Tn5mC-ReplO1		p: phosphate, c: 5C-methylated,
	pergreterratacacatercegageccacgagacinvi	invT: inverted deoxythymidylate
i5 universal PCR primer	AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG	
i7 barcode PCR primer_Ad2.25	CAAGCAGAAGACGGCATACGAGATCACTTTGTGTCTCGTGGGCTCGGAGATGTG	
i7 barcode PCR primer_Ad2.26	CAAGCAGAAGACGGCATACGAGATTTCAAGTAGTCTCGTGGGCTCGGAGATGTG	
i7 barcode PCR primer_Ad2.27	CAAGCAGAAGACGGCATACGAGATGCTATCACGTCTCGTGGGCTCGGAGATGTG	
i7 barcode PCR primer_Ad2.28	CAAGCAGAAGACGGCATACGAGATAATCTACTGTCTCGTGGGCTCGGAGATGTG	
i7 barcode PCR primer_Ad2.1	CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGGAGATGTG	
i7 barcode PCR primer_Ad2.2	CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGTG	
i7 barcode PCR primer_Ad2.3	CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGTG	
i7 barcode PCR primer_Ad2.4	CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGTG	
i7 barcode PCR primer_Ad2.6	CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGTG	