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Supplemental Figure 1 | Cluster frequency variation across samples and principal 
component structure of the RA, TB, and UC datasets highlight experimental variability, 
related to Figure 3. Panel a, left: Frequency distribution for each cluster in the RA, TB, and UC 
datasets. Plotted mean frequencies are the observed mean frequency of that cluster across all 
samples in their respective dataset. In all panels, error bars represent one standard deviation 
from the mean in each direction to showcase the spread of frequencies across samples. Panel 
a, right: Cluster frequency covariance matrices for the RA, TB, and UC datasets. Panel b, left, 
PC plots of the RA, TB, and UC datasets colored by cluster. Panel b, right, Bar plots of the 
estimated variance in each cluster for the first principal component in each of the RA, TB, and 
UC datasets. Each bar is colored by the estimated proportion of variance that each source 
contributes, as estimated by scPOST.  
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 RA dataset TB dataset UC dataset 

Single-cell 
technology 

CelSeq241 10X Chromium 
3’ v3 

10X Chromium 
3’ v2/v3 

Number of samples 21 259 30 

Number of cells 
passed QC 

5,265 496,517 235,229 

Type of samples Synovial tissue (joint 
replacement 

procedure or biopsy)  

PBMCs (blood) Intestinal biopsy 

Broad cell types 
assayed 

Immune and stromal 
cells  

(T/B cells, 
Monocytes, 
Fibroblasts) 

Memory T cells Immune and stromal 
cells  

(T/B/Myeloid cells, 
Fibroblasts, Endothelial 

cells, Epithelial cells) 

Number of clusters 12 24 23 

Mean UMI/cell 7,300 4,920 4,582 

Mean unique 
genes/cell 

2,432 1,472 988 

Batch-correction Harmony None None 

 
Supplemental Table 1 | Characteristics of the RA, TB, and UC datasets, related to Figure 
3.  
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Supplemental Figure 2 | scPOST can generate multi-sample single-cell datasets with 
gene expression and cluster frequency distributions similar to the input dataset, related 
to Figure 4. a-c, Each panel contains visualizations comparing the PC, UMAP, or tSNE 
structure between a simulated TB/UC dataset and the respective real dataset. UMAP and tSNE 
embeddings were created from embedding the PCs of the real and simulated dataset into the 
same 2-dimensional space. d, Frequency distribution for each cluster in the real RA dataset and 
an example simulated realistic dataset. Error bars represent one standard deviation from the 
mean to showcase the spread of frequencies across samples. e, Dot-plots comparing the 
intended induced fold changes with the actual observed fold changes in simulations. Each point 
represents the mean observed fold change over 100 simulations. Error bars represent one 
standard deviation from the mean to illustrate the spread of observed fold changes, and how 
that spread decreases as cfscale values decrease.  
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Supplemental Figure 3 | The RA dataset contains THY1+ sub-lining fibroblasts that 
express HLA-DRA, related to Figure 5. For the analyses in which we expanded the RA study, 
we focused on the THY1+ sub-lining fibroblast cluster (cluster 3 highlighted in red, other 
fibroblast clusters highlighted in blue) that most highly expressed HLA-DRA, which corresponds 
to the HLA-DRAhi fibroblast population described in the paper. The RA dataset was filtered to 
only include fibroblasts before inputting into scPOST for Fig. 5a. 
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Supplemental Figure 4 | Larger input dataset sizes tend to provide more accurate 
parameter estimates, leading to increased power, related to Figure 5. a-c, We sub-sampled 
each independent dataset by randomly sampling a specific number of samples, and then input 
these sub-sampled datasets into scPOST. Comparing the estimated power of smaller-sized 
data with the power retrieved from the full data suggests that increasing the size of the input can 
lead to more accurate power estimates. 
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Supplemental Figure 5 | The real RA dataset (7300 mean UMIs/per cell) was binomially 
downsampled to create input datasets with varying levels of mean UMIs, related to Figure 
5. a, Histogram of the UMI distribution of the original RA dataset and the datasets whose UMIs 
were downsampled. Downsampled datasets maintained similar sequencing read distributions, 
but featured a lower mean number of reads. b, Downsampled datasets were input into standard 
PCA dimensionality reduction pipeline, and then visualized with UMAP. Cells are colored by the 
cell state identities obtained from the original RA dataset. 
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Supplemental Figure 6 | scPOST facilitates exploration of different study designs, such 
as batch multiplexing structures, related to Figure 6. a, Power calculations across different 
ranges of scaled batch effects and number of batches, with the induced fold change set to 1.5. 
Simulations were performed in the realistic context, but with modulated levels of batch-
influenced variation on gene expression. The number of batches decreasing indicates 
increasing the number of samples run in a batch. b, In Fig. 6a, we compare the estimated 
power from two batch multiplexing structures with scPOST. The non-multiplexed sequential 
design placed each simulated sample in its own batch, so that each batch contained cells from 
only one sample. For the sequential design in Fig. 6a, we placed samples (total of 100 with 
2000 cells each) into 100 batches. The multiplexed study design featured a batch structure in 
which each simulated sample was split into equally-sized subsamples. These subsamples were 
then placed into different batches, so that each batch contained cells from multiple samples. For 
the multiplexed design in Fig. 6a, we split each sample (total of 100 with 2000 cells each) into 4 
subsamples (500 cells each), which were then placed into 100 batches (each batch contained 
cells from different subsamples). 
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Supplemental Figure 7 | Power estimations in the RA, TB, and UC settings for varying 
dataset sizes characterized by a variable number of samples and cells per sample, 
related to Figure 6. Power estimations for different sample/cell per sample combinations. 
Simulations were performed in the baseline context (Fig. 5b) with each data point representing 
100 simulations. Grid elements along a top right-bottom left diagonal represent an equivalent 
number of cells. Error bars represent 95% binomial proportion confidence intervals and the 
dotted horizontal purple line represents 5% power. 
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Supplemental Figure 8 | Power estimates decreases in lower frequency clusters (<1% 
mean frequency across samples), and vary across a range of Louvain clustering 
resolution values, related to STAR Methods. a, Power estimates performed in the realistic TB 
context. Comparison between detecting effects across the frequency spectrum (All clus), and 
focusing on detecting effects that were only induced in rare clusters (Rare clus). b, Boxplots 
showing the spread of the number of clusters obtained from Louvain clustering simulated data. 
Each boxplot represents results from 100 pre-seeded simulations. c, Line plots showing power 
results from clustering 100 pre-seeded simulations at different resolutions. d, Zoom-in on FC2 
results (100 simulations) as shown in Fig. S8c. Results are specific to number of clusters 
obtained from Louvain clustering in the simulation, as well as the resolution parameter value 
used for the Louvain clustering. e, Boxplots showing the spread of interpretability scores for 100 
pre-seeded simulations each. f, Zoom-in on FC2 results (100 simulations) as shown in Fig. S8e. 
Boxplots are specific to number of clusters obtained from Louvain clustering in the simulation, 
as well as the resolution parameter value used for the Louvain clustering.  
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Supplemental Table 2 | Computational runtimes for running the parameter estimation and 
dataset generation steps of three single-cell dataset simulation tools: scPOST, powsimR, 
and symSim, related to STAR methods. Standard parameter estimation and dataset 
generation functions for each tool were run with default parameters for datasets of the following 
sizes: 500, 5000, 25,000, and 50,000 cells. We ran simulations on two computational 
environments: a 16GB RAM and 1 processor machine and a 128GB RAM and 24 processor 
cluster. OoM = Out of memory, meaning that the simulation failed to complete due to memory 
constraints. 
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Supplemental Figure 9 | Simulated datasets generated by scPOST are compatible with 
alternative models, especially those that utilize principal components as input, related to 
STAR methods. a, Instead of utilizing MASC, we tested for differential abundance with simple 
linear models that associated the abundance of a cluster in a sample with the case-control 
status. b-e, Error bars represent 95% binomial proportion confidence intervals and the dotted 
horizontal purple line is set at 5%. Each bar represents results from (n = 100) simulations. b, 
Power results from simulations in the baseline context. Simulated datasets were clustered with 
Louvain clustering algorithm. c, Power from the same simulations in panel b, but datasets were 
clustered with the SC3 clustering algorithm. d, Power results from simulations in the baseline 
context, but using Milo for differential abundance (DA) testing instead of MASC. e, Power 
results in the same context as c, but with cfscale = 0 (no cluster frequency variation between 
samples). f, Boxplots showing the spread of the percent of DA neighborhoods over many 
simulations (cfscale = 1). g, For the RA dataset, we utilized Milo to determine mutually-exclusive 
neighborhood membership for each cell (instead of a cluster membership), which we then input 
into scPOST to estimate power.  


