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MOTIVATION To estimate a study design’s power to detect differential abundance, we require a framework
that simulates many multi-sample single-cell datasets. However, current simulation methods are chal-
lenging for large-scale power analyses because they are computationally resource intensive and do not
support easy simulation of multi-sample datasets. Current methods also lack modeling of important in-
ter-sample variation, such as the variation in the frequency of cell states between samples that is observed
in single-cell data. Thus, we developed single-cell POwer Simulation Tool (scPOST) to address these limi-
tations and help investigators quickly simulate multi-sample single-cell datasets. Users may explore a
range of effect sizes and study design choices (such as increasing the number of samples or cells per sam-
ple) to determine their effect on power, and thus choose the optimal study design for their planned exper-
iments.
SUMMARY
To estimate a study design’s power to detect differential abundance, we require a framework that simulates
manymulti-sample single-cell datasets. However, current simulationmethods are challenging for large-scale
power analyses because they are computationally resource intensive and do not support easy simulation of
multi-sample datasets. Current methods also lack modeling of important inter-sample variation, such as the
variation in the frequency of cell states between samples that is observed in single-cell data. Thus, we devel-
oped single-cell POwer Simulation Tool (scPOST) to address these limitations and help investigators quickly
simulate multi-sample single-cell datasets. Users may explore a range of effect sizes and study design
choices (such as increasing the number of samples or cells per sample) to determine their effect on power,
and thus choose the optimal study design for their planned experiments.
INTRODUCTION

Single-cell technologies are revolutionizing biological studies. For

example, single-cell RNA sequencing (scRNA-seq) can measure

the transcriptome of individual cells (Tang et al., 2009, Tanay and

Regev, 2017) todescribepreviouslyunobservedcellular heteroge-

neity (Jaitin et al., 2014; Shalek et al., 2014). Technological ad-

vances allowing for simultaneous measurement of an increasing

diversity of modalities (Cusanovich et al., 2015; Chen et al.,

2015; Stoeckius et al., 2017; Rodriques et al., 2019) from
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increasing numbers of cells (Svensson et al., 2018) are enabling

disease-focused single-cell studies to identify cell states, often

defined as clusters, whose frequency correlates with disease in

blood or tissue (Zhang et al., 2019a; Smillie et al., 2019; Kotliarov

et al., 2020; Schafflick et al., 2020; Nathan et al., 2021).

Detecting clusters that are differentially abundant (DA) between

sample conditions (such as diseased versus healthy) aids re-

searchers in focusing on potential disease mechanisms because

DA clusters are often associated with biologically meaningful

phenotypes; expanded populations in disease states are often
s Methods 1, 100120, December 20, 2021 ª 2021 The Author(s). 1
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Figure 1. scPOST simulates single-cell data-

sets to estimate power to detect differential

abundance in a cluster between conditions

scPOST comprises three steps: data-driven param-

eter estimation, dataset simulation, and association

testing. scPOST models gene expression variation

(left) and cluster frequency variation (right).
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associated with pathogenic mechanisms, which can be further

defined by differential gene expression programs (Soneson and

Robinson, 2018). For example, a recent study identified and char-

acterized a CD14+ monocyte cluster expanded in individuals with

sepsis versus healthy controls (Reyes et al., 2020), which helped

focus downstream experiments on that cluster. Furthermore, DA

clusters have also been associated with genetic variants (Orrù

et al., 2013), highlighting the potential to associate genetic variants

with mechanisms that affect cluster abundance. In order to effi-

ciently detect DA clusters, it is essential to conduct large, well-

powered case-control comparisons (Hollenbach et al., 2014).

In this study, we consider a wide range of factors that poten-

tially affect power: variation in cluster frequencies across sam-

ples, gene expression variation, batch structure, numbers of

cells and samples, and sequencing depth. Due to variation

across studies, these factors must be simulated in the study’s

context to accurately estimate power.

Current single-cell simulation strategies directly simulate indi-

vidual genes and focus on estimating power to detect differential

gene expression (Zappia et al., 2017; Vieth et al., 2017; Zhang et

al., 2019b, Li and Li, 2019) or associations with genetic variants
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(Schmid et al., 2020; Mandric et al., 2020).

These strategies are typically used to simu-

late small datasets ranging from 400 to

10,000 cells in a single sample with few

replicates because sampling

individual genes is slow. Furthermore, no

strategies model the variation in cluster fre-

quencies across samples that is observed

in single-cell data, which is critical for esti-

mating power to detect DA clusters.

Here, wepresent single-cell POwer Simu-

lation Tool (scPOST), a framework that en-

ables the fast simulation of multi-sample

datasets with >25,000 cells spanning hun-

dreds of samples, which is not feasible

with current methods. scPOST models in-

ter-sample cluster frequency variation and

generates datasets based on (1) batch and

sample parameters learned from real input

prototype data (public or pilot), and (2)

user-specified scaling factors. scPOST

can model large studies based on minimal

input data and allows users to modulate

the parameters of the simulations, which

ultimately informs optimal study design.

We first show that scPOST can simulate

new datasets that mimic the structure of

the original data and then apply scPOST to
three diverse single-cell datasets, where we modify study design

parameters with the overall goal of guiding the design of larger

studies that maximize power.

RESULTS

Summary of statistical approach
scPOST comprises three steps: (1) parameter estimation from a

prototype dataset, (2) simulation of datasets based on estimated

parameters, and (3) power calculations from DA testing on the

simulated data (Figure 1).

scPOST relies on user-provided prototype data to estimate key

parameters used for simulation. Prototype data should reflect the

planned experimental setting, including the single-cell platform

being used, assayedcell states, and sample type.We recommend

that prototype data include aminimumof six samples with at least

500 cells per sample so that it properly captures the inter-sample

cell state and gene expression covariation of the expected data.

Users can modify key study design factors, including number of

cell states, number of samples, number of cells per sample, multi-

plexing structure, and magnitude of simulated noise.



Figure 2. scPOST simulates gene expression by sampling PC coordinates for each cell

For each cluster, we simulate batch- and sample-specific shifts with cluster-specific parameters estimated from real data (blue) and user-controlled scaling

factors (red). We sum these shifts with the cluster-specific centroid to obtain an adjusted centroid, which we use with the residual cluster-specific variation to

sample PC coordinates.
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Step 1:Wemodel gene expression in low-dimensional principal

components (PCs) rather than high-dimensionalmeasurements of

individual genes because PCs capture gene covariation and are

often the input for downstream analyses like clustering (Luecken

and Theis, 2019). Input data for scPOST typically consists of

PCs and cell state classifications (any arbitrary grouping of cells,

represented here as clusters derived from Louvain clustering

(Blondel et al., 2008; Levine et al., 2015). We model PC variation

in a cluster-specific manner since variance (such as batch-asso-

ciated variation) can be different for each cluster; these differential

variances are oftenmodeled and corrected for in batch-correction

algorithms (Haghverdi et al., 2018; Korsunsky et al., 2019).

For each cluster, we estimate the variance in PC space

captured by batch (SB) and sample identity (SS) with linear

mixed effects models that have batch and sample identity

fitted as independent random effects (Figure 2, STAR

Methods). From the same models, we retrieve each cluster’s

unconditioned centroid in PC space (m), representing that

cluster’smean value along each PC.We also obtain the resid-

ual variance (SC), representing cluster-specific variance not

attributed to batch or sample identity. From the input data-

set’s cluster frequency distributions, we estimate each

cluster’s log mean frequency across samples (mcf) and log

covariance with other clusters (Scf) (Figure S1A). By default,

we include cluster frequency covariances because certain

clusters may covary (e.g., the frequencies of T cells and B

cells may covary).
Step 2:During simulation, we simulate random linear shifts in a

cluster-specific manner for each batch m (bm) and each sample

d (sd) from the estimated parameters (SB) and (SS), respectively;

these shifts are multiplied by user-controlled scaling factors

(bscale and sscale, respectively) to modulate the magnitude of

these effects. These shifts produce an adjusted centroid (m0md)

for each batch-sample pair. Finally, we sample a PC coordinate

for each cell from a multivariate normal distribution centered at

the batch-sample adjusted centroid (m0md) with the estimated

cluster-specific residual covariance (SC) (Figure 2). We simulate

each sample’s cluster frequency distribution by sampling from a

multivariate normal distribution parameterized by (mcf) and (Scf),

respectively (STAR Methods). To simulate DA in cluster fre-

quencies, the user may choose a cluster to induce a fold change

(effect size) difference between conditions (e.g., a 2-fold expan-

sion in cases versus controls); otherwise, a cluster will be

randomly assigned. We encourage users to test a range of fold

changes to obtain a realistic idea of effect sizes they are likely

to detect.

Step 3: To estimate power, we independently cluster the cells

in each simulated dataset and test for DA with Mixed effects As-

sociation testing for Single Cells (MASC; Fonseka et al., 2018). In

brief, MASC fits logistic mixed effects models on single-cell data

and then performs a likelihood ratio test to determine whether a

full model containing case-control status explains a cell’s cluster

membership significantly better than a null model without

case-control status. For each simulation, we ran MASC on

each cluster and checked if any cluster p value passed a
Cell Reports Methods 1, 100120, December 20, 2021 3



Figure 3. The RA, TB, and UC datasets feature a diverse set of cell types, PC structures, and cluster frequencies

(A) UMAP visualizations of the RA, TB, and UC datasets colored by cluster.

(B) PC plots of each datasets highlight differences in PC structure, e.g., differing scale of PC values.

(C) Frequency distributions for each cluster. Dots represent the observed mean frequency of that cluster across all samples in their respective dataset. In all

panels, error bars represent 1 SD from the mean in each direction to showcase the spread of frequencies across samples.
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Bonferroni-corrected threshold of p < 0.05/k, where k is the num-

ber of simulated clusters. In a simulation, we considered detec-

tion successful when at least one cluster had significant DA be-

tween conditions (STAR Methods). We present power as the

percentage of successful simulations, e.g., 50%power indicates

successful detection in 250 of 500 simulations.

scPOST estimates parameters from three input
prototype datasets
To demonstrate the utility of scPOST, we applied our framework

to three independent scRNA-seq datasets: a rheumatoid arthritis

(RA) dataset containing 5,265 immune and stromal cells from 21

synovial tissue samples (Zhang et al., 2019a), a tuberculosis (TB)

dataset containing 496,517 peripheral blood memory T cells

from 259 peripheral blood mononuclear samples (Nathan et al.,

2021), and an ulcerative colitis (UC) dataset containing 235,229

immune and stromal cells from 30 intestinal biopsies (Smillie

et al., 2019). These data vary in scRNA-seq technology utilized,

tissues assayed, number of cells, number of samples, and num-

ber of clusters we derived from Louvain clustering (Figure 3A, Ta-

ble S1).

scPOST parameter estimation highlights the diversity of struc-

ture in single-cell datasets. For example, the RA andUCdatasets
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featured higher variance in PC space (Figures 3B and S1B),

which likely reflects the presence of multiple distinct broad cell

types. Furthermore, the cluster frequency variation between

samples in the RA and UC datasets tended to be higher in

more clusters compared with the TB dataset (Figure 3C),

perhaps since they are derived frommore heterogeneous disso-

ciated tissue compared with the less destructive collection of

blood.

scPOST simulates datasets that mimic gene expression
structure found in the input prototype data
PCs are commonly used to capture the structure of scRNA-seq

data. To evaluate the gene expression structure of simulated da-

tasets generated by scPOST, we first used the RA dataset as

input. We simulated a realistic, similarly sized dataset (5,250

cells, STAR Methods) and compared PC plots between the

real RA data and the simulated RA data (Figure 4A). Unsurpris-

ingly, the PC plots between the two datasets are extremely

similar, which suggests that the simulated PC structure

mimics the real dataset’s structure. We then performed two in-

dependent dimensionality reductions using either uniform

manifold approximation and projection (UMAP; McInnes et al.,

2018) or t-distributed stochastic neighbor embedding (tSNE;



Figure 4. scPOST can simulate realistic data-

sets with PC structure similar to the input RA

dataset

(A) PC plots comparing the real RA input dataset

with a realistic simulated dataset generated by

scPOST.

(B and C) UMAP or tSNE visualizations of the real RA

dataset and the simulated dataset, which were

embedded into the same respective UMAP/tSNE

space based off PCs.

(D) Violin plots comparing the distribution of silhou-

ette scores between the real RA dataset and the

simulated dataset.
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Van Der Maaten and Hinton, 2008) to independently embed the

cells from the two datasets into 2-dimensional space.

Comparing the UMAP embeddings or the tSNE embeddings be-

tween the real and the simulated datasets again shows that the

structure between the two is qualitatively similar (Figures 4B and

4C). Finally, we calculated silhouette scores, a measure of intra-

versus inter-cluster variability per cell, for each cell in both data-

sets (Figure 4D). Notably, the simulated data have similar silhou-

ette distributions, even in clusters with lower silhouette scores

(e.g., cluster 7). We then used scPOST to simulate realistic, simi-

larly sized data from the TB and UC datasets (496,503 and
Cell Report
235,200 cells, respectively). Again,

comparing PC, UMAP, and tSNE plots of

the simulated datasets with their respec-

tive input data showed similarity in struc-

ture (Figures S2A and S2B). We concluded

that our strategy can generate realistic da-

tasets that are similar in gene expression

structure to the input data.

scPOST simulates multi-sample
datasets that feature cluster
frequency variation
In addition to simulating gene expression

structure, scPOST simulates multi-sample

datasets whose samples have varying clus-

ter frequency distributions.When simulating

realistic datasets, scPOST can generate

cluster frequency distributions similar to

the real data (Figure S2D). scPOST allows

users to simulate cluster-specific expan-

sions between conditions (e.g., a 2-fold

expansion in a cluster between cases and

controls). Due to cluster frequency variation

between samples in a simulation, the

observed fold change in a cluster may vary

from the intended fold change. From simu-

lations derived from the RA data, we show

that with realistic cluster frequency variation

(cfscale = 1), the spread of observed fold

changes across simulations can be highly

variable, but reducing the cfscale parameter

leads to less variability (Figure S2E). When

cfscale is equal to 0, there is no cluster fre-
quency variation between samples, meaning that all samples

within a condition have the same cluster frequency distribution

and the observed fold change between conditions matches the

induced fold change.

scPOST estimates power benefits from expanding a RA
study
To highlight the value of scPOST in evaluating different study

designs, we used scPOST to determine how best to expand

the previously described RA study to more reliably detect an

expansion in a biologically relevant cluster. With mass
s Methods 1, 100120, December 20, 2021 5
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cytometry, the original authors identified an interesting and

robust expansion: HLAhi sub-lining fibroblasts are expanded in

inflamed RA samples compared with osteoarthritis (OA) controls

(n = 28); however, the authors were unable to detect this known

expansion in their scRNA-seq data (n = 21). We wondered

whether the authors’ inability to detect this expansion was due

to insufficient power, and whether we could modify their study

design to increase power. Thus, we simulated realistic datasets

derived from the RA fibroblast data and induced a fold change of

5 (comparable to study) in the cluster with the highest expression

of HLA in fibroblasts (Figure S3, STAR Methods). For 20, 40, and

80 samples, we simulated datasets with unbalanced case-con-

trol proportions similar to the original study: 17 case/3 control,

34 case/6 control, and 68 case/12 control samples, respectively.

The imbalance of cases and controls limited power, which was

only 12% for 20 samples, 29% for 40, and 75% for 80 (Figure 5A).

We then repeated these power analyses, but this time with study

designs containing an equal number of cases and controls

(STAR Methods). Unsurprisingly, power dramatically increased

to 60% at 20 samples, 89% at 40, and a full 100% at 80 (Fig-

ure 5A). This dramatic increase is likely a result of increasing

the smallest group (in this example, the number of controls),

which enhanced the ability for the mixed models of MASC to

detect differential abundance. Thus, we determined the number

of samples needed to noticeably increase power and estimated

the benefit of a study design that contains more balanced case-

control proportions.

Baseline power analyses estimate realistic power
We then performed a ‘‘baseline’’ power analysis for each data-

set to illustrate power under realistic parameters (derived from

input data); we used these results to contextualize the changes

in power from modifying study designs. We simulated datasets

with realistic cluster frequency variation and batch- and sam-

ple-level gene expression variation (STAR Methods). Each

simulation contained 50 case and 50 control samples, 500 cells

per sample, and four samples per batch. In each simulation, we

induced a fold change difference in one uniformly random cell

state.

For each experimental setting (RA, TB, and UC), we estimated

power over fold changes that range from subtle to large: 1, 1.05,

1.1, 1.25, 1.5, 2, and 4, corresponding to a 0%, 5%, 10%, 25%,

50%, 100%, and 300% respective increase in a cluster’s fre-

quency in cases versus controls. Power in the TB setting was

generally greater or equal to power in the RA and UC settings

(Figures 5B–5D, left, red bars). This difference likely reflects the

lower estimated cluster frequency variances in the T cell-only

TB data compared with the multiple cell type RA and UC data

(Figure 3C).

To evaluate how estimated power relates to the size of the

input dataset, we performed subsampling analyses by randomly

sampling smaller datasets that were then used as input datasets

(STARMethods). For each experimental setting, the subsampled

datasets generally produced lower power estimates (Figure S4).

This is likely due to the input providing a less accurate estimation

of realistic parameters. Notably, when subsampling the TB data-

set to the pilot data (48 samples), the power estimates are similar

compared with when using the full dataset as input. This sug-
6 Cell Reports Methods 1, 100120, December 20, 2021
gests there exists a minimum dataset size that achieves conver-

gent power estimates (Figure S4B).

Removing dominant sources of variation estimates
upper limits on power
Next, we wanted to estimate how intrinsic variation leading to

imprecise clustering might limit power in the absence of other

sources of noise. Since the TB and UC settings each have

many transcriptionally similar fine-grained states within broad

cell types, we predicted lower power in these settings

compared with RA, whose cell states are more transcriptionally

discrete.

Accordingly, we performed analyses in which we simulta-

neously removed three main sources of noise, which we call a

minimal-noise context: we assumed no cluster frequency varia-

tion and no batch-associated or sample-associated gene

expression variation, so that all noise is driven by the intrinsic (re-

sidual) gene expression variation (STAR Methods). If there were

absolutely no variation, statistical tests should have 100%power

to detect DA in a cluster; therefore, any reduction of power

observed in the minimal-noise context is due to intrinsic gene

expression variation. In all three experimental settings, we had

0% power to detect an extremely subtle fold change of 1.05,

indicating that intrinsic gene expression variation limits power

even in the absence of other sources of noise (Figures 5B–5D,

left, teal bars). However, we estimated 100% power at fold

changes as little as 1.1 and 1.25 in the RA and TB settings,

respectively, showing that intrinsic gene expression variation

does not limit power at these slightly higher effect sizes.

Cluster frequency variation dominantly affects power
We next wanted to determine which of the three sources of vari-

ation we removed in the minimal-noise context had the most ef-

fect on power. Accordingly, we performed simulations in which

we removed only one source of variation while leaving the other

sources at realistic levels (STAR Methods).

First, and most dramatically, we removed cluster frequency

variation (cfscale = 0) so that each simulated sample had the

same cluster frequency distribution before inducing a fold

change in a cluster. Unsurprisingly, this resulted in increased po-

wer, especially in the RA and UC settings (Figures 5B–5D, right,

blue bars). The higher increase in power for the RA and UC set-

tings likely reflects the higher variation in cluster frequencies

compared with those in the TB setting (Figure 3C).

Next, we removed batch-associated variation in gene

expression (bscale = 0) and observed minimal increases in po-

wer at most fold changes for all three experimental settings

(Figures 5B–5D, right, purple bars). Finally, we removed sam-

ple-associated variation in gene expression (sscale = 0) and

again observed modest changes in power for each fold change

in each setting (Figures 5B–5D, right, orange bars). These re-

sults suggest that cluster frequency variation has the most ef-

fect on power.

Increasing batch-associated transcriptional variation
decreases power
Batch effects can be reduced by investing time and energy into

improving protocols and reproducibility; however, the value of



Figure 5. scPOST estimates power from multiple study designs

Each bar represents n = 500 simulations. Error bars represent 95% binomial proportion confidence intervals; dotted horizontal purple lines are set at 5%.

(A) Results from increasing the size of a study.

(B–D) Left, Baseline/minimal-noise analyses for the RA, TB, andUCdatasets. Baseline context features realistic levels of cluster frequency (CF) variation and gene

expression variation (bscale = 1, sscale = 1, cfscale = 1). Minimal-noise removes these sources of variation (e.g., bscale = 0). Right, analyses in which only one source of

variation (CF, batch, or sample) is removed.

(E) Batch scaling simulations: 03 indicates no batch variation, whereas 43 indicates 4 times the level of estimated realistic batch variation. Induced fold changes

of 1.5 in RA and TB settings and fold change of 4 in UC.

(F) Power calculations derived from downsampling the RA UMI data (red = baseline).
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this investment is not always clear. To quantify how much

decreasing batch effects might increase power, we performed

analyses in which we modulated the level of batch-associated

variation (STAR Methods). We used a scaling factor (bscale) to

scale the input-derived estimates of batch-associated variance
by 03, 0.53, 13, 23, or 43. The batch-corrected RA setting

was largely resistant to highmultipliers of estimated batch-asso-

ciated variance, while the uncorrected batch TB and UC settings

showed decreased power at higher multipliers of batch-associ-

ated variance (Figure 5E).
Cell Reports Methods 1, 100120, December 20, 2021 7



Figure 6. scPOST estimates benefits ofmulti-

plexing and increasing dataset size

(A) Power estimates comparing a sequential versus

multiplexed study design. We simulated these study

designs with varying levels of batch effects: 13 (level

derived from input data), 23, and 43. Each bar

represents n = 500 simulations. Error bars represent

95% binomial proportion confidence intervals;

dotted horizontal purple lines are set at 5%.

(B–D) Power calculations across a range of dataset

sizes at fold changes of 1.5, 2, or 4. Tiles represent

n = 100 simulations. We performed simulations in

the baseline context. Tiles across top left-bottom

right diagonals have equivalent numbers of cells;

tiles outlined in red all have 16,000 total cells.
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Power estimations are robust to modest decreases in
sequencing depth
Sequencing depth is an important property of single-cell studies

because it not only affects the detection of transcripts, but also

the precision with which cells are classified and, thus, power.

To measure how reduced sequencing depth affects power, we

first downsampled the RA dataset’s UMI counts (STAR

Methods). From the original dataset (7,300 mean UMIs), we

sampled datasets with 1,825, 730, 365, and 73 mean UMIs (Fig-

ure S5A). For each downsampled dataset, we applied a standard

principal component analysis (PCA) pipeline. UMAP visualization

suggests that the datasets with a mean of 730 UMIs or lower re-

sulted in cluster mixing (Figure S5B). We input the PCs from each

sampled dataset and the clusters obtained from the original RA

dataset into scPOST.

Atmost foldchanges,weobservedminimaldifferences inpower

between the original dataset and the dataset with 1,825 mean

UMIs (Figure 5F, red/dark teal). However, when downsampling
8 Cell Reports Methods 1, 100120, December 20, 2021
to 730 mean UMIs or lower, we observed

noticeablepower lossat foldchangesabove

1.5. These results show power is robust to

modest decreases in sequencing depth,

but reducing to extremely low depth can

eventually confound cluster classification

and power.

Multiplexed study designs can
decrease batch effects and increase
power
Multiplexing by running multiple samples

in a single batch can reduce the number

of batches (and the impact of batch

effects) in a study. We sought to esti-

mate how power is affected by reducing

the number of batches (by increasing

the number of samples per batch). In the

TB setting, we modulated the magnitude

of batch-associated variance in addition

to reducing the number of batches

(STAR Methods). At realistic (13) levels

of batch variance, reducing the number

of batches resulted in minimal power
changes (Figure S6A). In contrast, at 43 the realistic batch-

associated variance, we observed that multiplexing to reduce

the number of batches rescues power to levels observed at

13. While effective, this strategy requires a small number of

batches with large numbers of samples and cells, which may

not be feasible in all experimental settings.

We then investigated another multiplexing scheme that re-

tained the same number of cells per batch and total samples,

but distributed samples across multiple batches. As a control,

we assessed a sequential study design with realistic parame-

ters consisting of 100 samples (2,000 cells each) placed into

100 individual batches. We compared the control study design

with a multiplexing scheme that still contained 100 samples of

2,000 cells each across 100 batches, but each batch contained

500 cells from four different samples (Figure S6B, STAR

Methods). Multiplexing yielded noticeable improvements,

especially at higher multipliers of batch effects (Figure 6A).

These benefits are likely due to the multiplexing design



Figure 7. Power estimates when focusing on

detecting effects in rare clusters (<1% mean

frequency across samples)

Power calculations for detecting effects in rare

clusters across different ranges of dataset sizes at

fold changes of 1.5, 2, or 4 (same fold changes as

shown in Figures 6B–6D). Each tile represents

power estimation from n = 100 simulations. Simu-

lations were performed in a realistic context and

frequency fold changes are induced only in original

clusters that exhibited <1% mean frequency across

samples.
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enabling better estimation of batch effects on individual

samples.

Increasing the number of samples improves powermore
than increasing cells per sample
Collecting a large number of samples can be difficult, due to

cost and limited availability. Likewise, increasing the number

of cells per sample can be prohibitive due to protocol limita-

tions and constraints on the size of each sample, leading to

important tradeoffs in cost and power. Thus, we wanted to

investigate whether more power is gained by increasing the

number of samples versus increasing the number of cells per

sample.

In each experimental setting, we simulated datasets in the

baseline context while varying the number of samples and cells

per sample. As an example, for simulations with 16,000 total

cells (Figures 6B–6D, red outline), we simulated 10, 20, 40, 80,

and 160 samples with 1,600, 800, 400, 200, and 100 cells

each, respectively. In all three experimental settings, for the

same total number of cells, increasing the number of samples

yielded noticeably higher increases in power compared with

increasing the number of cells per sample.We observed a similar

pattern across all tested fold changes (Figures S7A–S7C).
Cell Report
We then performed a similar analysis

focused on a scenario in which the investi-

gator is only interested in cell types

whose true abundance is rare (<1% mean

frequency across samples). Rare cell types

are typically harder to identify in single-cell

experiments, and inaccurate frequency es-

timates may lead to decreased power (Fig-

ure S8A). In this scenario, increasing the

number of cells per sample may be impor-

tant in detecting effects. Across all three

datasets, we found that when focusing on

rare cell types, power was generally lower.

Surprisingly, increasing the number of

samples still provided similar or better po-

wer benefits compared with increasing

the number of cells per sample, even

when focusing on rare cell types (Figures

7A–7C). Given these results, we gener-

ally recommend that investigators focus

on increasing the number of samples,
although increasing the number of cells per sample may have

similar power benefits in specific experimental contexts.

Estimated power is maximized when simulated
clustering structure is similar to input data clustering
In the previous simulations, we used Louvain clustering to cluster

our simulated datasets before DA testing and estimating power.

A key parameter of the Louvain algorithm is ‘‘resolution,’’ which

affects the number of clusters retrieved from the algorithm. To

evaluate how resolution affects the behavior and power of

scPOST, we used the RA dataset as input, which featured 12

clusters retrieved from clustering at a resolution of 1.2. After

simulating 100 datasets in the baseline context, we clustered

each simulation over a range of resolutions and retrieved the

number of clusters obtained (Figure S8B). Unsurprisingly, higher

resolutions generally yielded more clusters. We then performed

DA testing for each resolution in each simulation with MASC

and estimated power. In general, power was similar among res-

olutions 0.4, 0.8, 1.2, and 2, but noticeably lower at resolutions of

0.1 and 0.2 (Figure S8C); this suggests that diluting an effect by

keeping it in larger clusters can significantly decrease our power,

but breaking the effect up into smaller clusters is less impactful.

We further assessed power at a fold change of 2, as it was the
s Methods 1, 100120, December 20, 2021 9
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most variable fold change between resolutions. Regardless of

the resolution value, we had maximum power when the number

of clusters was similar to the number of original clusters (11–14

clusters, Figure S8D).

To create a clearer picture on how clustering resolution affects

the structure of simulated datasets, we used an ‘‘interpretability’’

metric that quantifies whether simulated cells from the original

‘‘causal’’ cluster (the cluster we induced a fold change into) are

placed in DA clusters; interpretability quantifies how well we

detect the ‘‘correct’’ effect (STAR Methods). Like power, inter-

pretability scores at resolutions of 0.4, 0.8, and 1.2 were similar;

however, interpretability scores for 0.1, 0.2, and 2 were notice-

ably lower (Figure S8E). We again observed that interpretability

scores tend to be maximized when the number of clusters was

11 to 14 (Figure S8F), similar to the optimized clustering of the

original data. Unsurprisingly, these analyses suggest that esti-

mated power and interpretability are maximized when the simu-

lated clusters have similar structure compared with the input

data. Overall, we recommend users try a range of resolution

values.

scPOST scales to large datasets and facilitates multi-
sample, multi-cell type dataset generation
Current scRNA-seq dataset simulation methods such as Sym-

Sim (Zhang et al., 2019b) and powsimR (Vieth et al., 2017) strug-

gle to simulate reasonably large datasets (>25,000 cells)

because they simulate individual genes for each cell that requires

prohibitive computational resources/time even when simulating

only 2,000 genes per cell (Table S2). Current methods also lack

support for simulating multi-cell type and multi-sample data,

and lack estimation and generation of independent samples

with cell type frequency variation. scPOST addresses these lim-

itations and scales to large dataset generation (Table S2), which

makes DA power estimation feasible.

scPOST facilitates evaluation of alternative models and
algorithms
For previous results, we used MASC, which applies mixed

models that contain covariates (e.g., batch identity) to test for dif-

ferential abundance. We wondered how much incorporating

random effects, such as batch information, contributed to po-

wer. Thus, we used simple fixed-effects models for DA testing

and compared power with MASC (STAR Methods, Figure S9A).

In general, MASC provides better power than a straight fixed-ef-

fects approach, highlighting the impact of random effects.

While we analyzed simulated datasets with Louvain clustering

and MASC, the generated datasets can be analyzed with alter-

native algorithms, especially tools that explicitly use PC informa-

tion. Thus, scPOST provides an opportunity for users to explore

how different algorithms perform on simulated single-cell data.

For example, users may cluster the simulated datasets with an

alternative clustering algorithm and estimate power. For demon-

stration, we used the RA dataset to simulate datasets in the

baseline context and then clustered cells with the SC3 clustering

algorithm (Kiselev et al., 2017) before DA testing with MASC and

estimating power (STAR Methods). Estimated power was

similar, regardless of whether we used the Louvain or SC3 clus-

tering algorithm (Figures S9B and S9C).
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A new class of DA tests focuses on using neighborhoods as an

alternative to clusters. Milo (Dann et al., 2020) is a DA neighbor-

hood test that uses a dataset’s PCs as input to find neighbor-

hoods and calculates a false discovery rate (FDR) value for

each neighborhood to determine whether that neighborhood is

DA between conditions. To evaluate Milo’s performance, we

used the RA dataset to simulate datasets in the baseline context

and then used Milo for DA testing instead of MASC (STAR

Methods). Notably, we detected significant DA neighborhoods

even when no effect was induced at a fold change of 1 (Fig-

ure S9D). Even when cfscale is equal to 0 (meaning the fold

changes between conditions are exact), we detected DA neigh-

borhoods at a higher rate than expected at the FDR <5% level

(Figure S9E). Notably, while power generally did not vary with ef-

fect size at cfscale = 1, the percentage of DA neighborhoods

increased as effect size increased (Figure S9F). These results

warn that significance values at the neighborhood level may

not be well calibrated and should be contextualized by a more

global metric that relates to how many DA neighborhoods are

present in the data.

scPOST uses a cluster-based framework, as parameter esti-

mation and dataset generation occur at the cluster level. Since

Milo uses neighborhoods, it is possible that Milo’s performance

is affected by using a cluster-based input. Hence, we modified

the RA input to become a neighborhood-based input by instead

labeling cells with the neighborhood they belonged to as desig-

nated by Milo (STAR Methods). Neighborhoods that contained

<5 cells were excluded from the input. Even with a neighbor-

hood-based input, power estimates remained similar, with a

higher rate of positive detections than expected at a fold change

of 1 (Figure S9G).

DISCUSSION

Here, we demonstrate the utility of scPOST by simulating thou-

sands of large single-cell datasets to investigate how different

study design choices affect power to detect differential abun-

dance between conditions, thus informing optimal allocation of

limited resources, e.g., cost of patient samples and single-cell

assays. scPOST is particularly useful because it estimates power

from a user-defined prototype dataset, which may be a pilot or

public dataset, such as from the Human Cell Atlas (Regev

et al., 2017), that reflects the planned experimental setting.

In a powerful use case, we used scPOST to determine how to

expand the 21-sample RA study to more robustly detect an

expansion of HLAhi fibroblasts. We found we could significantly

increase power by increasing the number of samples and adopt-

ing a study design with a balanced proportion of case and con-

trol samples. Given that we and others find that shallower

sequencing or assaying fewer cells per sample does not gener-

ally compromise power (Pollen et al., 2014; Mandric et al., 2020),

it is more effective for investigators to allocate these resources to

obtaining more samples.

We observed several patterns across three diverse experi-

mental conditions. We consistently found that three factors sub-

stantially influenced overall power: the number of independent

samples, a cluster’s frequency variation across samples, and

the magnitude of batch effects. In contrast, we found that



Article
ll

OPEN ACCESS
acquiring more cells per sample and deeper sequencing had

more modest effects on power.

Minimizing batch effects can result in higher power and

increased accuracy in the identification of cell states. We

observed that a multiplexing scheme that splits samples across

multiple batches can provide significant benefits to power by

reducing batch effects. If it is more difficult for a study to obtain

more samples, but the samples are big enough to be split into

multiple batches, using this multiplexing scheme may be a way

to increase the study’s power.

The datasets generated by scPOST are easily compatible with

tools that explicitly use PCs as input. Thus, users may explore

how alternative clustering algorithms, differential abundance

tests, or association testing schemes perform on simulated sin-

gle-cell data as parameters vary (such as increasing the number

of samples and/or cells per sample).

We envision that scPOST will be applied to representative

public datasets or pilot studies in order to predict power of future

studies. Alternatively, our tool can be used retrospectively to

determine the range of effect sizes that a completed study is

actually powered to detect. As single-cell studies become larger

and shift toward comparing conditions, we expect scPOST to be

broadly useful for investigators in many experimental settings for

defining optimal study designs.

Limitations of the study
We chose to simulate gene expression as PC coordinates; this

precludes these datasets from directly being analyzed by tools

that require rawgene expression data (althoughPC loadings allow

us to work backward to retrieve simulated gene expression).

Nevertheless, scPOST allows users to output the simulated data-

sets, which can be analyzed with tools that use PC coordinates or

graphs derived from PC coordinates, such as alternative clus-

tering algorithms (SC3), alternative differential abundance algo-

rithms (Milo), or trajectory analysis (Haghverdi et al., 2016; Qiu

et al., 2017). With newer multimodal technologies such as CITE-

seq becoming more available, analyses of these new data types

may include dimensionality reduction with alternative methods,

such as canonical correlation analysis (Stuart and Satija, 2019)

and nonlinear embeddings (Gayoso et al., 2019, 2020). Simulating

new types of data in the context of these alternative tools, such as

simulating canonical variate coordinates instead of PC coordi-

nates, represents a possible extension of scPOST. Another poten-

tial extension is associating cluster frequencies with alternative

variables beyond case-control status, including continuous vari-

ables (e.g., polygenic risk score).

We showed that the size of the prototype dataset may affect

power estimation, especially when the number of samples or

cells is small. Our benchmarking strategy emphasizes clusters

found in the prototype data; thus, if a study’s focus is on a rare

cell type that is potentially missing in a small prototype dataset,

then power estimates may not be well-calibrated.

The current scPOST pipeline focuses on estimating power to

detect differential abundance. Alternative effects that investiga-

tors commonly search for include differential gene expression

between conditions, or shifts in trajectories. To explicitly test

for these effects, scPOST would require further extension so

that simulated data include these effects.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

AMP Rheumatoid Arthritis Phase 1 (processed) ImmPort ImmPort: SDY998 (https://www.immport.org/shared/study/SDY998)

AMP Rheumatoid Arthritis Phase 1 (raw) dbGaP dbGaP: phs001457.v1.p1 (https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs001457.v1.p1)

Human ulcerative colitis single-cell dataset Single-Cell Portal

(Broad Institute)

SCP: SCP259 (https://singlecell.broadinstitute.org/single_

cell/study/SCP259/intra-and-inter-cellular-rewiring-of-the-

human-colon-during-ulcerative-colitis)

TBRU memory T cell CITE-seq data GEO GEO: GSE158769 (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE158769)

Software and algorithms

scPOST (current version) GitHub https://github.com/immunogenomics/scpost

scPOST (repository) Zenodo https://doi.org/10.5281/zenodo.5573126
RESOURCE AVAILABILITY

Lead contact
Further information and requests for data should be directed to and will be fulfilled by the lead contact, Soumya Raychaudhuri

(soumya@broadinstitute.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All datasets analyzed in this paper are publicly available. Processed scRNA-seq data for the RA dataset is available at ImmPort

accession SDY998, and the raw scRNA-seq is available at dbGaP accession phs001457.v1.p1. Processed scRNA-seq data for

the UC dataset is available at Single-Cell Portal: SCP259. We provide processed metadata tables (including cell state cluster assign-

ments) and gene expression matrices for the RA and UC datasets at https://github.com/immunogenomics/scpost. The memory

T cell CITE-seq data from the TB dataset is available at GEO accession GSE158769. Links for each dataset are included in the

key resources table.

An R implementation of the scPOST framework (along with input prototype data structures from the RA and UC datasets) is pro-

vided at https://github.com/immunogenomics/scpost. scPOST was deposited to Zenodo at https://doi.org/10.5281/zenodo.

5573126.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Overview of single-cell POwer Simulation Tool (scPOST)
The goal of scPOST is to provide a flexible tool to simulate single-cell datasets that approximate an experimental context. scPOST

uses input prototype datasets (e.g. a public dataset or pilot dataset) to estimate characteristic qualities of an experimental setting,

such as the variation in cell state (cluster) frequencies across samples and the gene expression structure of cells likely to be

measured in the setting. By modifying the study design of the generated datasets, investigators may use scPOST to predict how

specific study design choices might affect the analysis results of a single-cell experiment. We envision scPOST will be helpful for

investigators in planning the design of their studies so that theymaymaximize their power to detect effects, such as differential abun-

dance (DA) of a cell state between conditions (e.g. expansion of a cell state in case samples versus control samples).

Here, we present scPOST as comprising three steps: (1) parameter estimation that takes a prototype dataset as input, (2) simu-

lation of a new single-cell dataset based on the estimated parameters, and (3) power calculations from performing DA testing

with Mixed effects Association of Single Cells (MASC). We note that users may stop after the second step, and instead perform

other analyses on the simulated datasets. The user is able to customize the construction of the simulated dataset in several ways

including: the number of total cells, the number of total samples, the number of cells per sample, the number of batches, multiplexing

structure, and the magnitude of noise that contributes to the variation of gene expression or cluster frequencies. By modifying how
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the simulated data is generated, investigators may use scPOST to estimate how changes in study design affect their ability to detect

effects.

Currently, scPOST can produce two different types of output: (1) simulated datasets in the form of each cell’s meta information and

principal component coordinates (2) power calculations from DA testing. Most results presented in this paper are power calculations

fromDA testing, but usersmay instead retrieve the simulated datasets and perform alternative analyses, a procedurewe utilize for the

SC3 and Milo analyses. As simulated datasets are generated in the form of principal components, the most compatible analyses are

those that utilize principal components. Implementations of scPOST are available as part of an R package at https://github.com/

immunogenomics/scpost, along with several of the input prototype datasets showcased in this paper. The following sections explain

the procedures used in the scPOST framework.We begin with how scPOST simulates single-cell datasets, and then proceed into DA

testing with MASC and power estimation. We conclude with procedural details about specific analyses presented in the paper.

Step 1: Parameter estimation
We estimate and simulate gene expression in the form of principal components (PCs). In the context of scRNA-seq analysis, PCs

capture gene expression covariation and are frequently used to summarize high-dimensional scRNA-seq data. To generate a

new single-cell dataset S in the form of a cell by PC matrix, we estimate several key parameters from the original input prototype

dataset. The PC embeddings (received from PCA) for each cell, as well as their cluster classifications (established by Louvain clus-

tering) are used as input for parameter estimation.

Using linear mixed models to estimate gene expression variation summarized in principal component space

We focus on variation in PC space, which represents variation in gene expression. We perform the following procedures in a cluster-

specific manner because variance in PC space can differ between cells in different clusters; differential variances are often modeled

and corrected for in batch-correction algorithms. In the parameter estimation step, we focus on each cluster’s variance along each

PC. We deconvolute this total variance into different sources (batch, sample, or residual) with linear mixed effects models. Here, we

explicitly estimate contributions that batch and sample identity have on gene expression variation, because batch and/or sample

identity are: (1) covariates that are commonly thought of as contributing to variation, (2) tend to be covariates that are corrected

for in scRNA-seq analyses, (3) almost always present in metadata. We note that this process is generalizable to many covariates,

and models can be fit with an alternative set of covariates (e.g. only fitting a model that explicitly estimates variation contributed

from sample identity). If users choose to model a different set of covariates, they should also augment the estimation and simulation

steps to include how they expect the new/different covariates to affect gene expression.

To deconvolute cluster-specific variance in PC space, we fit linear mixed effects models of the form:

Y = Xb+Zu+ ε (Equation 1)

Where the unconditional distribution of random effects designated by u are:

u � N
�
0; t2

�
(Equation 2)

Beta represents an unknown vector describing fixed effects. In our model, beta empirically estimates the PC centroid for a cluster.

Epsilon represents unknown vectors of random errors (residuals). In our model, epsilon empirically estimates the remaining variation

not explicitly captured by the batch and sample covariates that were included as random effects in the model. The t2 parameter that

is estimated for each randomeffect (in this case, batch and sample) is an empirical estimate of the effect’s variance contribution to the

response variable. Again, we assume that each cluster has different batch-associated and sample-associated variation. Thus, for

each cluster k, we fit the following formula for each PC (default of 20 PCs) with the R function ‘‘lmer’’ from the ‘‘lme4’’ package:

PC � 1+ ð1jbatchÞ + ð1jsampleÞ (Equation 3)

Because we fit randommodels for each PC for each cluster, we fit k 3 nPCmodels, where nPC is the number of PCs. After fitting,

we extract the following elements from each model:

mk: The fixed effect intercept of a model, representing the unconditional mean value in PC space. The mean value for all PCs of a

cluster represents its centroid.

SB: The estimated t2 values for the batch random effect fitted for each PC, representing the contribution batch identity has on gene

expression variation in a cluster.

SS: The estimated t2 values for the sample random effect fitted for each PC, representing the contribution sample identity has on

gene expression variation in a cluster.

SC: The estimated residuals fitted for each PC, representing the remaining variation not explicitly estimated from our covariates.

We interpret this value as variation ‘‘intrinsic’’ to the cluster, but some of this variation may contain variance associated with other

covariates we did not fit.

For each cluster, we enforce SB and SS to be diagonal matrices where the diagonal elements are the estimated t2 values for batch

or sample respectively. The residual values SC are placed into an nPC x nPC variance-covariance matrix for each cluster.

Estimating cluster frequency variation

For each cluster, we estimate its mean frequency and covariation across samples. These variances can be relatively large, especially

if the samples are from humans. The observed cluster frequency (CF) variation is likely a result of: (1) the differences between the true
e2 Cell Reports Methods 1, 100120, December 20, 2021
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distribution of cell states from the sample’s origin and (2) technical sampling variation induced by obtaining and processing the sam-

ples. Here, we do not distinguish between these different sources of variation.

To calculate the mean and variance of cluster frequencies in a dataset, we first count the frequency of each cluster in each sample

and increment these frequencies by a pseudo-count of 1. Within each sample, the frequencies are transformed into proportions by

dividing each frequency by the total number of cells within that sample. The mean of these proportions across all samples is repre-

sented by mcf.

During dataset generation (Step 2), we sample CF distributions in log-space. Thus, mcf is transformed into log-space. Furthermore,

the aforementioned proportions are then log-transformed, which we then use to calculate a variance-covariance matrix of the cluster

frequencies Scf in log-space.

Step 2: Generating a single-cell dataset
In our simulations, we use an input prototype dataset X to generate a new single-cell dataset S in the form of a cell by PC coordinate

matrix. As part of dataset generation, we assign each single-cell the following meta information: (1) batch identity, (2) sample identity,

and (3) the original cluster assignment, which is used to generate its PC coordinates. Note, the original cluster assignmentsmay differ

from clustering assignments produced in downstream analysis (which is performed in Step 3). Overall, we simulate datasets based

on two general aspects of variation in a single-cell dataset: the variation in cluster frequencies across samples, and the variation in

gene expression.

Simulating cell state frequency distributions

The power to detect differential abundance (DA) in an experiment is dependent on the frequency distributions across the samples.

Thus, it is important for simulations to generate cluster frequency (CF) distributions for each sample. scPOST allows users to generate

CF distributions that reflect the observed CF variation in a specific experimental setting, as well as increase or decrease the simulated

levels of CF variations. As described in the Section "Estimating cluster frequency variation", we empirically estimate a k-length mean

CF distribution mcf (whose elements contain the observedmean frequency of a cluster across all of the samples in the dataset) and its

corresponding variance-covariance matrix Scf.

When sampling CF distributions, we sample in log-space so that we do not sample negative frequencies. Thus, we first transform

mcf and Scf into log-space. For each simulated sample, we generate their CF distribution from a multivariate normal distribution

parameterized by mean mcf and covariance Scf(both now in log-space); we allow users to scale the amount of CF covariation that is gener-

ated via a scaling parameter cfscale. If cfscale is set to 0, the simulated samples will all have the exact same CF distributions. The

sampled k-length vector is then transformed back into linear space. A CF distribution F is thus distributed as:

F � eNðmcf ; Scf � cfscaleÞ (Equation 4)

Finally, each value in F is divided by the sum of all values in F to create a probability distribution. Each sample’s generated CF dis-

tribution is used to determine howmany of its cells are assigned to each cluster. Samples are pre-assigned to batches based on the

user-defined batch structure (e.g. 16 samples split into four batches, with four samples per batch). We provide functions that help

users split samples into batches based on the R function ‘‘split’’.

Inducing a fold change difference in a cluster between conditions

Here, we define a fold change in a cluster as the ratio of cells in one condition compared to the other (e.g. a fold change of 4means the

number of case cells in a cluster is 43 compared to the number of control cells in a cluster). In our simulations, we induce a user-

defined fold change difference in one cluster, which is the differential abundance we wish to detect. To induce a fold change differ-

ence in a cluster between conditions, we alter all of the CF distributions generated for all samples in one condition. Here, we alter the

case samples. Given an initial generated CF distribution, we first scale the frequency of the selected cluster by the magnitude of

the fold change we wish to induce, which gives us the new frequency for the cluster of interest and some remaining probability

mass. The frequency for the cluster is capped at 1, which would mean all cells from that sample come from this cluster. The fre-

quencies for the remaining clusters are then divided by their sum (the sum of the frequencies of the remaining clusters), and then

scaled by the remaining probability mass. If there is no CF variation (cfscale = 0), then the observed fold change will be exact. With

CF variation, the observed fold change will vary around the intended effect size.

Representing single cells in PC coordinates

Principal components derived from principal component analysis (PCA) on a cell by gene matrix, are summaries of gene expression

and represent data structure in the context of covariation between genes. PCA is commonly used in dimensionality reduction pipe-

lines for single-cell analyses. The PC embeddings (values) for each cell represent its location in PC space and its gene expression

signature relative to other cells. Cells closer to each other in PC space generally havemore similar gene expression profiles than cells

further away from each other, which is a consequence of PC coordinates encoding covariation structure betweenmultiple genes. We

estimate variation in PC space in parameter estimation (Step 1), andwe generate PC coordinates for each simulated cell (Step 2). The

generated PC locations for our simulated cells L can then be used for downstream analysis.

Simulating PC coordinates for a cell state

Variation in gene expression can influence our ability to detect differential abundance, as high variation may result in misclassification

of cell states via clustering algorithms. Our simulation approach assumes that each cluster has different levels of variation, which is
Cell Reports Methods 1, 100120, December 20, 2021 e3
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clear from variance estimation. Furthermore, we assume that the gene expression of each cell state is affected by batch or sample

effects (derived from the batch the cell was run in or the sample origin respectively) differently.

For simulated cells, we assign initial cluster identities that are analogous to the clusters in the original input dataset X; these as-

signments are derived from generated CF distributions that we defined in Equation 4. We generate PC coordinates based on the

simulated cell’s assigned cluster identity. If c is the number of cells in a simulated dataset and nPC is the number of PC dimensions

we simulate, we simulate a matrix of PC coordinates whose dimensions are c 3 nPC.

For each cluster, we assume that its PC coordinates are distributed around some nPC-dimensional centroid mwith covariance SC.

In our simplest generative model without batch or sample effects, we simulate an nPC-dimensional vector of PC coordinate for each

cell based on its assigned cluster. To generate L, we sample from a multivariate normal distribution parameterized with mean m and

covariance SC, giving L the following distribution:

L � Nðm;SCÞ (Equation 5)
Simulating technical effects (batch and sample-level effec
ts)

Here, we use linear mixed models to explicitly model the magnitude of batch-associated variation in PC space and sample-associ-

ated variation in PC space. These models allow us to estimate howmuch variation that batch identity and sample identity contribute

to a specific model’s total variation in PC space. As we assume the contribution of batch and sample effects is cluster-specific, we

generate a batch/sample effect for each cluster we simulate.

We generate batch and sample-level effects by using the parameter estimates SB and SS that we retrieved from Step 1 (Equation

3). These generated effects take the form of linear shifts that are summed with their respective centroid. We generate batch linear

shifts with a multivariate normal distribution with mean 0 and covariance SB, which represents the cluster-specific variance of cells

in PC space contributed from batch effects. Similarly, we generate sample linear shifts with a multivariate normal distribution with

mean 0 and covariance SS, which represents the cluster-specific variance of cells in PC space contributed from sample effects.

In order to modulate the magnitude of these batch and sample linear shifts (and thus the magnitude of the batch/sample effects),

we use scale factors, bscale and sscale respectively. If bscale is set to 0, there will be no batch linear shift (equivalent to 0 batch-asso-

ciated effects in the simulated dataset). The same is true for sscale. These scale factors are used to modulate the covariance of the

multivariate normal distributions we sample from. Thus, our simulated batch/sample linear shifts for batchm or sample d respectively

have the distributions:

bm � Nð0; SB �bscaleÞ (Equation 6)
sd � Nð0; SS � sscaleÞ (Equation 7)

Each cluster’s batch and sample linear shifts are summed with its respective cell state centroid in order to create an adjusted

centroid that is dependent on cluster assignment, batch identity, and sample identity. Thus, a cluster’s adjusted centroid for cells

from batch m and sample d, m0md, is formulated as:

m0
md = m+ bm + sd (Equation 8)

In our generative model that incorporates batch and sample-level effects on gene expression, we generate a cell’s PC coordinates

based on its cluster’s adjusted centroid and its respective cell state covariance SC. Thus, the PC locations for cells from batchm and

sample d, Lmd, are distributed as:

Lmd � Nðm0
md;SCÞ (Equation 9)
Step 3: Power estimation from differential abundance testing
Testing clusters for differential abundance (DA) with MASC

The output of Step 2 is the PC coordinates of a generated single-cell dataset. For DA testing, we first generate new cluster labels for

each cell (which are based on the generated PCs) by creating a shared nearest neighbor (SNN) graph (k = 30) and using Louvain’s

method of community detection (resolution controlled by the user). For most analyses, we used the same resolution that was used for

the original input prototype dataset. From this procedure, we obtain new cluster assignments for each of our simulated cells.

We test each cluster for DA between two conditions, which we refer to as case vs. control. A simple DA test would be to utilize

Welch’s unequal variance t-test to test whether a cluster’s mean frequency in cases is significantly different than the same cluster’s

mean frequency in controls. Notably, this procedure utilizes sample-level information, but not information provided by other cova-

riates (such as batch). The inability to control for more covariates may lead to inflated p values. Thus, we use an alternative method

called Mixed effects Association testing for Single Cells (MASC), which is a DA test that utilizes logistic mixed effects models to test

whether a cluster’s identity is associated with its condition status. Importantly, MASC allows the user to control for potentially con-

founding single-cell covariates and has well-calibrated type 1 error. For all of our results, the null and full models used as input for

MASC are as follows:
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Null : clusterIdentity � 1+ ð1jbatchÞ + ð1jsampleÞ (Equation 10)
Full : clusterIdentity � condition+ ð1jbatchÞ + ð1jsampleÞ (Equation 11)

Where clusterIdentity refers to the cluster assignments obtained from clustering the simulated dataset, condition refers to the cate-

gory the simulated cell belongs to (e.g. case or control), batch refers to the batch the cell belongs to, and sample refers to the sample

the cell belongs to.

For most analyses presented in this paper, we performed many simulations. In each simulation, we randomly chose a cluster to

induce a differential abundance in. The power results we report are an aggregate of all simulations, meaning that the power repre-

sents an ‘‘overall’’ power across all cell states in the experimental setting. We allow users to focus on specific clusters by either

choosing only a specific cluster to induce an effect in, or by stratifying their power results by cluster.

Power estimation

For each simulation, we test all clusters for differential abundance. Here, we considered a simulation to have successful detection if at

least one cluster had DA between conditions. Significance is defined by the Bonferroni-corrected threshold of p < 0.05/k, where k is

the number of clusters tested in the simulation. We note that it is often the case that the cluster we induce a fold change into con-

tributes to one of these clusters, but we do not require it to. This is becausewhen the number of cells in a sample is fixed, changing the

frequency of a cluster in a sample inherently changes the frequency of other clusters in the sample. Furthermore, cluster frequencies

can covary with others, which could potentially result in a covarying cluster exhibiting DA, even though we did not induce a fold

change into the cells comprising the cluster. To quantify howmuch we are detecting the ‘‘correct’’ effect, we utilize an interpretability

metric that we define in the next section.

For power estimation, we performed many simulations (either 100 or 500) for each combination of parameters and defined power

as the number of simulations in which we successfully detected DA. 50% power means we successfully detected DA in half of the

simulations. The error bars in presented power plots are 95% binomial proportion confidence intervals.

Quantifying interpretability of a simulation

It is possible in a simulation for us to detect a cluster which contains cells with an originally assigned cluster identity that is not the

cluster we induced a fold change in. At the beginning of the data generation step, each cell is assigned a sample, batch, and an ‘‘orig-

inal’’ cluster identity. After the dataset is generated, we then re-cluster the simulated dataset, and each cell is also given a ‘‘new’’

cluster identity. In this framework, we define the ‘‘causal’’ cluster as the ‘‘original’’ cluster that we induce a fold change in. With these

definitions, we look at each ‘‘new’’ cluster and determine howmany cells it contains that had an ‘‘original’’ cluster identity that was the

‘‘causal’’ cluster. Thus, for each simulation, we quantify howmuchwe are detecting the ‘‘correct’’ effect in a simulation by calculating

an interpretability score with the following procedure:

1. Determine if the simulation contains significantly DA clusters. If there are no DA clusters, we set interpretability to 0. If there are

DA clusters, we proceed to step 2.

2. Give each cell in a simulation a value of 1 or 0 based on whether it was originally assigned to the cluster we induced an effect

into.

3. Give each cell in a simulation a value of 1 or 0 based on whether it belongs to a simulated cluster that we detected differential

abundance in.

4. Calculate the correlation between the values generated in 2 and 3.

Thus, interpretability quantifies a combination of: (1) howmany cells that should end up in a simulated DA cluster actually ended up

in a DA cluster, and (2) howmany cells that should not have ended up in a DA cluster ended up in a DA cluster. If cells from the original

causal cluster do not end up in DA clusters, interpretability tends towards zero. If cells from the original causal cluster end up in DA

clusters and cells that are not from the original causal cluster do not end up in DA clusters, interpretability tends toward 1. An overall

interpretability score is calculated for each simulation in the clustering analyses presented in Figure S8.

Analysis details
As outlined in Table S1, the rheumatoid arthritis (RA), tuberculosis (TB), and ulcerative colitis (UC) datasets were obtained from three

separate studies with diverse settings. The scRNA-seq RA data were derived from synovial tissue obtained from joint replacement

procedures or ultrasound-guided biopsies. The scRNA-seq TB data were derived from peripheral blood mononuclear cells (PBMCs)

in blood. The scRNA-seq UC data were derived from intestinal tissue obtained from biopsies.

Pre-processing scRNA-seq data

We applied standard scRNA-seq pre-processing steps for the RA, TB, and UC datasets independently. We removed cells

whose total reads consisted of >20% mitochondrial reads. For the TB dataset, we removed the small number of gamma delta

T cells so that only memory T cells remained. For the UC dataset, we removed cells from uninflamed colitis samples taken from

case donors so that we only used cells from healthy colitis samples taken from healthy donors and inflamed colitis samples taken

from case donors. The final number of cells used for our analyses is 5,265, 496,517, and 23,229 cells for the RA, TB, and UC datasets

respectively.
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We then applied standard log(CP10K + 1) normalization for gene counts using a scale factor of 10,000; for the RA dataset, we used

log2 to mimic the original author’s analysis, while we used natural log for the TB and UC datasets. For each dataset, we found the top

2,000 variable genes using the ‘‘vst’’ option of the Seurat function FindVariableFeatures and then z-scored the genes.

Principal components analysis and batch correction

WeperformedPCAwith the R function ‘‘rsvd’’ from the ‘‘rsvd’’ package. As is standard, weweighted the resulting eigenvectors by the

calculated eigenvalues to retrieve the PC embeddings. For downstream analyses, we utilized the top 20 PCs. For reproducibility, we

provide the PC embedding matrices and the meta tables that we used for the RA and UC datasets in the form of objects included in

the scPOST package (ra_HarmObj and uc_Obj respectively).

We applied batch correction to the RA dataset with the Harmony batch-correction algorithm in order to gain insight into how

scPOST performs on data with minimal batch effects (e.g. what deconvolution of variation looks like when there is minimal batch

effects). We used the HarmonyMatrix function from the ‘‘harmony’’ package with default parameters except for the following: var-

s_use = c(‘‘plate’’, ‘‘sample’’), do_pca = FALSE, and npcs = 20.

Clustering algorithms

For the Louvain clustering algorithm, we first built a shared nearest-neighbor (SNN) graph (k = 30) from PC embeddings, and then

using Louvain’s method for community detection. We used resolutions of 1.2, 2.0, and 0.4 on the original RA, TB, and UC datasets

respectively, as these produced similar clustering results to the original studies. For most analyses in this paper, we clustered the

simulated datasets at the same resolution as the input dataset (e.g. we simulated RA datasets at the same 1.2 resolution as the orig-

inal RA dataset). For the broader cluster analysis, we varied the resolution parameter value.

For the SC3 clustering algorithm, we utilized the ‘‘SC3’’ Bioconductor package. After inputting our simulated RA dataset PCs into

single-cell experiment (SCE) objects, we input the SCE objects into the ‘‘sc3’’ function.We set the number of ‘‘ks’’ to be the number of

original RA clusters, as well as an increment and decrement of that value (11–13). We set ‘‘biology = FALSE’’ and ‘‘gene_filter =

FALSE’’.

Fitting linear models

To fit our linear mixed models, we used the ‘‘lmer’’ function from the ‘‘lme4’’ package with the ‘‘nloptwrap’’ optimizer.

Parameter estimation from input datasets

To estimate parameters as described in Step 1, we utilized the ‘‘estimateFreqVar’’ and ‘‘estimatePCVar’’ functions from the scPOST

package. The input for each independent dataset included the PCA embeddings, aswell as themetadata (which contained clustering

assignments for each cell).

Simulating realistic datasets

To simulate the realistic datasets showcased in Figures 4 and S2, we utilized unmodified estimated parameters from Step 1. This

means when simulating with scPOST, we set the parameters ‘‘bscale = 1’’, ‘‘sscale = 1’’, and ‘‘cfscale = 1’’ so that the simulation

step simply used the estimated parameters for batch-associated variation, sample-associated variation, and cluster frequency vari-

ation. The number of simulated cells for the realistic dataset in the RA, TB, and UC settings were 5,250, 496,503, and 235,200 cells,

respectively.

Dimensionality reduction with UMAP or tSNE

To perform dimensionality reduction for visualizing PC structure, we used either uniform manifold approximation and projection

(UMAP) or t-distributed stochastic neighborhood embedding (tSNE). For each dataset, we input the PCs from both the original data-

set and a simulated realistic dataset into either algorithm. For UMAP, we used the ‘‘umap’’ function from the ‘‘uwot’’ package with

default parameters. For tSNE, we utilized the ‘‘Rtsne’’ function from the ‘‘Rtsne’’ package with default parameters.

Calculating silhouette scores

To calculate silhouette scores for the cells in a dataset, we used the ‘‘silhouette’’ function from the ‘‘cluster’’ package with default

parameters. We note that we are not using the average silhouette score to evaluate quality of clustering, but instead looking at

the distribution of silhouette scores within each cluster to observe how well the cells within each cluster belong to that cluster. Sim-

ilarity in distributions between the real and simulated data suggest that they have similar clustering structure.

HLAhi fibroblast power analyses

In these analyses, we focused only on the 1,884 fibroblasts contained in the RAdataset.With only these fibroblasts, we performed the

same PCA and clustering steps we applied to the other datasets. We provide the PCA embedding matrix and meta table for these

fibroblasts in the object, ra_FibObj.

For each generated dataset, we assigned samples (250 cells each) into batches equally so that each batch contained 4 samples each

(accomplished with our provided ‘‘distribSamples’’ function). We induced a fold change of 5 in the HLAhi fibroblast cluster (which is

cluster 0, index 1 in the fibroblast-only data; cluster 3, index 4 in the whole RA data), and set bscale, sscale, and cfscale all equal to 1.

For the unbalanced study designs, we set the following sample splits: 17case/3control for 20 samples, 34case/6control for 40 samples,

and 68case/12control for 80 samples. For balanced study designs,we set the following sample splits: 10case/10control for 20 samples,

20case/20control for 40 samples, and 40case/40control for 80 samples. We ran 500 simulations for each combination of parameters.

Baseline power analyses

For the baseline power analyses (realistic), we assigned 100 (50 case, 50 control) samples (500 cells each) into 25 batches equally

with the ‘‘distribSamples’’ function so that each batch contained 4 samples each. We induced the following fold change in case
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samples: 1 (no fold change), 1.05, 1.1, 1.25, 1.5, 2, and 4. For each simulation, we induced fold change into a randomly chosen clus-

ter. We set bscale, sscale, and cfscale all equal to 1. We ran 500 simulations for each combination of parameters.

Subsampling analyses

To sub-sample each independent dataset, we randomly sampled 10 samples from the dataset. For the TB setting, we also used the

pilot dataset (48 samples) as comparison. For each subsampled dataset, we input the PCA results and metadata into scPOST. For

dataset generation, we utilized the same study design as the baseline power analyses.

Minimal-noise power analyses

For the minimal-noise context, we used the exact same study design as the baseline analyses, but we set bscale, sscale, and cfscale all

equal to 0. We ran 500 simulations for each combination of parameters.

Variance-removal analyses

For the singular variance-removal analyses, we used identical study design parameters to the baseline analyses. However, for the

cluster frequency variation removal (No CF var), we set cfscale to 0 (but kept bscale and sscale equal to 1). For the batch variation removal

(No Batch Var), we set only bscale to 0. For the sample variation removal (No Sample Var), we set only sscale to 0. We ran 500 simu-

lations for each combination of parameters.

Modulating levels of batch effects

For these analyses, we used the same study design as the baseline analyses. However, we tested a range of bscale values: 0, 0.5, 1, 2,

and 4. The results we reported are for an induced fold change of 1.5 in the RA and TB settings and an induced fold change of 4 in the

UC setting. We ran 500 simulations for each combination of parameters.

Binomial downsampling of UMIs from the RA dataset

To downsample the RA dataset, we took the raw UMI data from the RA dataset and performed random binomial draws for each

UMI count using the ‘‘rbinom’’ function. The binomial distribution in this model is parameterized by n and p, where n is equal to

the original UMI count, and p is equal to the percentage of UMIs we wanted to sample (e.g. 25%) so that we approach a

specific number of mean UMIs. We downsampled the RA dataset to create datasets that have approximately 1825, 730, 365, or

73 mean UMIs. For each downsampled dataset, we applied the same pre-processing, PCA, and clustering steps as the original

RA dataset. We used the PCA results for each downsampled dataset and the original RA dataset’s clustering assignments as input

for Step 2.

For dataset generation, we used the same study design as the baseline analyses. We ran 500 simulations for each combination of

parameters.

Analyses with fewer simulated batches (increased samples per batch)

For these analyses, we used almost the same parameters as the baseline analyses. However, we varied the number of samples that

were placed into each batch, so that the studies had 2 (50 samples per batch), 5 (20 samples per batch), 10, 15, or 25 batches overall.

We utilized the ‘‘distribSamples’’ function in the scPOST package to place a specific number of cases and controls into a specific

number of batches. We also varied the values of bscale: 0, 0.5, 1, 2, and 4 to evaluate how much batch-associated variation affects

power across the different number of batches. We ran 500 simulations for each combination of parameters.

Multiplexing analyses

For the sequential study design, we assigned 100 samples (2000 cells each) into 100 batches using the provided

‘‘distribSamplePerBatch’’ function so that each batch contained cells from only one sample (2000 cells per batch). We

induced fold changes into a randomly chosen cluster, and we set bscale, sscale, and cfscale all equal to 1.

For the multiplexing study design, we split 100 samples (2000 cells each) into four equally sized subsamples (500 cells each). We

then assigned these subsamples into 100 batches using the provided ‘‘distribSplitSample’’ function so that each batch contained

cells from four different subsamples (2000 cells per batch). We induced fold changes into a randomly chosen cluster, and we set

bscale, sscale, and cfscale all equal to 1. We ran 500 simulations for each combination of parameters for both analyses.

Increasing the total number of samples versus number of cells per sample

For these analyses, we used the same study design as the baseline analyses, but we varied the total number of samples (10, 20, 40,

80, or 160) and the number of cells per sample (25, 50, 100, 200, 400, 800, and 1600). For the main figures, we show results for fold

changes of 1.5 and 2 for the RA and TB settings, and results for fold changes of 2 and 4 for the UC setting. We provide power curves

for the rest of the fold changes in supplementary figures. We ran 100 simulations for each combination of parameters.

For analyses that focused on rare clusters, we performed the same analyses, but we only induced a fold change in clusters with a

mean frequency <1% across samples.

Broad clustering analyses

For the broad clustering analysis presented in Figure S8, we utilized the RA dataset as input. We simulated datasets in the baseline

context with the same parameters as the baseline analyses. However, we now clustered the simulated datasets over a range of res-

olution parameter values (0.1, 0.2, 0.4, 0.8, 1.2, and 2) rather than just the 1.2 presented in the baseline analyses. We performed

100 pre-seeded simulations so that the clustering at each resolution was performed on the same generated datasets. In addition

to evaluating power over these different resolutions, we calculated interpretability.

Benchmarking analyses

To benchmark scPOSTwith powsimR and SymSim, we downloaded the powsimR and SymSim packages in R.We split computation

times into two parts: parameter estimation and dataset generation (though a whole simulation requires the combination of these
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timeswith dataset analysis steps for power estimation).We ran benchmarks in two computational environments: an environment with

16GB RAM and one processor, and a high-performance cluster with 128GB RAM and 24 processors.

For parameter estimation, we downsampled the TB dataset so that it contained 500, 5,000, 25,000, and 50,000 cells. We then esti-

mated parameters on these downsampled datasets using each tool’s corresponding function (estimateParam for powsimR,

BestMatchParams for SymSim, and estimateFreqVar and estimatePCVar for scPOST) with default parameters. As parameter estima-

tion completed for each tool, we used these parameter estimates as input for each tool’s corresponding dataset simulation functions.

We used default parameters for the powsimR and SymSim functions (Setup and simulateDE for powsimR, and SimulateTrueCounts

and True2Observed for SymSim). For scPOST,we used the simDataset.base functionwith the ‘‘clusterData’’ parameter set to FALSE.

Fixed-effects modeling

In order to perform differential abundance with a simple fixed-effects model, we fit a linear regression for each cluster. We predicted

the case-control status of a sample by the frequency of that cluster in the sample (predictor) – for each cluster, we received a p value

based on significance of the predictor coefficient and performed Bonferroni correction (p < 0.05/k) where k is the number of clusters.

We determined successful detection when at least one cluster was significantly differentially abundant.

Estimating power with SC3 clustering

To estimate power to detect DA after using the SC3 clustering algorithm (instead of Louvain) to cluster simulated datasets, we simu-

lated realistic RA datasets with the same parameters as the baseline analyses. After SC3 clustering of the simulated datasets, we

performed DA testing as normal. We ran 100 simulations for each combination of parameters.

Estimating power with Milo

As an alternative to using MASC for DA testing, we performed a simple demonstration of DA testing with the neighborhood-focused

algorithm, Milo. To evaluate power with Milo, we simulated realistic RA datasets with the same parameters as the baseline analyses.

To perform Milo DA testing on a simulated dataset, we followed the procedure outlined at: https://rawcdn.githack.com/MarioniLab/

miloR/7c7f906b94a73e62e36e095ddb3e3567b414144e/vignettes/milo_gastrulation.html#5_Finding_markers_of_DA_populations.

We created a Milo object from the simulated dataset PCs, and ran the following functions with respective parameters: ‘‘buildGraph’’

with k = 10 and d = 20, ‘‘makeNhoods’’ with prop = 0.1, k = 10, d = 20, and refined = TRUE, ‘‘countCells’’ with metadata from the

simulated dataset and sample = ‘‘sample’’, ‘‘calcNhoodDistance’’ with d = 20. To estimate power, we checked each simulation’s

Milo results for whether a single neighborhood contained a SpatialFDR value lower than 0.05. We ran 100 simulations for each com-

bination of parameters. For the ‘‘cfscale = 0’’ analysis, we performed the same procedure as just described, but set ‘‘cfscale = 0’’ when

simulating datasets.

For determining neighborhood-based inputs, we used Milo to determine neighborhood assignments for each cell. We manually

annotated cells to make neighborhoods assignments between cells to be mutually exclusive (each cell is assigned to only one neigh-

borhood). For parameter estimation, we removed cells in neighborhoods that contained <5 cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

The R package, scPOST, was used for generation of single-cell datasets and power analysis. The relevant R packages and specific

functions used for each analysis are detailed in the ‘‘Method details’’ section of the STAR Methods. All statistical details for each

analysis are detailed in the respective sections in the ‘‘Method details’’ section of the STARMethods. Values of n represents the num-

ber of simulations run (number of n is detailed in figure legends and respective sections in STAR Methods). Dispersion and precision

measures are outlined in figure legends. The statistical tests for detecting differential abundance (assessing significance of a simu-

lated dataset) were either MASC or Milo.
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Supplemental Figure 1 | Cluster frequency variation across samples and principal 
component structure of the RA, TB, and UC datasets highlight experimental variability, 
related to Figure 3. Panel a, left: Frequency distribution for each cluster in the RA, TB, and UC 
datasets. Plotted mean frequencies are the observed mean frequency of that cluster across all 
samples in their respective dataset. In all panels, error bars represent one standard deviation 
from the mean in each direction to showcase the spread of frequencies across samples. Panel 
a, right: Cluster frequency covariance matrices for the RA, TB, and UC datasets. Panel b, left, 
PC plots of the RA, TB, and UC datasets colored by cluster. Panel b, right, Bar plots of the 
estimated variance in each cluster for the first principal component in each of the RA, TB, and 
UC datasets. Each bar is colored by the estimated proportion of variance that each source 
contributes, as estimated by scPOST.  
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 RA dataset TB dataset UC dataset 

Single-cell 
technology 

CelSeq241 10X Chromium 
3’ v3 

10X Chromium 
3’ v2/v3 

Number of samples 21 259 30 

Number of cells 
passed QC 

5,265 496,517 235,229 

Type of samples Synovial tissue (joint 
replacement 

procedure or biopsy)  

PBMCs (blood) Intestinal biopsy 

Broad cell types 
assayed 

Immune and stromal 
cells  

(T/B cells, 
Monocytes, 
Fibroblasts) 

Memory T cells Immune and stromal 
cells  

(T/B/Myeloid cells, 
Fibroblasts, Endothelial 

cells, Epithelial cells) 

Number of clusters 12 24 23 

Mean UMI/cell 7,300 4,920 4,582 

Mean unique 
genes/cell 

2,432 1,472 988 

Batch-correction Harmony None None 

 
Supplemental Table 1 | Characteristics of the RA, TB, and UC datasets, related to Figure 
3.  
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Supplemental Figure 2 | scPOST can generate multi-sample single-cell datasets with 
gene expression and cluster frequency distributions similar to the input dataset, related 
to Figure 4. a-c, Each panel contains visualizations comparing the PC, UMAP, or tSNE 
structure between a simulated TB/UC dataset and the respective real dataset. UMAP and tSNE 
embeddings were created from embedding the PCs of the real and simulated dataset into the 
same 2-dimensional space. d, Frequency distribution for each cluster in the real RA dataset and 
an example simulated realistic dataset. Error bars represent one standard deviation from the 
mean to showcase the spread of frequencies across samples. e, Dot-plots comparing the 
intended induced fold changes with the actual observed fold changes in simulations. Each point 
represents the mean observed fold change over 100 simulations. Error bars represent one 
standard deviation from the mean to illustrate the spread of observed fold changes, and how 
that spread decreases as cfscale values decrease.  
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Supplemental Figure 3 | The RA dataset contains THY1+ sub-lining fibroblasts that 
express HLA-DRA, related to Figure 5. For the analyses in which we expanded the RA study, 
we focused on the THY1+ sub-lining fibroblast cluster (cluster 3 highlighted in red, other 
fibroblast clusters highlighted in blue) that most highly expressed HLA-DRA, which corresponds 
to the HLA-DRAhi fibroblast population described in the paper. The RA dataset was filtered to 
only include fibroblasts before inputting into scPOST for Fig. 5a. 
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Supplemental Figure 4 | Larger input dataset sizes tend to provide more accurate 
parameter estimates, leading to increased power, related to Figure 5. a-c, We sub-sampled 
each independent dataset by randomly sampling a specific number of samples, and then input 
these sub-sampled datasets into scPOST. Comparing the estimated power of smaller-sized 
data with the power retrieved from the full data suggests that increasing the size of the input can 
lead to more accurate power estimates. 
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Supplemental Figure 5 | The real RA dataset (7300 mean UMIs/per cell) was binomially 
downsampled to create input datasets with varying levels of mean UMIs, related to Figure 
5. a, Histogram of the UMI distribution of the original RA dataset and the datasets whose UMIs 
were downsampled. Downsampled datasets maintained similar sequencing read distributions, 
but featured a lower mean number of reads. b, Downsampled datasets were input into standard 
PCA dimensionality reduction pipeline, and then visualized with UMAP. Cells are colored by the 
cell state identities obtained from the original RA dataset. 
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Supplemental Figure 6 | scPOST facilitates exploration of different study designs, such 
as batch multiplexing structures, related to Figure 6. a, Power calculations across different 
ranges of scaled batch effects and number of batches, with the induced fold change set to 1.5. 
Simulations were performed in the realistic context, but with modulated levels of batch-
influenced variation on gene expression. The number of batches decreasing indicates 
increasing the number of samples run in a batch. b, In Fig. 6a, we compare the estimated 
power from two batch multiplexing structures with scPOST. The non-multiplexed sequential 
design placed each simulated sample in its own batch, so that each batch contained cells from 
only one sample. For the sequential design in Fig. 6a, we placed samples (total of 100 with 
2000 cells each) into 100 batches. The multiplexed study design featured a batch structure in 
which each simulated sample was split into equally-sized subsamples. These subsamples were 
then placed into different batches, so that each batch contained cells from multiple samples. For 
the multiplexed design in Fig. 6a, we split each sample (total of 100 with 2000 cells each) into 4 
subsamples (500 cells each), which were then placed into 100 batches (each batch contained 
cells from different subsamples). 
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Supplemental Figure 7 | Power estimations in the RA, TB, and UC settings for varying 
dataset sizes characterized by a variable number of samples and cells per sample, 
related to Figure 6. Power estimations for different sample/cell per sample combinations. 
Simulations were performed in the baseline context (Fig. 5b) with each data point representing 
100 simulations. Grid elements along a top right-bottom left diagonal represent an equivalent 
number of cells. Error bars represent 95% binomial proportion confidence intervals and the 
dotted horizontal purple line represents 5% power. 
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Supplemental Figure 8 | Power estimates decreases in lower frequency clusters (<1% 
mean frequency across samples), and vary across a range of Louvain clustering 
resolution values, related to STAR Methods. a, Power estimates performed in the realistic TB 
context. Comparison between detecting effects across the frequency spectrum (All clus), and 
focusing on detecting effects that were only induced in rare clusters (Rare clus). b, Boxplots 
showing the spread of the number of clusters obtained from Louvain clustering simulated data. 
Each boxplot represents results from 100 pre-seeded simulations. c, Line plots showing power 
results from clustering 100 pre-seeded simulations at different resolutions. d, Zoom-in on FC2 
results (100 simulations) as shown in Fig. S8c. Results are specific to number of clusters 
obtained from Louvain clustering in the simulation, as well as the resolution parameter value 
used for the Louvain clustering. e, Boxplots showing the spread of interpretability scores for 100 
pre-seeded simulations each. f, Zoom-in on FC2 results (100 simulations) as shown in Fig. S8e. 
Boxplots are specific to number of clusters obtained from Louvain clustering in the simulation, 
as well as the resolution parameter value used for the Louvain clustering.  
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Supplemental Table 2 | Computational runtimes for running the parameter estimation and 
dataset generation steps of three single-cell dataset simulation tools: scPOST, powsimR, 
and symSim, related to STAR methods. Standard parameter estimation and dataset 
generation functions for each tool were run with default parameters for datasets of the following 
sizes: 500, 5000, 25,000, and 50,000 cells. We ran simulations on two computational 
environments: a 16GB RAM and 1 processor machine and a 128GB RAM and 24 processor 
cluster. OoM = Out of memory, meaning that the simulation failed to complete due to memory 
constraints. 
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Supplemental Figure 9 | Simulated datasets generated by scPOST are compatible with 
alternative models, especially those that utilize principal components as input, related to 
STAR methods. a, Instead of utilizing MASC, we tested for differential abundance with simple 
linear models that associated the abundance of a cluster in a sample with the case-control 
status. b-e, Error bars represent 95% binomial proportion confidence intervals and the dotted 
horizontal purple line is set at 5%. Each bar represents results from (n = 100) simulations. b, 
Power results from simulations in the baseline context. Simulated datasets were clustered with 
Louvain clustering algorithm. c, Power from the same simulations in panel b, but datasets were 
clustered with the SC3 clustering algorithm. d, Power results from simulations in the baseline 
context, but using Milo for differential abundance (DA) testing instead of MASC. e, Power 
results in the same context as c, but with cfscale = 0 (no cluster frequency variation between 
samples). f, Boxplots showing the spread of the percent of DA neighborhoods over many 
simulations (cfscale = 1). g, For the RA dataset, we utilized Milo to determine mutually-exclusive 
neighborhood membership for each cell (instead of a cluster membership), which we then input 
into scPOST to estimate power.  
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