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Cell Line Short name Source Tissue Gender Age at Sampling Biobank
CS00iCTR-nxx SMA Fibroblast Male 6 Cedars-Sinai
14iCTR-21nxx CS14 Fibroblast Female 52 Cedars-Sinai
GM23338 PGP Fibroblast Male 55 Coriell
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Figure S1. Donor information, iPSC differentiation, and RefMap model design and 
performance, Related to Figure 1 
(A) iPSC cells were derived from control fibroblasts. (B) iPSC-derived motor neurons are 
morphologically consistent with lower motor neurons, including expression of appropriate 
markers. (C) Epigenetic profiling of iPSC-derived motor neurons is internally consistent. 
Markers of genomic activity are significantly enriched in promoter regions of highly-
expressed genes compared to lowly-expressed genes. Circle area is proportional to the 
overlap percentage. Hi-C data was scaled by a factor of ten for clarity. (D) Graphical 
representation of RefMap. Observed variables are annotated in grey, local hidden 
variables are in green, and global latent variables are in pink. (E) PPI distance between 
RefMap ALS genes and known ALS genes. Two ALS gene sets, including curated ALS 
genes (left panel) and ClinVar ALS genes (right panel), were tested. The average shortest 
path distance (SPD) between novel RefMap ALS genes and known ALS genes was 
calculated and denoted by the red vertical line, and the average SPDs between randomly-
selected (1,000 times) gene sets of equivalent size (n=690) and known ALS genes were 
calculated and denoted by histogram. The normal distribution was used to fit to the 
histogram (shown in black curves). 
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Figure S2. RefMap ALS genes are highly conserved and enriched with known ALS 
genes, Related to Figure 2 
(A) Comparison of the number of discovered genes (left panel), enrichment with an 
curated ALS genes (middle panel), and enrichment with ClinVar ALS genes (right panel), 
for different methods. (B and C) Control conservation analysis. Conservation analysis 
based on active genes (B) with ATAC-seq peaks and expressed genes (C) in MNs. 
Expressed genes were defined as those with TPM>1 in our transcriptomic profiling of 
iPSC-derived MNs. Comparisons were performed using the one-sided Wilcoxon rank-
sum test. The bottom and top of the boxes indicate the first and third quartiles, 
respectively, where the black line in between indicates the median. The whiskers denote 
the minimal value within 1.5 IQR of the lower quartile and the maximum value within 1.5 
IQR of the upper quartile. Red symbols denote outliers. Black dashed lines indicate the 
lower and upper limits of the regions with regular scale. Outliers beyond the black dashed 
lines are visualized with a compressed scale in the regions denoted by gray lines. 
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Figure S3. Additional results for network analysis and rare variant burden testing 
within an independent cohort, Related to Figure 4 
(A) Distribution of modularities after Louvain for the smoothed PPI network (red) and 100 
randomized networks (blue). The modularity of our smoothed network is significantly 
shifted from the randomized network. (B) The set of 690 RefMap genes is enriched with 
ALS-associated rare missense variants in an independent cohort. Exome sequencing 
was conducted in 3,864 ALS patients and 7,839 controls. Rare missense and 
synonymous variants were identified with MAF<0.001%. Association testing was 
performed using Fisher’s exact test. Red dotted line indicates Bonferroni multiple testing 
threshold. (C) M826 containing KANK1. M826 is enriched with RefMap genes (P=5.6e-
03, hypergeometric test). (D) M826 is functionally enriched for vesicle transport within the 
motor neuron axon. GOBP, gene ontology biological process. Dashed line represents 
P=0.05.  
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Figure S4. CRISPR-editing of BNC2 and KANK1 in SH-SY5Y cells, Related to Figure 
6 
(A) Sanger sequencing traces demonstrating spCas9 cut site adjacent to PAM and 
subsequent waveform decomposition in BNC2-exon-edited cells. (B) Indel distribution of 
BNC2-exon-edited SH-SY5Y cells. (C) Sanger sequencing traces demonstrating spCas9 
cut site adjacent to PAM and subsequent waveform decomposition in KANK1-exon-edited 
cells. (D) Indel distribution of KANK1-exon-edited SH-SY5Y cells. (E) PCR amplification 
of the relevant genomic segment in KANK1-enhancer-edited SH-SY5Y cells reveals that 
the chr9:663001-664000 region has been resected compared to HPRT-edited control 
cells. 
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Figure S5. Neuronal differentiation of SH-SY5Y cells and CRISPR-editing of KANK1 
in iPSCs, Related to Figures 6 and 7 
(A) Altered PAX6 expression and (B) increased dendrite length confirm the successful 
differentiation of SH-SY5Y cells. (C) Sanger sequencing traces demonstrating spCas9 
cut site adjacent to PAM and subsequent waveform decomposition in KANK1-exon-edited 
cells. (D) Indel distribution of KANK1-exon-edited iPSCs. 
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Figure S6. Differentiation of iPSCs into mature motor neurons, Related to Figure 7 
Derived motor neurons expressed markers confirm the successful differentiation of iPSCs. 
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Figure S7. KANK1-edited motor neurons display increased apoptosis and evidence 
of electrophysiological dysfunction within the axon, Related to Figure 7 

(A) Staining for cleaved-caspase-3 reveals excessive apoptosis in KANK1-edited 
neurons with neurotrophin withdrawal. (B) Raw traces reveal deficient axon potential 
firing in KANK1-edited motor neurons. (C) Comparison of input resistance between 
KANK1-edited motor neurons and controls. 
 
 
 



Supplemental Note for “Genome-wide identification of the

genetic basis of amyotrophic lateral sclerosis”

1 Mathematical foundation of RefMap

Here, we provide a mathematical theory to justify Eq. 1 in the Method section of the main
text. To facilitate the development of the theory, we first describe a universal discriminative
framework that models the relationship between the genotype and phenotype, and then
deduce a general distribution over summary statistics from this framework. Based on this
result, a flexible probabilistic model that characterizes summary statistics with various prior
structures can be developed, which generalizes multiple previous studies (Pasaniuc and Price
2016; B. Bulik-Sullivan et al. 2015; Kichaev et al. 2014; B. K. Bulik-Sullivan et al. 2015; Joo
et al. 2016; Finucane et al. 2015; Han, Kang, and Eskin 2009). In particular, Equation 1 of
RefMap follows directly after assuming a linear relation between the genotype and phenotype.
In the following, we will develop the framework in both cases of quantitative trait and case-
control studies.

1.1 Quantitative trait studies

We start from considering a general genotype-phenotype model for continuous traits, i.e.,

yn = F (xn,w) + εn, n = 1, · · · , N, (1)

in which N is the sample size, xn and yn are the genotypes and phenotype for the nth sample,
respectively, F is an unknown (usually non-linear) function with parameters w determining
personal phenotype from his/her genotypes, and εn is the random noise following

εn ∼ N (0, σ2
ε ). (2)

Note that as a routine procedure, genotypes are first standardized by

xni =
gni − 2pi√
2pi(1− pi)

, i = 1, · · · ,M, (3)

where M is the number of alleles, gni is the genotype of the ith allele for the nth sample, and pi
is the frequency of the ith allele in the study cohort. After standardization, the sample mean
and sample variance of each allele are 0 and 1, respectively. Moreover, we adopt a general
setting and treat both genotypes and function parameters as random variables, yielding

yn | xn,w, σε ∼ N (F (xn,w), σ2
ε ). (4)

1



Following the conventional annotation in the genome-wide association study (GWAS), the
estimated effect sizes β̂i for individual alleles are the most widely-used summary statistics,
which are closely related to χ2 and Z-score. Given the genotype standardization, we have

β̂i =
xᵀ
i y

N
, (5)

where xi is the genotype vector for the ith allele and y = y1:N . With matrix representation,
we have

β̂ =
1

N
Xᵀy =

1

N

N∑
n=1

xnyn, (6)

where X = (xni) ∈ RN×M . Indeed, we have the following theorem characterizing the asymp-
totic distribution of

√
N β̂.

Theorem 1. Given the definitions in Eqs. 1, 2 and 5, when the sample size N is large
enough, we have √

N β̂ |X,w, σε ∼ N
(√

Nµ(X, F,w), σ2
εΣLD

)
, (7)

where ΣLD is the in-sample linkage disequilibrium (LD) matrix quantifying SNP correlations,
and µ(X, F,w) is a quantity depending on the genotypes and the discriminative function F .

Proof. We first show that
√
N β̂ follows a normal distribution asymptotically. In fact, accord-

ing to Eq. 6, given the genotypes and the discriminative function,
√
N β̂ can be computed by

the sum of xnyn, which are independent with each other but with different expectations. On
the other hand, the variance of xnyn is given by

Var [xnyn | xn,w, σε] = Var [xn(F (xn,w) + εn) | xn,w, σε]
= Var [xnεn | xn,w, σε]
= E

[
ε2nxnx

ᵀ
n | xn,w, σε

]
= xnx

ᵀ
nσ

2
ε , (8)

yielding

lim
N→∞

1

N

N∑
n=1

xnx
ᵀ
nσ

2
ε = lim

N→∞

1

N
XᵀX · σ2

ε

= σ2
ε Σ̂LD

≈ σ2
εΣLD, (9)

in which the estimated LD matrix Σ̂LD = (r̂ij) is given by

r̂ij =
xᵀ
ixj√

xᵀ
ixi
√
xᵀ
jxj

=
1

N
xᵀ
ixj , (10)

and the last approximation is guaranteed by E[r̂ij ] = rij = E[xixj ]. Therefore, according

to the multivariate Lindeberg-Feller central limit theorem (CLT), we conclude that
√
N β̂ =

2



1/
√
N
∑N

i=1 xnyn asymptotically follows a normal distribution with covariance σ2
εΣLD, whose

expectation is given by

1√
N

N∑
n=1

E [xnyn | xn,w, σε] =
1√
N

N∑
n=1

E [xn(F (xn,w) + εn) | xn,w, σε]

=
1√
N

N∑
n=1

xnF (xn,w)

=
√
Nµ(X, F,w), (11)

where µ(·) is defined as

µ(X, F,w) =
1

N

N∑
n=1

xnF (xn,w). (12)

This completes the proof.

Note that if we use Z-scores computed by GWAS as the approximation of
√
N β̂/σε, i.e.,

dividing β̂i by its estimated standard error, we have

ẑ |X,w ∼ N
(√

Nµ(X, F,w),ΣLD

)
, (13)

in which σε is absorbed into µ(·) for annotation brevity.

1.2 Case-control studies

We state the analysis for case-control studies using a Bernoulli distribution over case-control
status, i.e.,

yn | πn ∼ Bernoulli(πn), n = 1, · · · , N, (14)

whose logit is defined similarly as Eq. 1 but without random noise, i.e.,

log
πn

1− πn
= F (xn,w). (15)

After a few calculations we can easily get

πn = σ(F (xn,w)), (16)

where σ(·) is the sigmoid function defined by σ(x) = 1/(1 + exp(−x)).
To facilitate the following analysis, here we illustrate the standardization procedure in

more detail, i.e.,

xni =
gni − 2p̂i√
2p̂i(1− p̂i)

, (17)

where gni is the genotype coded by 0, 1 and 2, and p̂i is the in-sample allele frequency.
Therefore, suppose we have the same number (N/2) of cases and controls in the study cohort,
the widely-used Z-scores for case-control studies defined as

ẑi =

√
N(p̂+

i − p̂
−
i )√

2p̂i(1− p̂i)
(i = 1, · · · ,M) (18)

3



can be written as

ẑ =
1√
N

N∑
n=1

(21{yn = 1)} − 1)xn. (19)

Again, utilizing the multivariate Lindeberg-Feller CLT, we can derive the asymptotic
conditional distribution of ẑ, which is approximately the same as that in the quantitative
trait studies (Eq. 13). In particular, we have the following result.

Theorem 2. Given the definitions in Eqs. 14, 15 and 19, when the sample size N is large
enough, we have

ẑ |X,w ∼ N
(√

Nµ(X, F,w),ΣLD

)
, (20)

where ΣLD is the in-sample LD matrix, and µ(X, F,w) is a quantity depending on the geno-
types and the discriminative function.

Proof. Conditioned on X and w, the variance of (21{yn = 1)} − 1)xn can be calculated as

Var [(21{yn = 1} − 1)xn] = xnx
ᵀ
n − E [21{yn = 1} − 1]2 xnx

ᵀ
n

= 4xnx
ᵀ
nP [yn = 1] (1− P [yn = 1])

= 4xnx
ᵀ
nVar [yn] , (21)

where the conditions are omitted for brevity. In fact, as Var [yn | xn,w] < 1, we conclude that
the average of variance 1/N

∑N
n=1 Var [(21{yn = 1} − 1)xn | xn,w] converges as N → ∞,

whose limit is denoted as Σ∞. According to the multivariate Lindeberg-Feller CLT, the
asymptotic conditional distribution of ẑ is a normal distribution with covariance matrix Σ∞.

To get a clearer structure of Σ∞, we now apply a few approximations for Eq. 21. In
particular, we have

Σ∞ = lim
N→∞

1

N

N∑
n=1

Var [(21{yn = 1} − 1)xn | xn,w]

= lim
N→∞

1

N

N∑
n=1

4xnx
ᵀ
nVar [yn | xn,w]

= E [4xnx
ᵀ
nVar [yn | xn,w]]

≈ 4ΣLDE [Var [yn | xn,w]]

= 4ΣLD (Var [yn | w]−Var [E [yn | xn,w]])

< 4ΣLDVar [yn | w]

≈ 4ΣLDE [Var [yn | w]]

= 4ΣLD (Var [yn]−Var [E [yn | w]])

< 4ΣLDVar [yn]

= ΣLD, (22)

in which the third and the fourth “=” come from the law of total variance, the first and
the second “<” are implied by the positivity of variance, and ΣLD is the in-sample LD
matrix. For the last “=”, we argue that the expectation and variance in Eq. 22 are taken
over the sampling space in case-control studies, rather than the general population. Under

4



the assumption of equal number of cases and controls, the sampling disease prevalence is 0.5,
yielding Var [yn] = 0.25.

Furthermore, the expectation of the asymptotic conditional distribution can be calculated
as

1√
N

N∑
n=1

E [(21{yn = 1} − 1)xn | xn,w] =
1√
N

N∑
n=1

xn (2σ(F (xn,w))− 1)

=
√
Nµ(X, F,w), (23)

where we define

µ(X, F,w) =
1

N

N∑
n=1

xn (2σ(F (xn,w))− 1) . (24)

This completes the proof.

1.3 A linear model for RefMap

We consider a linear model that underlies the design of RefMap. Specifically, in the quanti-
tative trait studies, we define

F (xn,w) = w0 +
M∑
i=1

wixni. (25)

Note that this linear model has been widely used in traditional GWAS studies (B. Bulik-
Sullivan et al. 2015; B. K. Bulik-Sullivan et al. 2015; Finucane et al. 2015), and wi is called
the effect size of the ith allele. The linear model for case-control studies can be developed
similarly by considering the approximation of sigmoid function using its Taylor expansion.
Therefore, the expectation of the asymptotic distribution of Z-scores can be calculated as

√
Nµ(X, F,w) =

1√
N

N∑
n=1

xn (xᵀ
nw + w0)

=
√
NΣ̂LDw, (26)

indicating that the expected Z-score for each allele is determined by its effect size as well as
its strongly-associated neighbors. By absorbing

√
N into w, we eventually get Eq. 1 in the

RefMap model.

2 Inference for RefMap

The RefMap model was defined in Eqs. 1 to 18 in the Method section of the main text. Here,
we are interested in the posterior p(T | Z,S), whose exact calculation is intractable. There-
fore, we seek for approximate inference based on the mean-field variational inference (MFVI).
Basically, we first assume that the approximate posterior over latent variables factorizes,
indicating conditional independence across latent variables, and then perform approximate

5



inference by optimizing the evidence lower bound (ELBO) with respect to factorized proposal
distributions, i.e.,

q (λj,k, λ, τ ,v,w,M ,T ,U ,Λ) = max
q

Eq
[
log

(
p (Z, λj,k, λ, τ ,v,w,M ,T ,U ,Λ | S)

q (λj,k, λ, τ ,v,w,M ,T ,U ,Λ)

)]
,

(27)
which can be shown to be equivalent to minimizing the Kullback-Leibler (KL) divergence
between the true posterior and its proposal.

In the following, we will first introduce several specific techniques we used in MFVI, and
then summarize the update rules for different variational parameters. At last, a coordinate
ascent-based VI algorithm will be given.

2.1 Rectification nonlinearity

We impose non-negativity on v−1 and v+1 using the technique of rectification nonlinearity
proposed in Harva and Kabán (2007). This technique relaxes the sparsity constraint over
factors and meanwhile enjoys tractable variational inference.

We first note that the approximate posterior q(r−1) from MFVI follows the free-form
solution

q(r−1) =
1

Z̃−1

K∏
k=1

Jk∏
j=1

N
(
E[mj,k] | −v−1,E[τ−1]−1

)E[t(−1)
j,k

]
×N

(
r−1 | E[m−1],E[λ−1]−1

)
,

(28)

where Z̃−1 is the normalization term to be computed later. Moreover, it can be easily shown
that Eq. 28 can be written as q(r−1) = qp(r−1) + qn(r−1) with the form

qp(r−1) =
w̃

(−1)
p

Z̃−1

N
(
r−1 | µ̃(−1)

p ,
(
λ̃(−1)
p

)−1
)
u(r−1), (29)

qn(r−1) =
w̃

(−1)
n

Z̃−1

N
(
r−1 | µ̃(−1)

n ,
(
λ̃(−1)
n

)−1
)
u(−r−1), (30)

in which

µ̃(−1)
p =

−E[τ−1]
K∑
k=1

Jk∑
j=1

E
[
t
(−1)
j,k

]
E[mj,k] + E[λ−1]E[m−1]

(λ̃(−1)
p

)−1
,

µ̃(−1)
n = E[m−1],

λ̃(−1)
p = E[τ−1]

K∑
k=1

Jk∑
j=1

E
[
t
(−1)
j,k

]
+ E[λ−1],

λ̃(−1)
n = E[λ−1],

(31)

(32)

(33)

(34)

and u(·) is the standard step function. With Eqs. 31 to 34, w̃
(−1)
p and w̃

(−1)
n can be computed

by integrating Eqs. 28, 29 and 30 with respect to r−1. Then the normalization term is given

6



by

Z̃−1 =
w̃

(−1)
n

2
erfc

(
µ̃(−1)
n

√
λ̃

(−1)
n /2

)
+
w̃

(−1)
p

2
erfc

(
−µ̃(−1)

p

√
λ̃

(−1)
p /2

)
. (35)

The moments for posteriors are obtained by

E[r−1] = M̃ (−1)
p + M̃ (−1)

n , (36)

E[r2
−1] = M̃ (−2)

p + M̃ (−2)
n , (37)

E[v−1] = M̃ (−1)
p , (38)

E[v2
−1] = M̃ (−2)

p , (39)

where

M̃ (−0)
p =

w̃
(−1)
p

2Z̃−1

erfc

(
−µ̃(−1)

p

√
λ̃

(−1)
p /2

)
, (40)

M̃ (−1)
p =

w̃
(−1)
p

2Z̃−1

erfc

(
−µ̃(−1)

p

√
λ̃

(−1)
p /2

)
µ̃(−1)
p +

√
2

πλ̃
(−1)
p

1

exp

(
λ̃

(−1)
p

(
µ̃

(−1)
p

)2
/2

)
 , (41)

M̃ (−2)
p =

w̃
(−1)
p

2Z̃−1

erfc

(
−µ̃(−1)

p

√
λ̃

(−1)
p /2

)((
µ̃(−1)
p

)2
+

1

λ̃
(−1)
p

)
+

√
2

πλ̃
(−1)
p

µ̃
(−1)
p

exp

(
λ̃

(−1)
p

(
µ̃

(−1)
p

)2
/2

)
 ,

(42)

M̃ (−0)
n =

w̃
(−1)
n

2Z̃−1

erfc

(
µ̃(−1)
n

√
λ̃

(−1)
n /2

)
, (43)

M̃ (−1)
n =

w̃
(−1)
n

2Z̃−1

erfc

(
µ̃(−1)
n

√
λ̃

(−1)
n /2

)
µ̃(−1)
n −

√
2

πλ̃
(−1)
n

1

exp

(
λ̃

(−1)
n

(
µ̃

(−1)
n

)2
/2

)
 , (44)

M̃ (−2)
n =

w̃
(−1)
n

2Z̃−1

erfc

(
µ̃(−1)
n

√
λ̃

(−1)
n /2

)((
µ̃(−1)
n

)2
+

1

λ̃
(−1)
n

)
−
√

2

πλ̃
(−1)
n

µ̃
(−1)
n

exp

(
λ̃

(−1)
n

(
µ̃

(−1)
n

)2
/2

)
 .

(45)

Similar to q(r−1), the posterior q(r+1) also follows a free-form solution given by

q(r+1) =
1

Z̃+1

K∏
k=1

Jk∏
j=1

N
(
E[mj,k] | v+1,E[τ+1]−1

)E[t(+1)
j,k

]
×N

(
r+1 | E[m+1],E[λ+1]−1

)
,

(46)

where Z̃+1 is the normalization term. Equation 46 can also be written as q(r+1) = qp(r+1) +
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qn(r+1) with the form

qp(r+1) =
w̃

(+1)
p

Z̃+1

N
(
r+1 | µ̃(+1)

p ,
(
λ̃(+1)
p

)−1
)
u(r+1), (47)

qn(r+1) =
w̃

(+1)
n

Z̃+1

N
(
r+1 | µ̃(+1)

n ,
(
λ̃(+1)
n

)−1
)
u(−r+1), (48)

in which

µ̃(+1)
p =

E[τ+1]

K∑
k=1

Jk∑
j=1

E
[
t
(+1)
j,k

]
E[mj,k] + E[λ+1]E[m+1]

(λ̃(+1)
p

)−1
,

µ̃(+1)
n = E[m+1],

λ̃(+1)
p = E[τ+1]

K∑
k=1

Jk∑
j=1

E
[
t
(+1)
j,k

]
+ E[λ+1],

λ̃(+1)
n = E[λ+1].

(49)

(50)

(51)

(52)

After computing w̃
(+1)
p and w̃

(+1)
n , the normalization term is given by

Z̃+1 =
w̃

(+1)
n

2
erfc

(
µ̃(+1)
n

√
λ̃

(+1)
n /2

)
+
w̃

(+1)
p

2
erfc

(
−µ̃(+1)

p

√
λ̃

(+1)
p /2

)
. (53)

The moments for posteriors are obtained by

E[r+1] = M̃ (+1)
p + M̃ (+1)

n , (54)

E[r2
+1] = M̃ (+2)

p + M̃ (+2)
n , (55)

E[v+1] = M̃ (+1)
p , (56)

E[v2
+1] = M̃ (+2)

p , (57)

in which

M̃ (+0)
p =

w̃
(+1)
p

2Z̃+1

erfc

(
−µ̃(+1)

p

√
λ̃

(+1)
p /2

)
, (58)

M̃ (+1)
p =

w̃
(+1)
p

2Z̃+1

erfc

(
−µ̃(+1)

p

√
λ̃

(+1)
p /2

)
µ̃(+1)
p +

√
2

πλ̃
(+1)
p

1

exp

(
λ̃

(+1)
p

(
µ̃

(+1)
p

)2
/2

)
 , (59)

M̃ (+2)
p =

w̃
(+1)
p

2Z̃+1

erfc

(
−µ̃(+1)

p

√
λ̃

(+1)
p /2

)((
µ̃(+1)
p

)2
+

1

λ̃
(+1)
p

)
+

√
2

πλ̃
(+1)
p

µ̃
(+1)
p

exp

(
λ̃

(+1)
p

(
µ̃

(+1)
p

)2
/2

)
 ,

(60)

M̃ (+0)
n =

w̃
(+1)
n

2Z̃+1

erfc

(
µ̃(+1)
n

√
λ̃

(+1)
n /2

)
, (61)
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M̃ (+1)
n =

w̃
(+1)
n

2Z̃+1

erfc

(
µ̃(+1)
n

√
λ̃

(+1)
n /2

)
µ̃(+1)
n −

√
2

πλ̃
(+1)
n

1

exp

(
λ̃

(+1)
n

(
µ̃

(+1)
n

)2
/2

)
 , (62)

M̃ (+2)
n =

w̃
(+1)
n

2Z̃+1

erfc

(
µ̃(+1)
n

√
λ̃

(+1)
n /2

)((
µ̃(+1)
n

)2
+

1

λ̃
(+1)
n

)
−
√

2

πλ̃
(+1)
n

µ̃
(+1)
n

exp

(
λ̃

(+1)
n

(
µ̃

(+1)
n

)2
/2

)
 .

(63)

2.2 Local variational method

We adopt the local variational method to tackle the intractability of MFVI for w due to the
introduction of the sigmoid function (Eq. 16 in the Method section). In particular, we have
the following result regarding Eq. 15 in the Method section:

(0.5πj,k)
t
(−1)
j,k (1− πj,k)t

(0)
j,k(0.5πj,k)

t
(+1)
j,k ∝ π

t
(−1)
j,k +t

(+1)
j,k

j,k (1− πj,k)t
(0)
j,k

= exp
{
wᵀsj,k

(
t
(−1)
j,k + t

(+1)
j,k

)}
σ (−wᵀsj,k)

≥ exp
{
wᵀsj,k

(
t
(−1)
j,k + t

(+1)
j,k

)}
σ(ξj,k) exp

{
−1

2
(wᵀsj,k + ξj,k)− χ(ξj,k)

(
(wᵀsj,k)

2 − ξ2
j,k

)}
,

(64)

where

χ(ξ) =
1

2ξ

(
σ(ξ)− 1

2

)
. (65)

Then we can perform standard MFVI with respect to the lower bound of Eq. 64, which yields

ln q(w) ∝ E−w

 K∑
k=1

Jk∑
j=1

wᵀsj,k

(
t
(−1)
j,k + t

(+1)
j,k

)
− 1

2
wᵀsj,k − χ(ξj,k)(w

ᵀsj,k)
2 − 1

2
wᵀΛw


= −1

2
wᵀ

E[Λ] + 2
K∑
k=1

Jk∑
j=1

χ(ξj,k)sj,ks
ᵀ
j,k

w +wᵀ
K∑
k=1

Jk∑
j=1

sj,k

(
E
[
t
(−1)
j,k

]
+ E

[
t
(+1)
j,k

]
− 1

2

)
.

(66)

This indicates that q(w) follows a normal distribution given by

q
(
w; µ̃w, Λ̃w

)
= N

(
µ̃w, Λ̃w

)
, (67)

in which

µ̃w = Λ̃
−1
w

K∑
k=1

Jk∑
j=1

sj,k

(
E
[
t
(−1)
j,k

]
+ E

[
t
(+1)
j,k

]
− 1

2

)
,

Λ̃w = E[Λ] + 2

K∑
k=1

Jk∑
j=1

χ(ξj,k)sj,ks
ᵀ
j,k.

(68)

(69)
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2.3 Update rules for other variational parameters

For other latent variables in RefMap besides v−1, v+1 and w, we carry out the naive MFVI
and obtain

q
(
uk; µ̃k, Λ̃k

)
= N

(
uk; µ̃k, Λ̃

−1
k

)
, (70)

q
(
mj,k; µ̃j,k, λ̃j,k

)
= N

(
mj,k; µ̃j,k, λ̃

−1
j,k

)
, (71)

q(λj,k; ãj,k, b̃j,k) = Gamma
(
λj,k; ãj,k, b̃j,k

)
, (72)

q
(
τ−1; ã−1, b̃−1

)
= Gamma

(
τ−1; ã−1, b̃−1

)
, (73)

q
(
τ+1; ã+1, b̃+1

)
= Gamma

(
τ+1; ã+1, b̃+1

)
, (74)

q
(
τ0; ã0, b̃0

)
= Gamma

(
τ0; ã0, b̃0

)
, (75)

q
(
m−1, λ−1; µ̃−1, β̃−1, c̃−1, d̃−1

)
= N

(
m−1; µ̃−1,

(
β̃−1λ−1

)−1
)
Gamma

(
λ−1; c̃−1, d̃−1

)
,

(76)

q
(
m+1, λ+1; µ̃+1, β̃+1, c̃+1, d̃+1

)
= N

(
m+1; µ̃+1,

(
β̃+1λ+1

)−1
)
Gamma

(
λ+1; c̃+1, d̃+1

)
,

(77)

q (tj,k; π̃j,k) = π̃
tj,k
j,k , (78)

q
(
Λ; W̃Λ, ν̃Λ

)
=W

(
W̃Λ, ν̃Λ

)
, (79)

in which

µ̃k = Λ̃
−1
uk

(√
Nzk + E[Λk]E[mk]

)
,

Λ̃k = NΣk + E[Λk],

µ̃j,k =

(
E[λj,k]

Ij,k∑
i=1

E[ui,j,k]− E[v−1]E[τ−1]E
[
t
(−1)
j,k

]
+ E[v+1]E[τ+1]E

[
t
(+1)
j,k

])
λ̃−1
j,k ,

λ̃j,k = Ij,kE[λj,k] + E
[
t
(−1)
j,k

]
E[τ−1] + E

[
t
(0)
j,k

]
E[τ0] + E

[
t
(+1)
j,k

]
E[τ+1],

ãj,k = a0 +
Ij,k
2
,

b̃j,k = b0 +
1

2

Ij,k∑
i=1

E
[
u2
i,j,k

]
+
Ij,k
2

E
[
m2
j,k

]
− E [mj,k]

Ij,k∑
i=1

E [ui,j,k] ,

ã−1 = a0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(−1)
j,k

]
,

b̃−1 = b0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(−1)
j,k

] (
E
[
m2
j,k

]
+ E

[
v2
−1

]
+ 2E [mj,k]E [v−1]

)
,

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)
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ã+1 = a0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(+1)
j,k

]
,

b̃+1 = b0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(+1)
j,k

] (
E
[
m2
j,k

]
+ E

[
v2

+1

]
− 2E [mj,k]E [v+1]

)
,

ã0 = a0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(0)
j,k

]
,

b̃0 = b0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
m2
j,k

]
E
[
t
(0)
j,k

]
,

µ̃−1 =
β0µ0 + E[r−1]

β0 + 1
,

β̃−1 = β0 + 1,

c̃−1 = a0 +
1

2
,

d̃−1 = b0 +
1

2
β0µ

2
0 +

1

2
E
[
r2
−1

]
− 1

2(β0 + 1)
(β0µ0 + E[r−1])2 ,

µ̃+1 =
β0µ0 + E[r+1]

β0 + 1
,

β̃+1 = β0 + 1,

c̃+1 = a0 +
1

2
,

d̃+1 = b0 +
1

2
β0µ

2
0 +

1

2
E
[
r2

+1

]
− 1

2(β0 + 1)
(β0µ0 + E[r+1])2 ,

π̃
(i)
j,k =

exp
{
ρ̃

(i)
j,k

}
exp

{
ρ̃

(−1)
j,k

}
+ exp

{
ρ̃

(0)
j,k

}
+ exp

{
ρ̃

(+1)
j,k

} (i = −1, 0,+1),

ν̃Λ = ν0 + 1,

W̃Λ =
(
W−1

0 + E [wwᵀ]
)−1

,

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

and we define

ρ̃
(−1)
j,k =

1

2
E[ln τ−1]− 1

2
E[τ−1]

(
E
[
m2
j,k

]
+ E

[
v2
−1

]
+ 2E[mj,k]E[v−1]

)
+ E[lnπj,k]− ln 2,

(103)

ρ̃
(+1)
j,k =

1

2
E[ln τ+1]− 1

2
E[τ+1]

(
E
[
m2
j,k

]
+ E

[
v2

+1

]
− 2E[mj,k]E[v+1]

)
+ E[lnπj,k]− ln 2,

(104)

ρ̃
(0)
j,k =

1

2
E[ln τ0]− 1

2
E[τ0]E

[
m2
j,k

]
+ E[ln(1− πj,k)]. (105)
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Algorithm 1: MFVI for RefMap

Input : Z-scores zi,j,k, epigenome features sj,k and LD matrices Σk.
Output : Posteriors q and local variational parameters ξj,k.

1 Initialize variational parameters.

2 while not converged do
3 Update global variational parameters based on Eqs. 31, 32, 33, 34, 49, 50, 51, 52,

68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, and 102.

4 Update local variational parameters based on Eq. 107.
5 Calculate ELBO (details omitted).

6 end

2.4 Update rules for local variational parameters

One needs to maximize the lower bound on marginal likelihood in Eq. 64 with respect to ξj,k
to rationalize the local variational inference. In particular, we have the following optimization
problem

Q
(
ξ, ξold

)
∝

K∑
k=1

Jk∑
j=1

lnσ(ξj,k)−
1

2
ξj,k − χ(ξj,k)

(
(wᵀsj,k)

2 − ξ2
j,k

)
. (106)

Solving the above problem with respect to each ξj,k gives its update rule

ξnew
j,k =

√
sᵀj,kE [wwᵀ] sj,k. (107)

2.5 Coordinate ascent algorithm for MFVI

With the above update rules we can construct a coordinate ascent algorithm to update
variational parameters iteratively until convergence (i.e., the change of ELBO falls below a
threshold which was set to be 10−6 in our study). The inference algorithm is summarized in
Algorithm 1.
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