Detection of serotonin, melatonin and their metabolites in honey

Tae-Kang Kim^{1,2}, Venkatram R. Atigadda¹, Pawel Brzeminski^{1,4}, Adrian Fabisiak^{1,4}, Edith K. Y. Tang³, Robert C. Tuckey³, Russel J. Reiter⁵, Andrzej T. Slominski^{1,2*}

¹Department of Dermatology, University of Alabama at Birmingham, ²VA Medical Center, Birmingham, AL 35294, USA, ³School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia, ⁴Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland, ⁵Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA

*Corresponding author:

Andrzej T. Slominski, MD, PhD, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294. USA; e-mail: aslominski@uabmc.edu; phone: 205.934.5245

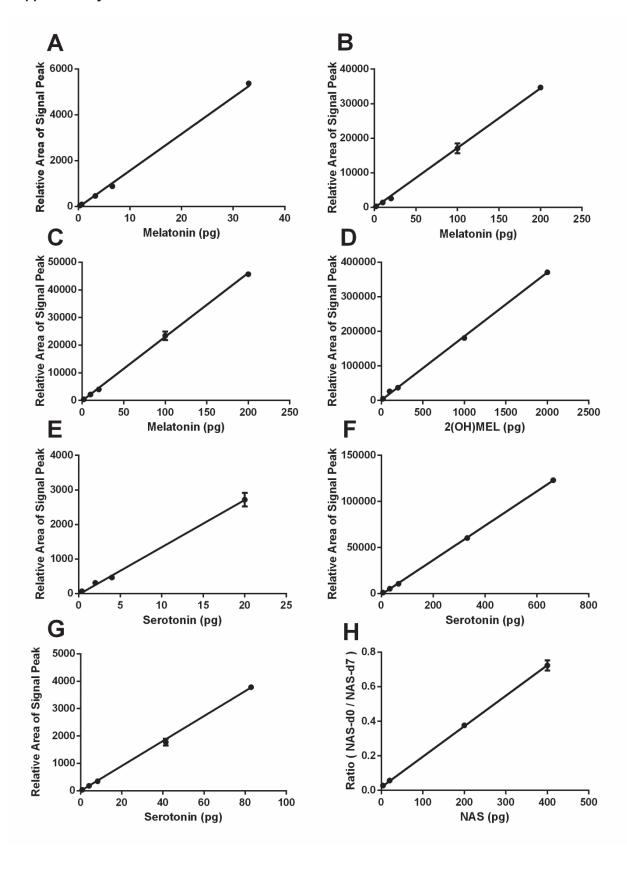


Figure S1. Standard curves for melatonin and its derivatives used for quantification. The peak area was calculated using Waters MassLynxTM Software with EIC of A, Melatonin, m/z = 174.1 [M+H-NH₂CH₃CO]⁺; B, Melatonin, m/z = 233.1 [M+H]⁺; C, Melatonin, m/z = 255.1 [M+Na]⁺; D, 2(OH)MEL, m/z = 249.1 [M+H]⁺; E, Serotonin for commercial honey sample 1, m/z = 160.1 [M+H-NH₃]⁺; F, Serotonin for Australian honey and Polish commercial honey, m/z = 160.1 [M+H-NH₃]⁺; G, Serotonin for commercial honey sample 2 and Polish natural honey, m/z = 160.1 [M+H-NH₃]⁺; H, NAS, m/z = 160.1 [M+H-NH₂CH₃CO]⁺ and NAS-d7, m/z = 164.1 [M+H-NH₂CH₃CO]⁺

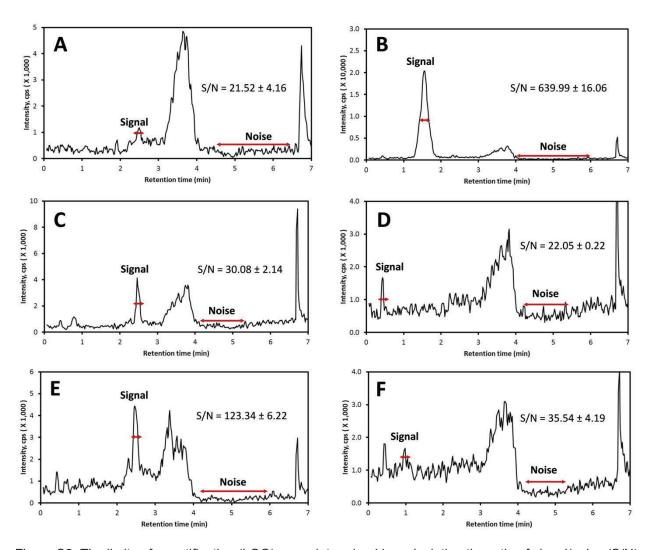


Figure S2. The limits of quantification (LOQ) were determined by calculating the ratio of signal/noise (S/N) using Waters MassLynxTM Software with EIC of A, 0.33 pg Melatonin, m/z = 174.1 [M+H-NH₂CH₃CO]⁺; B,

20 pg 2(OH)MEL, m/z = 249.1 [M+H]⁺; C, 2 pg Melatonin, m/z = 233.1 [M+H]⁺; D, 0.4 pg Serotonin, m/z = 160.1 [M+H-NH₃]⁺; E, 2 pg Melatonin, m/z = 255.1 [M+Na]⁺; F, 0.4 pg NAS, m/z = 160.1 [M+H-NH₂CH₃CO]⁺.

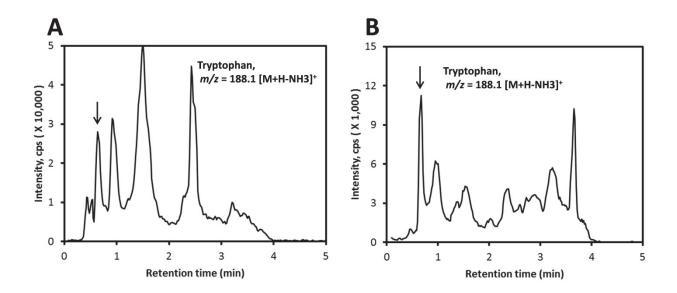


Figure S3. Detection of tryptophan in honey. A, Tryptophan in Australian honey; B, Tryptophan in commercial honey sample 1.

Table S1. Recoveries of standard melatonin by methylene chloride and ethyl acetate extraction procedurs. Melatonin was added to water:honey mixture and samples were extracted with methylene chloride or ethyl acetate as described in the Methods, then analyzed by LC-MS.

Samples	Recovery (%)		
	$m/z = 233.1 [M+H]^+$	$m/z = 255.1 [M+Na]^+$	<i>m/z</i> = 174.1 [M+H-
			NH ₂ CH ₃ CO] ⁺
Melatonin Standard	100	100	100
Methylene chloride extraction	77.17 ± 9.24	74.71 ± 0.68	87.10 ± 6.56
Ethyl acetate extraction	58.38 ± 4.21	62.34 ± 0.74	66.26 ± 4.07

Table S2. Recoveries of standard serotonin by methylene chloride and ethyl acetate extraction procedures. Serotonin was added to water:honey mixture and samples were extracted with methylene chloride or ethyl acetate as describes in the Methods, then analyzed by LC-MS.

Samples	Recovery (%) m/z = 160.1 [M+H-NH ₃] ⁺
Serotonin Standard	100
Methylene chloride extraction	15.20 ± 0.31
Ethyl acetate extraction	133.69 ± 3.72

Table S3. Recoveries of standard NAS by methylene chloride and ethyl acetate extraction procedures. Serotonin was added to water:honey mixture and samples were extracted with methylene chloride or ethyl acetate as describes in the Methods, then analyzed by LC-MS.

Samples	Recovery (%) $m/z = 160.1 [M+H-NH2CH3CO]^+$
NAS Standard	100
Methylene Chloride extraction	17.95 ± 0.49
Ethyl Acetate extraction	82.05 ± 5.02