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Supplementary Figure 1: Measurement of cytosolic NADH:NAD+ in arterial smooth muscle cells. (A) 
Schematic representation of peredox-mCherry NADH:NAD+-sensitive fluorescent biosensor. Peredox-
mCherry is a modified bacterial redox-sensitive transcriptional repressor (i.e., Rex) that consists of 
circularly permutated T-sapphire and mCherry (see ref 1). Upon binding of NADH, T-sapphire fluorescence 
is enhanced. No change in fluorescence is observed with mCherry, enabling normalization to biosensor 
expression via red fluorescence. (B) Representative fluorescence images showing T-sapphire and 
mCherry fluorescence in aortic vascular smooth muscle cells expressing peredox-mCherry in the presence 
of external lactate:pyruvate (lac:pyr) of 500 or 6. Scale bar represents 50 μm. Experiment was repeated 
three times with similar results. (C-E) Green:red fluorescence intensities (normalized to minimum ratio 
obtained in 10 mM pyruvate) in the presence of lac:pyr of 500-6 (C), mean green:red over the tested range 
of lac:pyr ratios (log scale), and mean cytosolic NADH:NAD+ vs. green:red fluorescence, estimated using 
the protocol described in 2. n = 87 cells, 3 independent experiments. 
  



 

 

 

 

 

 

 

 
Supplementary Figure 2: Increased NADH:NAD+ in arterial smooth muscle cells in the presence of 
low O2. (A) Representative recording of cytosolic NADH:NAD+ in an arterial myocyte in the presence of 
5% and 1% O2. NADH:NAD+ in the presence of 10 mM lactate and 10 mM pyruvate, measured at the end 
of the experiment, were 0.0043 and 0.0015, respectively. (B) Box and whiskers plot (line: median, box: 
25th to 75th percentile, whiskers: min and max) showing summarized NADH:NAD+ in arterial myocytes in 
the presence of 5% and 1% O2. n = 35 cells, 3 independent experiments (denoted by symbols). ***p = 4.65 
x 10-8 (two-sided Wilcoxon matched pairs signed rank test). 
  



 
 
 
 
 
 
 
 
 
 
 
 

 
 

Supplementary Figure 3: Frequency-dependent increases in arterial myocyte NADH:NAD+ are 
blunted in the presence of tempol. Box and whiskers plots (line: median, box: 25th to 75th percentile, 
whiskers: min and max) summarizing fold-change in NADH:NAD+ in arterial myocytes in arterial/cardiac 
myocyte co-cultures electrically paced in the presence of 1 mM 4-hydroxy TEMPO (tempol). N = 47 cells 
from 6 independent experiments (denoted by symbols). Ns: p = 0.0864; arterial/cardiac myocyte vs. 
arterial/cardiac myocyte + tempol: 1 Hz, p = 0.005, 2 Hz, p = 0.033, 3 Hz, p = 0.029. Linear mixed models 
were used to analyze differences in log-transformed NADH:NAD+ across frequencies and between groups. 
  
  



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Supplementary Figure 4: NADH:NAD+ is not elevated by direct β-adrenergic stimulation. (A) 
Representative recordings of cytosolic NADH:NAD+ in arterial myocyte before and after application of 
isoproterenol (iso; 10-1000 nM), prior to application of 10 mM lactate and 10 mM pyruvate at the end of 
the experiment. (B) Box and whiskers plot (line: median, box: 25th to 75th percentile, whiskers: min and 
max) summarizing NADH:NAD+ at baseline (base) and in the presence of iso at concentrations indicated, 
or in the presence of 10 mM lactate or pyruvate. N = 123 cells, 3 independent experiments (denoted by 
symbols). ***p = 0.00001 vs. base (one-way repeated measures ANOVA).  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Supplementary Figure 5: Contribution of Kv1 channels to total outward IK in coronary arterial 
smooth muscle. (A,B) Representative voltage-clamp IK recordings (normalized to cell capacitance, pA/pF, 
A) and summarized IK densities (mean values ± SEM, B) in coronary arterial myocytes at depolarizing 
membrane potentials from -70-50 mV in the absence (ct) and presence of the BKCa inhibitor paxilline (10 
μM), or in the presence of paxilline (10 μM) and psora-4 (500 nM). n = 7-9 cells from 4 mice. ns, p = 0.9891, 
ct vs. paxilline, **p = 0.0006, ct vs. paxilline + psora-4 (mixed effects analysis with Dunnett correction). 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Supplementary Figure 6: Impact of Kvβ2 ablation on whole cell IK in coronary arterial smooth 
muscle. (A) Summary of total outward IK density (mean values ± SEM) in freshly isolated coronary arterial 
myocytes from wild type (129SvEv) and Kvβ2-/- mice. n = 7-8 cells, 4-5 mice for each.  (B, C) Plots showing 
summarized I/Imax (mean values ± SEM) across range of membrane potentials from activation and 
inactivation two-pulse voltage protocols in wild type and Kvβ2-/- mice. Data are fit with Boltzmann function. 
n = 6-12 cells, 4-5 mice for each. B: *p = 0.000013; C: *p = 0.008002, Kvβ2-/- vs. wild type (extra sum-of-
squares F test). 
  



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Supplementary Figure 7:  Native Kv1 channels in human coronary arterial myocytes associate with 
Kvβ proteins.  Representative fluorescent images showing proximity ligation-positive punctae (red) in 
isolated human coronary arterial myocytes co-labelled for Kv1.5 and Kvβ1.1, and Kv1.5 and Kvβ2 proteins. 
As a control, cells were also labelled for Kv1.5 alone. Images are representative of 4, 10, and 14 cells for 
cells labelled for Kv1.5 alone, Kv1.5 –  Kvβ1.1, and Kv1.5 – Kvβ2, respectively. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Supplementary Figure 8: The Y90F mutation in Kvβ2 does not alter the abundance of vascular 
Kvβ2. (A-B) Representative blot images showing immunoreactive bands for Kvβ2 and a-tubulin (loading 
control) (A) and summary (mean values ± SEM) of Kvβ2-associated band densities normalized to α-tubulin 
(B) in mesenteric artery lysates from wild type and KvΒ2Y90F mice.  n = 3 each; ns: P>0.05 (two-sided Mann 
Whitney U test).  



 
Supplementary Table 1: Available clinical information for human 
coronary arterial tissue. 

Sex Male 
Age 52 yrs 

Cause of death Cerebrovascular/stroke 

BMI 26.4 
Medical history   

Diabetes No 
Cancer No 

Coronary artery disease No 
Gastrointestinal disease No 

Chest trauma No 
Cigarette use (>20 pack yr) Yes 

Continued cigarette use (prior 6 mo) Yes 
Heavy alcohol use (≥2 drinks/day) Yes 

I.V. drug use No 
Risk of blood-borne disease 

transmission 
No 

COVID-19 Negative 
 

 

Supplementary Table 2: Pyridine nucleotide concentrations and redox 
ratios for whole cell IKv recordings. 

 Oxidized Reduced 
NAD+ (μM) 1000 200 

NADH (μM) 50 1000 

NADH:NAD+ 0.05 5 

NADP+ (μM) 30 50 

NADPH (μM) 100 100 

NADPH:NADP+ 3.33 2 

 

 

Supplementary Table 3: Voltage-sensitivity of Kv activation and inactivation. 
 Wild type Kvβ2-/- 

 Oxidized Reduced Oxidized Reduced 

V0.5, act 
(mV) -2.5 ± 3.8 -17.5 ± 3.1  

(*p = 0.0021) -11.2 ± 3.0 10.9 ± 6.3 
(*p = 0.0017) 

V0.5, inact 
(mV) -35.7 ± 3.1 -49.0 ± 1.4 

(*p = 0.0003) -51.4 ± 2.9 -31.4 ± 4.9 
(*p = 0.0133) 

V0.5, act/inact: voltage at 50% of maximum I/Imax, n = 5-7 cells, 4-5 mice for 
each, *p value, reduced vs. oxidized (extra sum-of-squares F test). 

 

  



 
 
 
 
 

Uncut blot for Supplementary Figure 8 
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