1 SUPPLEMENTARY INFORMATION

2

3 USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a

4 potential therapeutic target in pancreatic cancer

5

6

Jessica K. Nelson, May Zaw Thin, Theodore Evan, Steven Howell, Mary Wu, Bruna
Almeida, Nathalie Legrave, Duco S. Koenis, Gabriela Koifman, Yoichiro Sugimoto,
Miriam Llorian Sopena, James MacRae, Emma Nye, Michael Howell, Ambrosius P.
Snijders, Andreas Prachalias, Yoh Zen, Debashis Sarker, and Axel Behrens

11

13 Supplementary Figure 1 (related to Figure 1). Characterization of enzymatically 14 active DUBs in PDAC using activity-based proteomics. (a) In-gel visualization of 15 Cy5-Ub-ABP labelled DUBs in KPCY-organoids. (b) Mass spectrometry analysis of 16 DUBs labelled with Biotin-ubiquitin-ABP in KPCY organoids. Volcano blot depicts the label-free quantification (LFQ) of -log₁₀ t-test p-value vs ratio difference of untreated 17 18 (right side) and DUBi-treated (left side) samples. (c) Volcano plot shows the significance of each gene set from the Gene Ontology (GO) biological Process 2021 19 20 dataset versus its odds ratio from mass spectrometry data in Figure 1c. Each point 21 represents a single geneset; the x-axis measures the odds ratio (0, inf) calculated for 22 the gene set, while the y-axis gives the -log(p-value) of the gene set. Larger blue points 23 represent significant terms (p-value < 0.05); smaller grey points represent non-24 significant terms. The darker the blue colour of a point, the more significant it is. (d) Bar chart shows the top 10 enriched terms in the GO Biological Process 2021 library, 25 26 along with their corresponding p-values. (e) Mass spectrometry analysis of DUBs 27 labelled with Biotin-ubiquitin-ABP in KPCY tumor tissue, with or without DUBi treatment (n=3 biologically independent samples per group). Displayed as median 28 29 normalized -log₁₀ t-test p-value vs ratio difference of untreated (right side) and DUBi-30 treated (left side) samples. For (b and e) grey dots indicate all proteins identified, and red dots highlight all significant DUBs. Source data are provided as a Source Date file. 31 32

Supplementary Figure 2 (related to Figure 2). Genetic knock-down screen
identifies Usp25 as an essential DUB in PDAC organoids. (a) Representative
images of KPCY organoids following puromycin selection with non-targeting (NT) or
YFP-targeting shRNAs. Scale bar is 800 µM. (b) Quantification of YFP signal from (a),
shown as mean fluorescent intensity (MFI), and displayed as mean ± SD. Statistical

38 significance was determined by two-sided Student's t-test (n=6 biologically 39 independent experiments). (c) Quantification of organoid growth calculated by % well 40 confluency from live-cell phenotypic monitoring system, and displayed as mean ± SD. 41 Statistical significance was determined by two-sided Student's t-test (n=6 biologically independent experiments). (d) Organoid viability was measured after 72 hours post 42 43 puromycin selection and shown as relative luminescent unit (RLU), and displayed as mean ± SD. Statistical significance was determined by two-sided Student's t-test (n=6 44 45 biologically independent experiments). (e) Representative images from live-cell 46 phenotypic monitoring time-course in KPCY organoids. Confluency mask is shown in 47 yellow. Scale bar is 1 mm. (f) Quantitative values are plotted from two representative 48 control shRNA lines are shown, with a peak growth confluency between 72-90 hours, 49 highlighted with red dashed bars in (f), and red box in (e). Black dashed lines highlight 50 24- and 114-hour images in (e). Source data are provided as a Source Date file.

51

52 Supplementary Figure 3 (related to Figure 3). USP25 is highly expressed and enzymatically active in PDAC compared to normal pancreatic tissue, which 53 54 correlated with poor patient survival. (a) Histological and immunohistochemical 55 analysis of Usp25 expression in normal pancreatic and KPCY tumor tissues. Scale 56 bar is 100 µm. Each image comes for a biologically independent animal, quantified in 57 Figure 3b (b) Histological and immunohistochemical analysis of USP25 staining in primary patient PDAC tumors. Scale bar is 1000 µm and insert is 100 µm. Each image 58 comes from an independent patient. 59

60

61 Supplementary Figure 4 (related to Figure 4). Depletion of *USP25* leads to 62 reduced patient-derived organoid formation, viability and attenuated PDAC

63 tumor growth in vivo. (a) Representative brightfield images of shUsp25 silencing in 64 KPCY organoids. Scale bar is 800 µm. (b) Expression of Usp25 in KPCY organoids and displayed as relative mRNA expression compared to shYFP controls. Data shown 65 66 as mean ± SD, and statistical significance was determined by One-way ANOVA with Dunnett post-hoc test (n=4 biologically independent samples). (c) Expression of 67 68 USP25 in PDO lines and displayed as relative mRNA expression compared to shNT 69 controls. Data shown as mean ± SD, and statistical significance was determined by 70 One-way ANOVA with Dunnett post-hoc test (n=4 biologically independent samples). 71 (d) Representative images of shUSP25 silencing in PDOs incubated with caspase-3 activity probe. Scale bar is 800 µm. (e) Schematic of USP25 knock-out strategy using 72 73 CRISPR/Cas9. (f) Sanger sequencing data of the USP25 locus from PDO line (K17T) 74 parental and USP25 knock-out clones. (g) Representative images of the Hu-PDAC 75 organoids, showing empty vector (EV) control and CRISPR/Cas9-mediated USP25 knock-out cells. Each USP25^{-/-} clones are described with single guide (sg) targeting 76 77 exon shown. Scale bar is 400 µm. (h) Organoid viability displayed as % relative to the EV, and shown as mean ± SD. Statistical significance was determined by One-way 78 ANOVA with Dunnett post-hoc test (n=3 biologically independent experiments). 79 80 Source data are provided as a Source Date file.

81

Supplementary Figure 5 (related to Figure 5). Transcriptional and metabolomic profiling of PDAC organoids reveals USP25 as a novel regulator of HIF-1 transcriptional activity and metabolic rewiring. (a) Principal component analysis of log-transformed normalized counts for the top 5000 most variable transcripts (as determined by standard deviation) from the RNA-seq experiment. (b) Hierarchical clustering of log-transformed and mean-centered normalized counts for all

88 differentially expressed transcripts from the RNA-seq experiment. (c-d) Pathway 89 analysis of differentially expressed genes down-regulated upon loss of Usp25. Bar 90 chart shows the top 10 enriched terms in the (c) MsigDB Hallmark 2020 and (d) KEGG 91 2021 libraries, along with their corresponding p-values. (e-f) Spearman correlation of 92 *USP25* gene expression with gene signatures from (e) the KEGG glycolysis pathway 93 or (f) the HALLMARK hypoxia pathway. Data in (e-f) generated from the GEPIA 94 database, where each dot represents data from one patient expressed as transcripts 95 per million (TPM).

96

97 Supplementary Figure 6 (related to Figure 5). Transcriptional and metabolomic 98 profiling of PDAC organoids reveals USP25 as a novel regulator of HIF-1 99 transcriptional activity and metabolic rewiring. (a) Heatmap of gene expression z-100 scores for the HALLMARK Hypoxia pathway (ID:M5891). (b) Gene expression in 101 KPCY organoids, displayed as relative mRNA expression compared to shYFP 102 controls. Data shown as mean ± SD, and statistical significance was determined by two-sided Students t-test with Holm-Sidak post-hoc correction for multiple testing (n=4 103 104 biologically independent experiments). (c) Glucose concentrations measured in 105 culture medium from Mu KPCY organoids, and displayed as mean ± SD. Statistical 106 significance was determined by two-sided Students t-test with Holm-Sidak post-hoc 107 correction for multiple testing (n=3 biologically independent experiments). (d-e) 108 Incorporation of ¹³C-glucose into (d) intracellular pyruvate, and (e) TCA metabolites in treated KPCY organoids. Data in (d-e) is displayed as mean ± SD, and represents one 109 110 experiment carried out with six replicates. Due to technical limitations, statistics for (d-111 e) were performed on technical replicates using two-sided Student's t-test. Source 112 data are provided as a Source Date file.

113

Supplementary Figure 7 (related to Figure 6). USP25 interacts with, 114 115 deubiquitylates and stabilizes HIF-1 α and promotes its transcriptional activity. 116 (a) Western blot of indicated targets following siRNA-mediated knock-down of USP25 or non-targeting (NT) control in human PDAC cell lines, treated with 200 µM cobalt 117 chloride (CoCl₂) for six hours. (b) PDOs (line K13T) were treated with the cell-118 119 permeable Image-IT Red Hypoxia reagent to measure cellular hypoxia. Scale bar is 120 100µm. (c) Organoid viability in indicated PDO lines measured at day 5 under high 121 oxygen tension (20%) or low oxygen tension (1%) culture conditions. Values shown 122 as relative luciferase unit (RLU), and displayed as mean ± SD. Statistical significant 123 was determined by two-way ANOVA with post hoc corrections for multiple testing (n= 124 4 biologically independent experiments). (d) Western blot of indicated targets following 125 shRNA-mediated knock-down of USP25 or non-targeting control in PDOs (line K13T), 126 with 200 µM CoCl₂ treatment for six hours where indicated. Source data are provided 127 as a Source Date file.

128

Supplementary Figure 8 (related to Figure 6). USP25 interacts with, deubiquitylates and stabilizes HIF-1 α and promotes its transcriptional activity. (a) HEK293T transfected with the indicated expression constructs for epitope-tagged USP25 and HIF-1 α . GFP was co-transfected as a transfection efficiency and additional loading control. 24 hours post-transfection, cells were treated for an additional 24 hours with 200 μ M CoCl₂. Total cell lysates were immunoblotted or immunoprecipitated and analyzed as indicated. (b) Human renal carcinoma cell line

RCC-4 was treated for 72 hours with siRNA for non-targeting (siNT) or four individual
 USP25 targeting siRNA (*siUSP25* 1-4). Total cell lysates were immunoblotted as

138 indicated. (c) Western blot of indicated targets following siRNA-mediated knock-down 139 of USP25 or non-targeting control. (d) HEK293T cells transfected with indicated 140 expression constructs for epitope-tagged HIF-1 α and USP25 and treated with 200 μ M 141 cobalt chloride (CoCl₂) for six hours. Sub-cellular fractionation was done to compare cytosolic and nuclear expression of indicated targets. (e) SLC2A1 mRNA expression 142 143 in HEK293T cells, displayed as relative mRNA expression compared to EV transfected 144 control. Data shown as mean ± SD, and statistical significance was determined by 145 One-way ANOVA with Dunnett post-hoc test (n=4 biologically independent experiments). (f) Schematic of the lentiviral plnducer20-blast construct which was 146 147 used to engineer PDO lines with DOX-inducible USP25 wild-type (WT) or catalytic 148 mutant (C178S) expression. (g) Western blot images of endogenous protein levels following 48 hours of 1 µM DOX treatment in PDOs (line K13T) with DOX-inducible 149 150 USP25-WT or -C178S expression. (h) Gene expression in PDOs, displayed as relative 151 mRNA expression compared to controls (grey bars). Each bar represents the mean ± SD, and each symbol represents a different shRNA targeting either HIF1A or YFP 152 153 control from the average of three biologically independent PDO lines. Statistical significance was determined by two-sided Students t-test with Holm-Sidak post-hoc 154 155 correction for multiple testing. (i) Western blot images of protein levels following 72 156 hours of 500 nM DOX to induce expression of the HA-tagged HIF-1 α stabilization 157 mutant (HIF1A^{P402A/P456A}) in indicated PDO lines. Source data are provided as a Source Date file. 158

159

Supplementary Figure 9 (related to Figure 7). Pharmacological inhibition of USP25 leads to loss of HIF-1 α signaling and reduced tumor growth *in vitro* and *in vivo*. (a) Brightfield images of Mu wild-type (WT) and KPCY organoids treated with

163 100nM FT206. Scale bar is 500 µm. (b) Total cell lysates were immunoblotted as 164 indicated. (c) Usp28 knock-out organoids treated with FT206 at the indicated doses 165 for 72 hours. Organoid viability was displayed as % relative to vehicle-treated control, 166 and shown as mean ± SD. Statistical significance was determined by One-way ANOVA with Dunnett post-hoc test (n=3 biologically independent experiments). (d) 167 168 Representative brightfield images from (Figure 7c) of PDO lines treated with vehicle 169 or 100nM FT206. Scale bar is 0.5 mm. (e) Gene expression in KPCY organoids, 170 displayed as relative mRNA expression compared to vehicle-treated controls. Data 171 shown as mean ± SD, and statistical significance was determined by two-sided 172 Student's t-test with Holm-Sidak post-hoc correction for multiple testing (n=4 173 biologically independent experiments). (f) Heatmap displaying organoid viability in 174 KPCY organoids treated with FT206 or different tankyrase and Wnt signaling inhibitors at indicated concentrations, displayed as relative luciferase unit (RLU). (g) Heatmap 175 176 displaying organoid viability of PDO lines treated AZ6102 with indicated 177 concentrations, calculated as % of vehicle-treated. Source data are provided as a Source Date file. 178

179

180 Supplementary Figure 10 (related to Figure 7). Pharmacological inhibition of USP25 leads to loss of HIF-1 α signaling and reduced tumor growth *in vitro* and 181 182 *in vivo.* (a) Subcutaneous tumor weights at endpoint from experiments derived with different KPCY organoid lines. Data displayed as mean ± SD, and statistical 183 184 significance was determined by two-sided Student's t-test (KPCY-1 is equal to n=6 185 biologically individual animals per group, and KPCY-2 and -3 are equal to n=5 186 biologically individual animals per group). (b) Body weights of animals treated with 187 FT206 (75 mg/kg) or vehicle, three times a week for 5 weeks. Data plotted as mean ±

188 SD (n=5 biologically individual animals per group). (c) Growth curves of PDOX 189 volumes (line K3T), treated with vehicle or FT206. Data plotted as mean ± SD, and 190 statistical significance was determined by Two-way ANOVA (n=5 biologically 191 individual animals per group). (d) Representative images of 3D ultrasound images of PDOXs described in (c). Scale bar is 3mm (e) Endpoint tumor volumes (mm³) of 192 193 PDOX, from lines K3T (n=5 biologically individual animals per group) and K10T (n=6 194 biologically individual animals per group). Statistical significance was determined by 195 two-sided Student's t-test. (f) Body weights of animals treated with FT206 (75 mg/kg) 196 or vehicle, two-three times a week for 6 weeks. Data plotted as mean ± SD (n=5 197 biologically individual animals per group). (g) Representative immunohistochemical 198 analysis of active cleaved caspase-3 (C3A) expression in subcutaneous KPCY 199 organoid tumors. Scale bar is 1000 µm. Quantification shown in Figure 7h. Source 200 data are provided as a Source Date file.

201

202 Supplementary Figure 11 (related to Figure 7). Pharmacological inhibition of 203 USP25 leads to loss of HIF-1α signaling and reduced tumor growth *in vitro* and 204 in vivo. (a) Representative images of immunofluorescent staining of DAPI (grey), 205 CK19 (blue) and hypoxyprobe (red) in PDOX treated with vehicle or FT206. Scale bar 206 is 1000 µm, and insert is 100 µm. (b) Quantification of hypoxyprobe positive staining 207 area in whole tumor sections. Data displayed as mean ± SD, and statistical significance was determined by two-sided Student's t-test (n=14 biologically 208 209 independent animals for vehicle and n=10 biologically independent animals for FT206 210 groups). (c) Representative images of immunofluorescent staining of Slc2a1 (red) and 211 Lectin (blue) in KPCY subcutaneous tumors treated with vehicle or FT206. Scale bar 212 is 1000 µm, and insert b and d are 100 µm. (d) Quantification of Slc2a1 positive

213 staining area, displayed as mean ± SD. Statistical significance was determined by two-214 sided Student's t-test (n=8 biologically independent animals per group). (e) Quantification of Lectin positive staining area, displayed as mean ± SD. Statistical 215 216 significance was determined by two-sided Student's t-test (n=8 biologically independent animals per group). (f) Representative images of subcutaneous tumors 217 218 of KPCY organoids treated with vehicle or FT206. (g) Immunohistochemical analysis of SLC2A1 staining in primary patient PDAC tumors. Scale bar is 50 µm. (h) 219 220 Correlation between protein expression of SLC2A1 (% positive area) versus USP25 221 (% positive area) was assessed using linear regression. R-value and p-value are 222 shown in graph inset. Source data are provided as a Source Date file.

223

224 Supplementary Figure 12. Graphical summary.

225 USP25 is highly expressed and active in PDAC, compared to normal pancreatic tissue.

226 USP25 antagonizes polyubiquitination of HIF-1 α , leading to HIF-1 α stabilization and

227 transcriptional activity. Enhanced HIF-1α transcriptional activity promotes metabolic

228 reprogramming and tumor cell survival in the hypoxic tumor microenvironment.

229

Supplementary Table 1. Patient-derived organoids used in this study with detailed
description of morphology, mutational status and primary tumour stage and histology.

PDO	PDO	KRAS	TP53	TNM	Histology	Neoadjuvant
Line	morphology	status	status	Stage	пізіоюду	Chemo?
КЗТ	non-cystic	missense mutation	missense mutation	T2N1M0	Poorly differentiated	None
K4T	cystic	missense mutation	missense mutation	T2N2M0	Moderately differentiated None	
K5T	non-cystic	missense mutation	no mutation	T3N2M0	Moderately differentiated	None
K7T	cystic	missense mutation	deep deletion	T4N1M0	Moderately differentiated	FOLFIRINOX 12 Cycles
K10T	non-cystic	missense mutation	missense mutation	T2N1M0	Moderately differentiated	None
K13T	cystic	missense mutation	no mutation	T2N1M0	Moderately differentiated	None
K17T	cystic	missense mutation	no mutation	Unknown	Moderately differentiated	None
K19T	cystic	missense mutation	nonsense mutation	Unknown	Moderately differentiated	None
K22T	non-cystic	missense mutation	missense mutation	T2N1M0	Moderately differentiated	None
K25T	non-cystic	missense mutation	missense mutation	T2N1M0	Moderately differentiated	None
K28T	cystic	missense mutation	missense mutation	T2N1M0	No diff. status	None
K36T	non-cystic	n/a	n/a	T3N1M0	Adenosquamous	None
K38T	cystic	missense mutation	n/a	T2N1M0	No diff. status	None
K46T	non-cystic	missense mutation	n/a	T2N2M0	Moderately differentiated	None

Supplementary Table 2. shRNA target sequences.

007	
141	
2.11	

Gene name	Species	Clone ID	Sequence

Gene name	Species	Clone ID	Sequence (5'-3')
YFP-1	N/A	N/A	ccgggaacggcatcaaggtgaacttctcgagaagttcacc ttgatgccgttctttttg
YFP-2	N/A	N/A	ccggcaacagccacaacgtctatatctcgagatatagacg ttgtggctgttgtttttg
YFP-3	N/A	N/A	ccggggagcgcaccatcttcttcaactcgagttgaagaag atggtgcgctcctttttg
Non-Target-1	N/A	SHC002	ccggcaacaagatgaagagcaccaactcgagttggtgct cttcatcttgttgtttttg
Non-Target-2	N/A	SHC0016	ccgggcgcgatagcgctaataatttctcgagaaattattagc gctatcgcgctttttg
Usp8-1	Mu	TRCN0000030744	ccggcctcacatctaatgcttacaactcgagttgtaagcatt agatgtgaggtttttg
Usp8-2	Mu	TRCN0000030745	ccggcgcagtttacaaccaatgctactcgagtagcattggtt gtaaactgcgtttttg
Usp8-3	Mu	TRCN0000030746	ccggccaaaggattaacggcgagaactcgagttctcgcc gttaatcctttggtttttg
Usp14-1	Mu	TRCN0000030758	ccgggagaagtttgaaggtgtagaactcgagttctacacctt caaacttctctttttg
Usp14-2	Mu	TRCN0000030757	ccgggcagctcttagagatttgtttctcgagaaacaaatctct aagagctgctttttg
Usp14-3	Mu	TRCN0000312005	ccgggagaagtttgaaggtgtagaactcgagttctacacctt caaacttctctttttg
Uchl3-1	Mu	TRCN0000030714	ccggtcttgacagaaacaccaaatactcgagtatttggtgttt ctgtcaagatttttg
Uchl3-2	Mu	TRCN0000030715	ccggcctgaacttcttagcatggtactcgagtaccatgctaa gaagttcaggtttttg
Uchl3-3	Mu	TRCN0000030718	ccgggcatggtaccaagaccagtatctcgagatactggtct tggtaccatgctttttg
Usp19-1	Mu	TRCN0000030782	ccggcgatcctttgaagctgagattctcgagaatctcagctt caaaggatcgtttttg
Usp19-2	Mu	TRCN0000030780	ccggcggcacaagatgagaaatgatctcgagatcatttctc atcttgtgccgtttttg
Usp19-3	Mu	TRCN0000335553	ccggcggcacaagatgagaaatgatctcgagatcatttctc atcttgtgccgtttttg
Usp48-1	Mu	TRCN000086675	ccggccgaattgcttggttggcattctcgagaatgccaacc aagcaattcggtttttg
Usp48-2	Mu	TRCN000086673	ccgggctgtcaacaatttgctgaaactcgagtttcagcaaat tgttgacagctttttg
Usp48-3	Mu	TRCN000086677	ccggctgaaggaagaacgattagaactcgagttctaatcgt tcttccttcagtttttg
Usp7-1	Mu	TRCN000087152	ccgggccgaatttaacagagagaatctcgagattctctctgt taaattcggctttttg
Usp7-2	Mu	TRCN0000087150	ccggcctgcaatgttagataatgaactcgagttcattatctaa cattgcaggtttttg
Usp7-3	Mu	TRCN0000087151	ccgggcaacttatgaggttcatgtactcgagtacatgaacct cataagttgctttttg
Otud6b-1	Mu	TRCN0000113316	ccgggccagagaattggaaattaaactcgagtttaatttcca attctctggctttttg
Otud6b-2	Mu	TRCN0000113318	ccggccagacatcttgagagtgaaactcgagtttcactctc aagatgtctggtttttg
Otud6b-3	Mu	TRCN0000113319	ccgggctgagtacatgcaaacccatctcgagatgggtttgc atgtactcagctttttg
Usp28-1	Mu	TRCN0000030868	ccgggctgttattcagtctctctttctcgagaaagagagactg aataacagctttttg

Usp28-2	Mu	TRCN0000030865	ccggcggaagttgaaggaggaaatactcgagtatttcctcc ttcaacttccgtttttg
Usp28-3	Mu	TRCN0000030866	ccgggcagtacattcaggaagataactcgagttatcttcctg aatgtactgctttttg
Usp15-1	Mu	TRCN0000231399	ccggtgagaggtgaaatagctaaatctcgagatttagctatt tcacctctcatttttg
Usp15-2	Mu	TRCN0000231397	ccggcagactgtggaacaagtatatctcgagatatacttgtt ccacagtctgtttttg
Usp15-3	Mu	TRCN0000033215	ccgggctgacacaatagatacgattctcgagaatcgtatct attgtgtcagctttttg
Uchl5-1	Mu	TRCN0000030724	ccgggcaatcaagatgactggattactcgagtaatccagtc atcttgattgctttttg
Uchl5-2	Mu	TRCN0000030726	ccgggtacgcatcaagatgtgcattctcgagaatgcacatc ttgatgcgtactttttg
Uchl5-3	Mu	TRCN0000030725	ccggcttgcctttcattatggaattctcgagaattccataatga aaggcaagtttttg
Otud7b-1	Mu	TRCN0000311256	ccggggtagatattagggttgaatactcgagtattcaaccct aatatctacctttttg
Otud7b-2	Mu	TRCN0000308627	ccgggcagaaggaatggaatgaattctcgagaattcattc
Otud7b-3	Mu	TRCN0000308626	ccggcctttagtggagggggggagtacttctcgagaagtactccct ccactaaaggtttttg
Otub1-1	Mu	TRCN0000030982	ccgggagcaagttcttcgagcacttctcgagaagtgctcga agaacttgctctttttg
Otub1-2	Mu	TRCN0000030983	ccgggtccatccaagtggagtacatctcgagatgtactcca cttggatggactttttg
Otub1-3	Mu	TRCN0000335250	ccgggagcaagttcttcgagcacttctcgagaagtgctcga agaacttgctctttttg
Usp5-1	Mu	TRCN0000030738	ccggcgaggatgtgaagattgtcatctcgagatgacaatctt cacatcctcgtttttg
Usp5-2	Mu	TRCN0000030737	ccggcctgggctacatctacttctactcgagtagaagtagat gtagcccaggtttttg
Usp5-3	Mu	TRCN0000030736	ccggcgaatgttcaaggccctcattctcgagaatgagggc cttgaacattcgtttttg
Usp24-1	Mu	TRCN0000040628	ccgggctggattctttaggcagaaactcgagtttctgcctaa agaatccagctttttg
Usp24-2	Mu	TRCN0000086746	ccggcccgagctcttgtctgccattctcgagaatggcagac aagagctcgggtttttg
Usp24-3	Mu	TRCN0000086745	ccggtcattggtctatcccgtacaactcgagttgtacgggat agaccaatgatttttg
Usp9x-1	Mu	TRCN0000030759	ccggcggcttaactttcttaggtttctcgagaaacctaagaa agttaagccgtttttg
Usp9x-2	Mu	TRCN0000030763	ccggcctcaacaagtttggcactttctcgagaaagtgccaa acttgttgaggtttttg
Usp9x-2	Mu	TRCN0000030761	ccgggcagaagaaatcactatgattctcgagaatcatagtg atttcttctgctttttg
Atxn3-1	Mu	TRCN0000123962	ccgggctcagaattgatcctataaactcgagtttataggatc aattctgagctttttg
Atxn3-2	Mu	TRCN0000123963	ccggctcgcactattcttggctcaactcgagttgagccaaga atagtgcgagtttttg
Atxn3-3	Mu	TRCN0000123961	ccgggctcactttgtgctcagcattctcgagaatgctgagca caaagtgagctttttg
Otud4-1	Mu	TRCN0000252253	ccggccgtgtcacaagcgcatttaactcgagttaaatgcgc ttgtgacacggtttttg
Otud4-2	Mu	TRCN0000252254	ccgggcgtttatagaagggtcatttctcgagaaatgaccctt ctataaacgctttttg
Otud4-3	Mu	TRCN0000252251	ccggcacgttagattggatcataatctcgagattatgatcca atctaacgtgtttttg

Usp25-1	Mu	TRCN0000030827	ccggcccaacgatcactgcaagaaactcgagtttcttgcag tgatcgttgggtttttg
Usp25-2	Mu	TRCN0000233427	ccggttatatctggacaggtatatgctcgagcatatacctgtc cagatataatttttg
Usp25-3	Mu	TRCN0000233428	ccggcatcgctggaggacggaaatactcgagtatttccgtc ctccagcgatgtttttg
Usp25-4	Mu	TRCN0000233431	ccggtagtataatggaaccatattgctcgagcaatatggttc cattatactatttttg
USP25-1	Hu	TRCN000004366	ccgggcacttctcctgttgacgatactcgagtatcgtcaaca ggagaagtgcttttt
USP25-2	Hu	TRCN000004368	ccgggctgttcctcatctgtgcttactcgagtaagcacagat gaggaacagcttttt
USP25-3	Hu	TRCN0000004369	ccgggcgtgagctgaggtatctattctcgagaatagatacct cagctcacgcttttt
USP25-4	Hu	TRCN0000004370	ccggtggaggagtaagatgaaatatctcgagatatttcatct tactcctccattttt
HIF1A-1	Hu	TRCN000003808	ccggccgctggagacacaatcatatctcgagatatgattgt gtctccagcggttttt
HIF1A-2	Hu	TRCN0000003811	ccggcggcgaagtaaagaatctgaactcgagttcagattct ttacttcgccgttttt
HIF1A-3	Hu	TRCN0000010819	ccggtgctctttgtggttggatctactcgagtagatccaacca

242 Supplementary Table 3. RT-qPCR primers.

Target	Snecies	FWD sequence (5'-3')	REV sequence (5'-3')
36h4	Mu/bu		aggtectecttgtgaac
Thn	Mu		aggtotiotigigudo
Thp	Hu		ctacaatacaataccaaaact
Atxn3	Mu		tagatataaaaagaatccaa
Otub1	Mu	agatagegaeteegaaga	aattetacacaacaatetetta
Otud	Mu	gygiagcyaciccyaagy	taggagggggggggggggggggggggggggggggggggg
Otud4 Otud6b	Mu		
Otudob	Mu	agaagttataataaaaaa	tootagaotootoogatoototo
	NU NU		
	NU NU	agcagicalgyagggicaa	
USp5	Mu		gageteeteggeateteaa
Usp7	Mu	cccgaggacatggagatg	cattgatgacagggttctgagta
Usp8	Mu	caaaaagagacctgatttcaagc	tgatgtttgcaggtccaagt
Usp9x	Mu	tagtccgaggatctgccagt	aaaccgcacgttcttgct
Usp14	Mu	ggcgaacaagggcagtatc	tctgttgcaggactctcatca
Usp15	Mu	gctgtttccaaccactatggag	ccacttcccatcatctttgttt
Usp19	Mu	ggaaccggaatcgagagc	cttcagcaaagaaccaagagc
Usp24	Mu	cgagtctaccaaagataccttcact	gacgctgcctatcgtctcat
Usp25	Mu	cagtcggtctgaagaatgtcg	aactccaaaagattgaataatgactg
Usp28	Mu	ctgcttccttcggatcgtt	cactggaggcagctttgtaa
Usp48	Mu	agactcgaaactctgtcaaccttt	gctgggccatatgagagcta
USP25	Hu	tcagagacttctgtgacaacagc	tcacttcttgatggctgctcta
HIF1A	Hu	ttttcaagcagtaggaattggaa	gtgatgtagtagctgcatgatcg
HIF1B	Hu	ctgtcatcctgaagaccagcag	ctggttctcatccagagccattc
HIF2	Hu	ctgtgtctgagaagagtaacttcc	ttgccataggctgaggactcct
MYC	Hu	tctccttgcagctgcttag	gtcgtagtcgaggtcatag
ENO1	Hu	tcccaacatcctggagaataa	atgccgatgaccaccttatc
ENO3	Hu	ttgagaagaaggcctgcaa	ccccagccattagactg
HK1	Hu	tgaggttggactcattgttgg	ccaccatctccacgttcttc
LDHA	Hu	cgtcagcaagagggagaaag	gccacgtaggtcaagatatcc
PFKL	Hu	acacccgtgtaactgtgctg	atgcccatcttgctgctc
PKM	Hu	cagccaaaggggactatcct	caaataattgcaagtggtagatgg
SERPINE1	Hu	aaggcacctctgagaacttca	cccaggactaggcaggtg
SLC2A1	Hu	ggttgtgccatactcatgacc	gagataggacatccagggtagc
Hif1a	Mu	catgatggctccctttttca	gtcacctggttgctgcaata
Eno1	Mu	gaggcgcttagtgctgct	atagacatggcgaatttctgg
Eno3	Mu	gagggggggggaggactgacactg	gagtettetceaccegaaga
Hk1	Mu	atagacgggacgctctac	ttcactatttaatacataatt
Ldha	Mu	actccccagaacaagattacag	tcacccttaaatttatcttc
Pfkl	Mu	attgaccggcatggaaag	aagcccagcctctgaacc
Pfkp	Mu	gagggaccccatctgcat	ataacttccaacaaaacaat
Pkm	Mu	acageagetttgatagtteteag	tcgagtcacggcaatgatag
Sernine1	Mu	anatraantaaaraan	acaaactaaataacaaa
Slc2a1	Mu	accetacaceteattaa	astactosastagasestessas
010201	iviu	gauuuyuauuualiyy	yaiyuluayalayyalalulaay

- **Supplementary Table 4.** Electroporation settings for induction of PDO lines using the NEPA21 super electroporator from Nepagene.

Parameter	Poring Pulse	Transfer Pulse
Voltage	175V	20V
Pulse Length	5.0ms	50ms
Pulse Interval	50.0ms	50ms
Number of Pulses	2	5
Decay Rate	10%	40%
Polarity	+	+/-

Supplementary Table 5. Antibodies used for immunohistochemistry, immunofluorescence, and western blotting.

ANTIBODY	Company, product #	Dilution	Application
Rabbity anti USP25	Sigma-Aldrich; HPA024142	1:100x	IHC
Rabbit anti SLC2A1 (Glut1)	Alpha Diagnostics, GT11-A	1:100x	IHC
Rabbity anti Caspase 3	R&D Bio-Techne, AF825	1:100x	IHC
Rat anti CK19	Developmental Studies Hybridoma Bank, TROMA- III	1:100x	IHC
Goat anti GFP	Abcam, ab6673	1:100	IHC
Rabbit anti SLC2A1 (Glut1)	Alpha Diagnostics, GT11-A	1:100x	IF
Rat anti CK19	Developmental Studies Hybridoma Bank, TROMA- III	1:100x	IF
Mouse anti α SMA	Sigma-Aldrich, A5228	1:100x	IF
Donkey anti rat IgG Alexa Fluor488	Life Technology, A21208	1:200x	IF
Donkey anti mouse IgG Alexa Fluor546	Life Technology, A10036	1:200x	IF
Donkey anti rabbit IgG Alexa Fluor647	Life Technology, A31573	1:200x	IF
Mouse anti β-ACTIN	Abcam, ab49900	1:10000x	WB
Rabbit anti GAPDH	Abcam, ab9485	1:5000	WB
Goat anti GFP	Abcam, ab6673	1:2000	WB
Rabbit anti Histone 3B	Millipore, 06755	1:1000	WB
Rabbit anti HIF-1α	Novus, NB100-449	1:1000x	WB
Mouse anti FLAG-HRP M2	Sigma-Aldrich, A8592	1:10000	WB
Rabbit anti HIF-2	Cell Signaling, 7096	1:1000	WB
Rabbit anti ARNT (HIF-1β)	Cell Signaling, 5537	1:1000	WB
Rabbit anti HA	Sigma-Aldrich, H6908	1:1000	WB
Rabbit anti SLC2A1(GLUT1)	Alpha Diagnostics, GT11-A	1:1000	WB
Rabbit anti c-Myc	Abcam, Y69 clone, ab32072	1:1000	WB
Rabbit anti USP25	Abcam, ab187156	1:2000	WB
Rabbit anti USP28	Sigma, HP006779	1:1000	WB
Mouse anti V5 (tag)	Invitrogen, R960-25	1:5000	WB
Rabbit anti VHL	Cell Signaling, 68547	1:1000	WB

a

d

b

GO Biological Process 2021					
otein deubiquitination (GO:0016579) *3.91e-38					
otein modification by small protein removal (GO:0070646) *1.31e-37					
otein K48-linked deubiquitination (GO:0071108) *3.55e-26					
otein K63-linked deubiquitination (GO:0070536) *1.48e-19					
onoubiquitinated protein deubiquitination (GO:0035520) *3.44e-11					
rotein K11-linked deubiquitination (GO:0035871) *1.42e-09					
rotein ubiquitination (GO:0016567) *3.41e-07					
piquitin-dependent protein catabolic process (GO:0006511) *9.44e-07					
psitive regulation of DNA demethylation (GO:1901537) *1.84e-06					
protein polyubiquitination (GO:0000209) *2.00e-06					
4 8 12 16 20 24 28 32 36					
-log ₁₀ (p-value)					

KPCY organoid shown with well confluency mask (in yellow)

a

Usp25 staining in primary Mu tissues

human PDAC tissue

d

PDO (K4T)

pCMV-hyPBase CMV hyPBase PB-CMV-MCS-EF1a-redPuro 5'ITR EF1a 3'ITR -C RFP Puro -T2A

Caspase-3 activity probe

g

150 Cell Viability (% of EV) p=.0146 p=.0107 p=.0032 100 p=.0024 50 0 ΕV 1-4 2-2 4-2 2-3 USP25^{-/-}(sg#-clone#)

h

PDO (K17T)

z-Score

100nM FT206

h

Hu PDAC tissue 25 p-value= 0.0083 R= 0.4026 20 % USP25 Area 15 10 5 0 5 10 15 20 25 0 % SLC2A1 Area

Hu PDAC tissue SLC2A1 staining

