
Blind demixing methods for recovering dense neuronal morphology

from barcode imaging data

S1 Appendix

Shuonan Chen1,2,3,4,5,6*, Jackson Loper1,2,3,4,5,7, Pengcheng Zhou8,9, and Liam
Paninski1,2,3,4,5,7

1Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York,
New York, United States of America

2Department of Statistics, Columbia University, New York, New York, United States of
America

3Center for Theoretical Neuroscience, Columbia University, New York, New York, United
States of America

4Grossman Center for the Statistics of Mind, Columbia University, New York, New York,
United States of America

5Department of Neuroscience, Columbia University, New York, New York, United States of
America

6Department of Systems Biology, Columbia University, New York, New York, United
States of America

7Data Science Institute, Columbia University, New York, New York, United States of
America

8Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen, China

9The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, China

*sc4417@cumc.columbia.edu

1



A Detailed methods

A.1 Data simulation

The simulation process is illustrated in Fig 2. Specifically, we started with all the cells from a selected region of
brain, densely-reconstructed from the MICrONS electron microscopy dataset (cf. MICrONS Explorer [1–3]).
A (4 × 4 × 4) µm region is shown in Fig 2. These shapes were originally stored as triangular meshes;
we converted them to binary 2D or 3D voxel tensors, using the voxels with pre-specified size under each
simulation setting (the original MICrONS data was 3.58×3.58 nanometer resolution with 40 nanometer thick
sections; in Fig 2 we show (100× 100× 100)-nanometer voxel size, as in the high-resolution simulations).

For each neuron we also created a unique ‘one-hot’ barcode, assuming R rounds of imaging with C
channels. That is, for each neuron j we constructed a random binary matrix Bj ∈ RR×C such that each
row contains exactly one nonzero entry. Assuming C = 4 color channels, this enables labeling of 4R unique
neurons; we used R = 17 in all our simulations. Three examples of simulated barcodes can be seen in the
top right panel in Fig 2.

Our assumption that each cell carries a unique barcode merits discussion, on two points. First, two
neurons might be labeled by the same barcode, or very similar barcodes. This potential issue was discussed
in a recent review [4], where it is shown that the fraction of uniquely labeled cells approximates to 1 when
the number of barcodes is sufficiently large relative to the number of cells that are labeled. Since in our
simulation study, the number of possible barcodes (417) is much larger than the number of cells, we concluded
that it was safe to assume that every neuron under study here is uniquely labeled. Indeed, after the barcodes
are uniformly sampled, we found that the minimum Hamming distance between any pair of barcodes is at
least 8, which is enough to easily distinguish one from the others in the imagestack. Second, a single neuron
might be labeled by two distinct barcodes (‘double-infection’), though previous work indicates this is rare [5].
For simplicity we here ignored this possibility; if double-infection were a significant problem, it would be
necessary to implement an algorithm to match pseudocolors together if they trace out similar paths. We
leave this for future work.

To construct the imagestack itself, we input the transcript locations and codebook into Algorithm 1.
This algorithm attempts to replicate the physical processes by which transcripts in tissue become fluo-
rescent signals which are captured by a camera. It includes parameters to control many features of this
process, including the variability in overall signal strength of each transcript, variability in per-round signal
strength, a point spread function (PSF), and random per-voxel ‘speckle noise.’ We set ‘signal range’ to
be (10, 15) (randomly scaling the overall signal strength of each amplicon between 10 and 15). We set
‘per frame signal range’ to be (0.8, 1) (randomly rescaling the signal in each frame independently for each
amplicon between 0.8 and 1.0). We based these parameters on manual investigation of recent experimental
data [6]. We used several different choices for ‘blursz,’ depending on the dataset simulation details (see the
following subsections).

A.1.1 High-resolution, dense-expression simulation

For the high-resolution simulation setting, for every neuron in a selected region of the brain (one (14.6 ×
14.6× 19.7) µm field of view (FOV) from the MICrONS dataset), we first voxelized the mesh objects using
(100, 100, 100) nm voxels. Then we simulated the locations of amplicons (barcoded RNA transcripts) inside
that voxelized neuron. These locations were sampled from a homogeneous Poisson process with rate λ.
This rate constant has units of ‘density per cubic microns’; it indicates the average number of amplicons one
would expect to find in a given cubic micron of neuronal tissue. See Fig 3 for examples of several imagestacks
simulated with different densities λ. If λ is too low, the barcode signal will be too sparse to reconstruct or
even detect cells; if λ is too high, the signal could become overwhelmingly mixed during imaging, making it
difficult to identify the boundaries between multiple neurons in close proximity. See Fig 4 for an illustration
of this density issue, even with a medium amplicon density.

Once we have determined the numbers and the locations of these amplicons, we applied a PSF to the
images to mimic the image obtained from light microscopy; we used a Gaussian kernel with standard deviation
of size (200, 200, 200) nm, blurring the signal by roughly 2 voxels in all directions.

2

https://microns-explorer.org/


Algorithm 1: create imagestack

input : locations, codebook, speckle noise, signal range, per frame signal range, blursz
output: X ∈ RR×C×M0×M1×M2 – a simulated stack of images representing R rounds of spatial

transcriptomics images using C colors over a (M0 ×M1 ×M2)-voxel region
1 X← 0 ; // initialize imagestack

2 foreach transcript located at position m0,m1,m2 with barcode Bj do

3 B̃j ←distort barcode(Bj , signal range, per frame signal range);
4 foreach r,c do

5 Xr,c,m0,m1,m2
← Xr,c,m0,m1,m2

+ B̃j,r,c;
6 end

7 end
8 foreach r,c do
9 Xr,c ←gaussian blur(Xr,c,blursz) ; // apply PSF

10 end
11 X ∼ N (X, speckle noise) ; // add speckle noise

12 X← (0 ∨X) ; // insist on nonnnegative values

Algorithm 2: distort barcode

input : β ∈ RR×C , signal range, per frame signal range
output: β̃ ∈ RR×C – a distorted barcode

1 signal mult← random(signal range);
2 foreach r,c do

3 β̃r,c ← βr,c × signal mult ; // overall strength scaling for this transcript

4 β̃r,c ← β̃r,c × random(per frame signal range) ; // scaling for each frame

5 end

Description Dimensions Support
M0,M1,M2 number of voxels in each dimension (product is M) scalar N

C number of types of probes/wavelengths scalar N
R number of imaging rounds scalar N
J number of barcodes used to label neurons scalar N
X simulated imagestack R× C ×M R+

B binary codebook matrix J ×R× C {0, 1}
B̃ distorted binary codebook matrix J ×R× C {0, 1}
β binary codebook for a particular cell R× C {0, 1}
β̃ distorted binary codebook for a particular cell R× C {0, 1}

speckle noise noise added to the simulated imagestack scalar R
signal range range of the intensity for each frame, each amplicon vector R+

per frame singal range fluctuations on the signal strength for each frame vector [0, 1]
blursz size of PSF in units of voxels vector N

round satisfaction threshold threshold for a channel to be considered to be active scalar [1,∞)

Table 1: Notation

A.1.2 Low-resolution, sparse-expression simulation

For the low-resolution simulation, the simulation process was similar to the high-resolution case described
above, with some modifications. The first difference is that instead of studying one FOV, we started from a
larger region of the brain (of size (196, 129, 40) µm, which is the full region used in [3]). Second, the voxel size
used to convert the original mesh data was (5× 5× 40) µm, and the PSF was not added for this simulation

3



since the optical resolution is so low in this setting. The number of amplicons in a neuron is considered to
be proportional to its axon length (amplicons per micron length), instead of volume of the axons (amplicons
per cubic micron): we used 0.08 amplicons per µm as the density of the simulated amplicons, matching [7].
Also, only the axonal segments are considered, and we used a simple criterion to remove dendrites (described
in A.3.5). This is because in this setting we are simulating the tracing of long-range neuronal projections,
and therefore restricted our focus to only the axonal parts of the neuronal segment rather than dendritic
parts, even though the original EM data included all the neurons within the selected region. Lastly, only
a small proportion of neurons were modeled to be infected by the virus (i.e., labeled by the barcodes). We
randomly selected only 1% of all the neurons from the EM images (a more realistic assumption based on
current cellular barcoding technologies [7]). An example of the resulting simulated data is shown in the left
panel of Fig 10.

A.2 Barcode estimation

Identifying the barcodes present in a given region of tissue is straightforward in settings with high optical
resolution and low labeling density, because we can take advantage of the one-hot nature of the barcodes:
each barcode is designed so that in each round exactly one channel is illuminated. On the other hand, for
low-resolution and/or densely-labeled datasets, a more sophisticated iterative approach is necessary. We
outline the main ideas below.

A.2.1 Näıve barcode library estimation

If a voxel contains signal dominated by only one barcode, exactly one channel should be brightest in each
imaging round. This suggests the following procedure: scan for voxels that are ‘nearly one-hot’ — i.e., in
each round there is a single channel which is much brighter than all others — and use the bright channel in
each round to estimate the barcode for this voxel.

To make this idea practical, there are several difficulties that must be overcome. First, we need to find
a way to look at the fluorescence data and decide when a voxel is ‘nearly one-hot.’ For this it is necessary
to pick a threshold value. Second, we need a way to integrate information across the entire tissue. We
can collect barcode candidates from a modestly large region of tissue, but each barcode candidate may be
corrupted by noise from the data, yielding many almost-identical barcodes that are all slightly incorrect. To
get the best possible barcode estimates, we need a way to merge similar barcodes together.

We adopt the following strategy. At each voxel location m and for each round r we identified the brightest
channel, c∗r,m = arg maxc Xr,c,m. We also identify whether this brightest channel is significantly above the
other channels. Using this information we produce an initial estimate of a barcode that might be present in
this voxel. These initial barcodes are defined by thresholding:

B̃m,r,c =


1 if c = c∗r,m and Xr,c∗r,m,m ≥ round satisfaction threshold× 1

R

∑
r Xr,c,m

0 if c 6= c∗r,m and Xr,c∗r,m,m ≥ round satisfaction threshold× 1
R

∑
r Xr,c,m

nan otherwise

Here, a ‘nan’ indicates that we are uncertain about the barcode signal for this location at this round; i.e.,
the signal from the brightest channel (c∗r,m) is not high enough for us to confidently determine this is the
correct channel. ‘Round satisfaction threshold’ is set to be 1 (i.e., the bright channel must be higher than
the average of all the rounds) in the results presented here. We compared the signal strength in these bright
channels with the total signal strength, according to the formula

ratiom =

∑
rc: B̃m,r,c=1 X2

r,c,m

signal control +
∑

rc X2
r,c,m

.

Here ‘signal control’ is a parameter that controls our sensitivity to voxels with low overall strength; unless
total signal strength in X at voxel m is significant, this term will cause the overall ratio to become small.
For each voxel location m, if ratiom is higher than a threshold, we conclude there is a valid amplicon at this
voxel location.

4



We construct an initial codebook by concatenating the codebooks associated with all the voxels where the
ratio discussed above exceeds a threshold. We then attempt to remove duplicates from this codebook. We
first merge any barcodes that are exactly identical. We then use a greedy algorithm to merge any barcodes
which are within a given Hamming distance (we chose a minimal distance of 3 here, as we found that
amplicon locations could still be accurately estimated with this level of corruption). Barcodes are merged
according to the formula

merge(B̃m, B̃m′)r,c =


B̃m,r,c if B̃m′,r,c = nan

B̃m′,r,c if B̃m,r,c = nan

B̃m,r,c otherwise.

Note that this approach uses the first barcode’s information if there is disagreement: the order in which
barcodes are merged could make a difference. So far this has not introduced any significant problems, but
there are alternatives that could be pursued in the future (e.g., ordering so that the brightest barcodes come
first).

Henceforth we will use B to denote the final codebook yielded by the approach above, with Bj,r,c denoting
the value for barcode j in round r and channel c. We will let J denote the total number of barcodes identified
(after deduplication).

A.2.2 Iterative barcode discovery and amplicon location estimation

In low-resolution or densely-labeled settings, the näıve approach outlined above was not sufficient. There
were many barcodes which did not appear alone in any voxel, making it essentially impossible to identify
them using the method above. In this case, we found the following iterative procedure effective.

We first identify some barcodes in the imagestack, using the näıve approach given above. We then
estimate signal arising from those barcodes, and attempt to remove it from the imagestack. We then apply
the näıve approach again to the residual imagestack to find additional barcodes. Next, we return to the
original imagestack, and attempt once again to estimate all signal arising from any barcode that we have
discovered. This procedure, formalized in Algorithm 3, can be repeated until no new barcodes are discovered
(or for a prespecified number of iterations).

Algorithm 3: iterative barcode and amplicon estimation

input : X, N, signal control, round satisfaction threshold
output: B ∈ RJ×R×C – the final barcodes found

1 X′ ← X;
2 B← empty;
3 for i← 1 to N do

4 B̃(i) ← barcode discover(X′, signal control, round satisfaction threshold) ; // described in

Section A.2.1

5 B̃(i) ← barcode deduplication(B̃(i)) ; // described in Section A.2.1

6 if B̃(i)is not empty then

7 B← merge(B, B̃(i)) ; // described in Section A.2.1

8 recon← BarDensr underapprox reconstruction(X,B);

9 X′ ← max
(

0,X− recon
)

; // get the non-negative residual

10 end

11 end

To enact this algorithm, we need a way to estimate all signal in an imagestack arising from a particular
set of barcodes, without full knowledge of the true barcode library. For this task we build on the BarDensr
model [8], which demixes and deconvolves spatial transcriptomic imagestacks by modeling the physical
process that gives rise to the observed fluorescences.

We assume the following non-negative matrix factorization model for the observed data, X:

Xr,c,m ≈
∑
j

B′r,c,jF
′
m,j +

∑
j

B̂r,c,jF̂m,j .

5



Here B̂ represents the set of barcodes which have already been discovered, F̂ indicates a non-negative
fluorescent intensity for each known barcode at each voxel, B′ represents the set of barcodes which are yet
undiscovered, and F′ indicates a non-negative fluorescent intensity for each unknown barcode at each voxel.
Note that we do not expect the equation above to hold exactly, due to various forms of noise, but we hope
that it will be approximately correct. This equation can be seen as a version of BarDensr model, generalized
to the case that some barcodes are unknown.

Under this model, the signal from the known barcodes corresponds to
∑

j B̂r,c,jF̂m,j . To estimate this

signal it is thus sufficient to estimate F̂. This problem is difficult because of the the unknown barcodes
contributing signal to the observed imagestack X. Fortunately, we can make use of the non-negativity
constraints of the model to help. From these constraints, it follows that∑

j

B̂r,c,jF̂m,j ≈ Xr,c,m −
∑
j

B′r,c,jF
′
m,j ≤ Xr,c,m.

We call this the ‘under-approximation’ constraint, because it ensures that the estimated signal arising from
the known barcodes is less than the observed fluoresence.

Now we need to choose an appropriate loss function. One approach would be to find F̂ by minimizing the
mean squared error between Xr,c,m and

∑
j B̂r,c,jF̂m,j ; this would be similar to the approach taken in [8],

where a quadratic objective together with a simple non-negative constraint could be efficiently optimized
using standard techniques from the non-negative matrix factorization literature. However, adding the under-
approximation constraint leads to more generic kinds of quadratic programming problems which are expensive
to solve when the number of voxels is large. By slightly modifying this objective, we can obtain a fairly easy
linear programming problem: instead of minimizing the mean squared error, we maximize the dot-product
between the data and the estimated signal from the known barcodes. Thus we want to account for as much
of the observed fluorescence as possible without overstepping the constraints. (Mathematically, we have
replaced a quadratic penalty on the reconstruction with a linear penalty and a set of linear constraints that
bound the magnitude of the reconstruction at each voxel.)

Putting the constraints together with the loss function, we arrive at the following approach for estimating
the signal from the known barcodes. We first solve the following linear programming problem.

max
F̂

R,C,M,J∑
r,c,m,j

Xr,c,mB̂r,c,jF̂m,j

subject to F̂m,j ≥ 0 ∀m, j

Xr,c,m ≥
J∑
j

B̂r,c,jF̂m,j ∀r, c,m

We then take
∑

j B̂r,c,jF̂m,j as our estimate of the signal arising from the known barcodes. We call this
problem the ‘BarDensr underapprox’ problem. This new problem enforces non-negativity in two ways: it
enforces that F̂m,j is non-negative but it also enforces that Xr,c,m −

∑
j B̂r,c,jF̂m,j is non-negative. This

approach is fairly fast, especially with parallel hardware such as GPUs, because the main computational
effort comprises linear programming problems which can all be solved independently. We found we could
make it faster still by assuming that only a small subset of the fluorescence densities were nonzero at each
voxel. In particular, at each voxel we computed the correlation between that voxel and each barcode; we
then assumed that only nine barcodes with the largest correlations carried nonzero fluorescent densities.
This approximation yielded essentially no difference in the final results on any data that we tried it on.
In practice, we found we could solve the ‘BarDensr underapprox’ problem about six times faster than the
original quadratic BarDensr optimization problem (16 seconds versus 96 seconds for a (30,30,30)-voxel patch
using an Nvidia T4 GPU).

We found this constrained optimization approach to be effective even when our estimate of the barcode
library represents a small fraction of the true set of barcodes which give rise to the imagestack. We also
investigated a variant of this method which does not use the under-approximation constraint; this variant was
unsuccessful. This finding adds to a growing body of work in the non-negative matrix factorization literature
that shows that imposing under-approximation leads to robustness in the face of unknown contaminating
signals [9, 10].

6



A.2.3 Iterative barcode discovery for the real data

The ‘BarDensr underapprox’ problem described in the last section assumes that the amplicon signal is
even across frames. However, because of the large frame-wise variation of the signal intensity on the real
experimental data, directly applying the above method would result in overly underestimated reconstruction.
Therefore, we estimated the frame-wise signal intensity based on the detected spots and incorporated this
information while reconstructing the original images at each iteration. Specifically, this was done by running
BarDensr after finding the barcodes in each iteration, to estimate the per-round per-channel scale factor
(α ∈ RR×C in the original publication), which quantifies the amplicon signal intensity in each frame [8].
This was done on the ten-times downsampled images, where the maximum value of ten voxels are taken
as the value at each voxel position in each coordinate direction. Then the binary barcode B̂r,c,j from

the original linear programming problem above can be scaled as αr,c · B̂r,c,j to incorporate the frame-wise
signal intensity into the barcode information. These scaled barcodes can be then be used as input for the
‘BarDensr underapprox’ problem.

A.3 Amplicon estimation and morphological reconstruction

Having estimated the barcode library, we must next estimate the amplicon locations for each barcode.
Finally, we must use those amplicon locations to reconstruct the neuronal morphology, by ‘connecting the
dots’ between each estimated amplicon ‘dot.’

A.3.1 Constructing an ‘evidence tensor’ to match barcodes to voxels

To begin, it is convenient to compute, for each voxel and each barcode, some estimate of our confidence
that this barcode appeared in this voxel. We call an object of this kind an ‘evidence tensor.’ For the two
simulations presented in this paper, we use two slightly different approaches to obtain such a tensor.

High-resolution, dense-expression simulation. In the high-resolution case, the signal is less mixed and the
data is large; in this regime we found it sufficient to use a computationally cheap correlation method
to compute the evidence tensor for each voxel and each barcode:

cellratiom,j =

∑
r,c: Bj,r,c=1 Xr,c,m

cellratio signal control +
√∑

r,c X2
r,c,m

.

These ratios give a rough indication for whether a cell with barcode j might be present at voxel m.
Where they are higher it suggests such a cell may be present. An example of the evidence tensor on
a 2D plane is shown on Fig 7, where a good agreement between the correct neuronal shape and the
structure of the evidence tensor is seen.

Note that although this metric is relatively fast to compute, to directly apply it to the entire array
of high-resolution data (size of (146, 146, 197) voxels, which gives M = 4, 199, 252 voxels) for all
neurons found (which gives J = 975 if all the barcodes are found) was not feasible because of memory
constraints. Therefore, we used a simple tiling method and computed the evidence tensor for every
discovered barcode within multiple small tiles with size of (30,30,30) voxels, with 10 voxels overlapping
at each coordinate. We can further scale up the computation to even larger FOVs by additionally
including the knowledge that there is only a small portion of the discovered barcodes present within
each small tile.

Low-resolution, sparse-expression simulation. The simple correlation method above is insufficient analyzing
low-resolution data; in this dataset the typical voxel has contributions from many barcodes, and the
correlation method does not appear to be effective in this situation. Instead, we use ‘amplicon density’
as the evidence tensor, as described in [8]. Briefly, using BarDensr, the original imagestack X is
demixed into two components - the amplicon density F and the accumulated barcode signal G (which
is the scaled version of B mentioned in A.2.2):

Xr,c,m ≈
∑
j

Gr,c,jFm,j + background.

7



Similar to cellratiom,j , the amplicon density Fm,j at voxel m and barcode j indicates whether this
barcode is present at this location.

A.3.2 Using the evidence tensor to reconstruct morphology

The evidence tensor constructed above is at best a noisy indicator of the neuron’s morphology. On the
one hand, there may be voxels inside the cell without any transcripts. On the other hand, there may be
voxels influenced by several cells (due to PSF blurring, voxelization artifacts, errors in barcode or amplicon
estimation, etc.). To use the evidence tensor to best advantage in estimating the final morphology, we
consider two approaches.

First, we considered alphashape [11], which is a widely used approach to estimate solids from pointclouds.
The method takes one parameter, α, used to balance over- and under-coverage of the resulting estimate.
Visual inspection was used to select this parameter to obtain the best possible result. For high-resolution
simulations we used α = 0.1, and for low-resolution simulations we used α = 0.05.

The second approach involves Convolutional Neural Networks (CNNs). We first estimated the evidence
tensors for all the neurons in the volume and used them as the input to the CNN. The original data, after
data augmentation (see below Appendix A.3.4), was split into the training and testing set. We then used the
training set to train a neural network to reconstruct the true morphology of a single neuron from the evidence
tensor for the corresponding barcode. We used a four-layered CNN with residual blocks structure [12]. The
network was trained on ‘total variation distance’ as the target function:

TV =
1

2

(∑
m

∣∣∣∣ ym∑
m ym

− xm∑
m xm

∣∣∣∣ ).
Here, x and y are either integer or float vectors. In our case, ym ∈ {0, 1} is the ground-truth label at voxel
m and xm ∈ [0, 1] is the predicted label for m. TV is a distance between two probability measures. We also
investigated two other losses: Wasserstein distance (which proved computationally expensive) and binary
cross-entropy (which was less effective because the loss was dominated by large regions where no amplicons
were present). In practice, TV proved efficient and effective. To train the network while ensuring the relevant
rotational symmetries, we used data augmentation. More details can be found in Appendix A.3.4.

A.3.3 Evaluating performance

We use two different criteria to measure the performance of our methods. The first is the discovery rate,
which quantifies the proportion of the neuron barcodes that we can identify. The second criterion was
total variation distance, described above, a quantitative way to represent the accuracy of morphological
reconstruction.

A.3.4 Tiling and Data Augmentation for Convolutional Neural Net training

To train neural networks to reconstruct morphology from evidence tensors in the high-resolution setting, we
used the procedure discussed above to generate images of size (60, 60, 60). We then augmented the data by
taking six transformations of each tile: flipping over each axis, and swapping each pair of axes. All of these
transformed versions of the data were fed as training data to the network at the same time, which helped
ensure the network learned a function which was invariant to these kinds of transformations.

For network training in the low-resolution setting, we generated images of size (40, 27), and augmented
this data with three transformations: flipping over each axis and swapping the two axes.

A.3.5 Euclidean Distance Transform (EDT)

For low-resolution simulation, we used Euclidean Distance Transforms (EDT) to calculate the largest sphere
that could be contained inside a neuronal segment, which is then used to determine whether a given segment
was dendrite or axon; if a segment can contain a sphere with radius of 5 voxels (25 microns), we categorized
it to be dendrite.

8



The Euclidean Distance Transform is defined as follows. One begins with a 2D or 3D image f , and let S
be the set of voxels in the image f whose values are 1. Following [13], the distance map of the input image
f is defined as

EDTp[f ] = minp/∈S‖p− q‖2,

where ‖p−q‖2 is Euclidean distance between voxel locations p and q. The computational cost for computing
this transform scales linearly with the number of voxels in the image [13].

9



References

[1] S. Dorkenwald, N. L. Turner, T. Macrina, K. Lee, R. Lu, J. Wu, A. L. Bodor, A. A. Bleckert, D. Brittain,
N. Kemnitz et al., “Binary and analog variation of synapses between cortical pyramidal neurons,”
BioRxiv, 2019.

[2] C. M. Schneider-Mizell, A. L. Bodor, F. Collman, D. Brittain, A. A. Bleckert, S. Dorkenwald, N. L.
Turner, T. Macrina, K. Lee, R. Lu et al., “Chandelier cell anatomy and function reveal a variably
distributed but common signal,” bioRxiv, 2020.

[3] P. Zhou, J. Reimer, D. Zhou, A. Pasarkar, I. A. Kinsella, E. Froudarakis, D. Yatsenko, P. Fahey,
A. Bodor, J. Buchanan et al., “Ease: Em-assisted source extraction from calcium imaging data,” bioRxiv,
2020.

[4] J. M. Kebschull and A. M. Zador, “Cellular barcoding: lineage tracing, screening and beyond,” Nature
methods, vol. 15, no. 11, pp. 871–879, 2018.

[5] J. M. Kebschull, P. G. da Silva, A. P. Reid, I. D. Peikon, D. F. Albeanu, and A. M. Zador, “High-
throughput mapping of single-neuron projections by sequencing of barcoded rna,” Neuron, vol. 91,
no. 5, pp. 975–987, 2016.

[6] Y.-C. Sun, X. Chen, S. Fischer, S. Lu, H. Zhan, J. Gillis, and A. M. Zador, “Integrating barcoded neu-
roanatomy with spatial transcriptional profiling enables identification of gene correlates of projections,”
Nature Publishing Group, Tech. Rep., 2021.

[7] X. Chen, Y.-C. Sun, H. Zhan, J. M. Kebschull, S. Fischer, K. Matho, Z. J. Huang, J. Gillis, and A. M.
Zador, “High-throughput mapping of long-range neuronal projection using in situ sequencing,” Cell,
vol. 179, no. 3, pp. 772–786, 2019.

[8] S. Chen, J. Loper, X. Chen, A. Vaughan, A. M. Zador, and L. Paninski, “Barcode demixing through
non-negative spatial regression (bardensr),” PLoS computational biology, vol. 17, no. 3, p. e1008256,
2021.

[9] M. Tepper and G. Sapiro, “Nonnegative matrix underapproximation for robust multiple model fitting,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 655–663.

[10] H. Inan, C. Schmuckermair, T. Tasci, B. Ahanonu, O. Hernandez, J. Lecoq, F. Dinç, M. J. Wagner,
M. Erdogdu, and M. J. Schnitzer, “Fast and statistically robust cell extraction from large-scale neural
calcium imaging datasets,” bioRxiv, 2021.

[11] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a set of points in the plane,” IEEE
Transactions on information theory, vol. 29, no. 4, pp. 551–559, 1983.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[13] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled functions,” Theory of
computing, vol. 8, no. 1, pp. 415–428, 2012.

10


