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In this Supplementary Information we describe the different mathematical models used in
the study, their analysis and the fitting procedure.

1 Two-state model
The two-state model of gene expression (first introduced by Peccoud and Ycart [1995] ) de-
scribes the promoter as stochastically switching between an off state (inactive) and an on state
(active) where transcription can occur. The promoter transitions between those states with rate
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kon and koff . Synthesis and degradation of RNAs is regarded as a Poisson process (i.e. we
describe RNA initiation, elongation, nuclear export of RNA as a single kinetic step) and occur
at rates µ and δ, respectively. In this model, the mean and variance of the number of mRNAs
are given by the following formulas

〈RNA〉 =
kon

kon + koff

µ

δ
(1)

Var(RNA) = 〈RNA〉+
konkoff

(kon + koff )2

µ2

δ(kon + koff + δ)
(2)

(Peccoud and Ycart [1995]). Although there exists an analytical expression of the steady-state
distribution of the number of mRNAs, its computation is difficult because it requires the cal-
culation of the confluent hypergeometric function for which there is no general fast numerical
method for its computation. Here, we calculate the steady-state probability distribution of the
two-state model by using the finite state projection algorithm for the stationary solution of the
chemical master equation(Gupta et al. [2017]). This method consists of truncating the infinite
state space of the system into a finite subset of states in order to reduce the infinite-dimensional
system of ODEs into a finite system. For the two-state model, this truncation consists in fixing
a maximal number of RNAs per cell which we set to 120% of the maximal number observed
in the FISH experiment. The code for these calculations was written in Matlab (version 2019b)
and are available on Github (https://github.com/gregroth/Zuin_Roth_2021).

2 Variable two-state models
Based on the observation that the mean number of mRNAs per cell increases nonlinearly with
the contact probability between the promoter and its enhancer (Fig. 2B in the main text), we
asked if this nonlinearity could be reproduced by a variable two-state model in which one of its
rate depends nonlinearly on the contact probability. We define 3 variable two-state models: the
variable kon two-state model for which the on rate depends on contact probability, the variable
koff two-state model for which the off rate depends on contact probability, and the variable µ
two-state model for which the initiation rate depends on contact probability. For each of these
models, the dependency of the variable parameter on contact probability is described by a Hill
function. For example, in the variable kon two-state model, we model the on rate as

kon(pc) = k0
on +

phc
c+ phc

(
k0
on − k1

on

)
. (3)

where k0
on and k1

on correspond to the lowest and the highest values, respectively, of the on rate,
and the Hill exponent h and the parameter c control the ”type” of nonlinear dependency. When
h is smaller than 1, the variable parameter is a sublinear function of contact probability. When
h is larger than 1 and c is smaller than 1, the variable parameter is a sigmoidal-like (i.e. it has
an inflexion point at an intermediate value of contact probability).

2.1 Model selection
Although the 3 variable two-state models are able to reproduce the nonlinear transcriptional re-
sponse observed in Fig. 2B, only the variable kon two-state model can reproduce the cell-to-cell
variability measured in the 6 smRNA FISH experiments. For each smRNA FISH distribution
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we calculated, ∆, the difference between the squared coefficient of variation and the inverse
of the mean which provides a measure of how the smRNA FISH distribution deviates from a
Poisson distribution (∆ = 0 for a Poisson distribution). We observed that ∆ steeply decreases
when the contact probability increases (see Figure 1 in this document). We now show that the
µ two-state model and the koff two-state model can not reproduce this observed steep decrease
in ∆. From equations (1) and (2), we deduce the deviation ∆ in a two-state model,

∆ =
koff
kon

δ

(kon + koff + δ)
. (4)

First, it is clear that the variable µ two-state model can not account for the smRNA FISH data
because ∆ does not depends on µ. Second, we note from equation (4) that ∆ < 1

kon
and we

also note that the ∆ calculated for the clone corresponding to contact probability 0 is equal to
9 (Figure 1 in this document). Taken together this means that the rate kon in a variable koff
two-state model should be smaller than 1 which contradicts the fact that we observe unimodal
distributions for clone associated with high contact probabilities (Fig. 2D). Indeed, it has been
shown that a two-state model with an on rate smaller than the degradation rate shows either
bimodal distribution or long distribution tails Munsky et al. [2012].

3 Variable kon two-state model fitting
The variable kon two-state model described above was fitted simultaneously to the mean eGFP
levels measured in individual cell lines and to the distributions of RNA numbers measured by
smRNA FISH in 6 cell lines where the full-length Sox2 control region (SCR) was located at
different distances from the promoter. For each cell line Ck (i.e.k = 1, . . . , 6), we note pck the
measured contact probability between the enhancer and the promoter. This section describes in
detail how this was done.

In the sequel, all the rates are expressed in unit of 1 over the mean life time of a mRNA
molecule (i.e. we set δ = 1).

3.1 RNA FISH data
For each cell line Ck (i.e.k = 1, . . . , 6), we calculated the histogram, hk of the RNA molecule
counts obtained from the smRNA FISH experiment. The bin size bk and the number of bins nkb
were chosen using the function histogram in Matlab.

For each set of parameters θ = (k0
on, k

1
on, koff , µ, c, h) we calculated the steady-state prob-

ability distributions of the two-state model with parameters (kon(pck), koff , µ), where kon(pck)
is given by equation (3). Next, we discretised the steady-state distributions in a histogram
ηk(n,θ) which is comparable with the histogram hk obtained from the FISH data. We assume
that the count in bin i for cell line k follows a binomial distribution of mean ηkiNk and variance
ηki (1− ηki )Nk, where Nk is the total number of counts. We approximate the binomial distribu-
tion by a normal distribution. Hence, the likelihood of observing the histogram hk given the
parameters (n,θ) is

Lk(θ) =

nkb∏
i=1

1√
2πNkηki (1− ηki )

e
− (hki −η

k
i (θ))

2

2ηk
i
(1−ηk

i
)Nk (5)
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and the log likelihood is

LLk(θ) =

nkb∑
i=1

[
− (hki − ηki (θ))2

2ηki (1− ηki )Nk

+
1

2
log(2πNkη

k
i (1− ηki ))

]
(6)

3.2 Mean eGFP levels
The data consist of the inferred mean number of RNA molecule per cell in each of the N indi-
vidual eGFP+ cell lines (obtained via the calibration with sRNA FISH (Suppl. Fig. 1H)) and
the associated genomic distance from the promoter to the SCR. The data were then averaged
in bins of length 20 kb, yielding a vector g whose elements are the binned mean number of
RNA per cell and a vector d of genomic distances. The genomic distances were transformed in
contact probabilities using the Capture Hi-C data (6.4-kb resolution; see Figure 2A), yielding
a vector π of contact probabilities associated to the vector g.

For each set of parameters θ = (k0
on, k

1
on, koff , µ, c, h), and each cell line i, we calculate

the mean number of RNA per cell, γi(n,θ), predicted by the two-state model with parameter
(kon(pck), koff , µ), where kon(pci) is given by equation (3). This mean was calculated using
equation (1). Assuming that the deviations from the model are normally distributed with mean
0 and variance σ2, the log likelihood function is given by

LLmean(θ) = −
N∑
i=1

(gi − γi(θ))2

2σ2
+N

1

2
log(2πσ) (7)

where N is the number of cell lines.

3.3 Model fitting for the full-length SCR data set
We fit the variable kon two-state model simultaneously to both the binned mean eGFP lev-
els measured in individual cell lines and the RNA FISH distributions. The best fit parameter
maximises the total log likelihood function

LLtot := LLmean(θ) +
6∑

k=1

LLk(θ). (8)

We set a lower bound of 0 for all the parameters and an upper bound of 1000 for the parameters
k0
on, k

1
on, koff , µ, an upper bound of 1 for the parameter c and an upper bound of 10 for the

parameter h. We ensured that the best fit parameters found were not at the boundaries. For all
the maximisations we use a global search approach. Specifically, we use the Matlab function
MultiStart in the Global Optimization toolbox. All codes were written in Matlab (version
2019b) and are available at https://github.com/gregroth/Zuin_Roth_2021.

3.4 Profile likelihood analysis and confidence interval
We calculated the profile likelihood of all the parameters and derived their confidence intervals
(see e.g. Pawitan [2001]). Let us denote θ = (k0

on, k
1
on, koff , µ, c, h) such that θj corresponds

to the jth parameter (e.g. θ3 corresponds to koff ). The profile likelihood function of parameter
j is

PLj(x) = max
θ|θj=x

LLtot(θ), (9)
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i.e. for each value x of parameter j the log-likelihood is maximised over the other parameters.
The 95% confidence interval of parameter j is

CIj = {x|LLtot(θ∗)− PLj(x) ≤ 3.8415} (10)

where θ∗ = arg maxθ LLtot(θ) and 3.8415 is the .95-quantile of the chi squared distribution
with one degree of freedom. The profile likelihood functions were estimated using the Matlab
function MultiStart in the Global Optimization toolbox. The plots of the profile likelihood
functions are shown in Fig. S3 B.

4 Mechanistic model of enhancer-promoter communication

4.1 Model description
The mechanistic model of enhancer-promoter communication described in the main text is fully
stochastic and describes the time evolution of four variables: the enhancer state, the promoter
state, the promoter regime state, and the number of RNA molecules per cell. The enhancer
states represent the relative position of the enhancer and the promoter (e1 := close: the en-
hancer is in physical proximity of the promoter, i.e. their distance is smaller than an arbitrary
threshold; e2 := far: the enhancer is not in physical proximity of the promoter). The promoter
states describe the transcriptional activity of the promoter (s1 = off: the promoter cannot ini-
tiate transcription; s2 := on: the promoter is prone to initiate transcription). In addition there
are n + 1 ”promoter regime” states, which we divide in two sets: {r1, . . . , rn} describe the
basal two-state promoter regime and the state rn+1 describes the enhanced two-state promoter
regime. Transitions through the ”promoter regime” states represent the regulatory processes
that transmit regulatory information from the enhancer to the promoter. The promoter remains
in the basal regime until all the n regulatory processes have been completed, and only at that
point it can transition into the enhanced regime (see Figure 2 in this document). The basal and
enhanced regimes differ only in their on rate. Finally, the number of RNA molecules per cell
can be any integer m ≥ 0.

We assume that the enhancer switches between its close and far states independently of
the promoter and the promoter regime state. Transitions among the promoter regime states are
reversible, however a forward transition is only possible when the enhancer is in the close state.
Transition between the on and off state of the promoter are reversible. The on rate depends on
the promoter regime while the off rate is the same for both regimes. Transcription can only
be initiated from the promoter state s2 (i.e on state, either in the basal or enhanced regime).
Synthesis and degradation of RNAs is regarded as a Poisson process (i.e. we describe RNA
initiation, elongation, nuclear export of RNA as a single kinetic step) and are both independent
on the promoter regime. Note that ”n+ 1 promoter regime states” actually means that there are
n intermediate regulatory steps required to enter the enhanced regime. The kinetic reactions
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are as follows.

e1

kfar


kclose

e2

e1 + rk
kforward


kback

e1 + rk+1, for k = 1, . . . , n

e2 + rk ←
kback

e2 + rk+1, for k = 1, . . . , n

s1 + rk
kbasalon



koff

s2 + rk, for k = 1, . . . , n

s1 + rn+1

kenhon



koff

s2 + rn+1

m+ s2 + rk →
µ

m+ 1 + s2 + rk, for k = 1, . . . , n+ 1

m →
δ

m− 1

The chemical master equation is given by

dp

dt
(ei, sj, rk,m) = (m+ 1)δp(ei, sj, rk,m+ 1) + µ(i,j,k)p(ei, sj, rk,m− 1) (11)

+
∑

(̄i,j̄,k̄)

k(̄i,j̄,k̄;i,j,k)p(ei, sj, rk,m) (12)

−(mδ + µ(i,j,k) +
∑

(̄i,j̄,k̄)

k(i,j,k;̄i,j̄,k̄))p(ei, sj, rk,m) (13)

where µ(i,j,k) is the transcription rate given the enhancer state, promoter state and the promoter
regime state, and k(i,j,k;̄i,j̄,̄) is the transition rate for the enhancer and promoter to go from the
states ei, sj, rk to the states eī, sj̄, rk̄. All rates are expressed in terms of the model parameters
and are defined in Table 1.

This model can be rephrased in the general framework of multi-state promoter models
(Sánchez and Kondev [2008]) if we interpret the triplet (e, s, r) as a ”hyper” promoter state.
There are 4(n + 1) hyper promoter states which can be described either by a triplet (i, j, k)
where ei defines the enhancer state, sj defines the promoter state and rk defines the promoter
regime state, or it can be described by an integer ϕ ∈ {1, 2, . . . , 4(n+ 1)}. The two descriptors
are connected by the so-called linear indexing bijection

(i, j, k)→ ϕ = f(i, j, k) := (i− 1)2(n+ 1) + (j − 1)(n+ 1) + k. (14)

Using this new notation, the chemical master equation can be rewritten as

dp

dt
(ϕ,m) = (m+ 1)δp(ϕ,m+ 1) + µϕp(ϕ,m− 1)

+
∑
ϑ

k(ϑ;ϕ)p(ϕ,m)

−(mδ + µϕ +
∑
ϑ

k(ϕ;ϑ))p(ϕ,m)

Following Sánchez and Kondev [2008], we define the probability vector

p(m) = [p(1,m), . . . , p(4(n+ 1),m)]
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and rewrite the chemical master equation in matrix form

dp

dt
(m) = (K−T−m∆)p(m) + (m+ 1)∆p(m+ 1) + Tp(m− 1) (15)

where the matrix K has elementsKϕϑ = k(f−1(ϑ);f−1(ϕ)) if ϕ 6= ϑ andKϕϕ = −
∑

ϑ 6=ϕKϕϑ; the
matrix T is diagonal with diagonal elements Tϕϕ = µf−1(ϕ); and the matrix ∆ is also diagonal
with diagonal elements ∆ϕϕ = δ. The matrix K is the transition rate matrix of the Markov
chain describing the stochastic dynamics of the enhancer-promoter interaction, the intermediate
regulatory steps, and the promoter on/off switch. The steady-state probability distribution of
the Markov chainK is the solution (subject to normalisation) of the equation

Kv = 0. (16)

4.2 Mean and variance of the number of RNA
The mean and the variance of the number of RNAs per cell is given by the following formulas
(Sánchez and Kondev [2008])

〈RNA〉 =
µm(0)

δ
(17)

Var(RNA) =
µm(0)

δ
+
µm(1)

δ
−
[
µm(0)

δ

]2

(18)

where we have defined the vector µ = (µf−1(1), . . . , µf−1(4(n+1))) and m(j) =
∑

mm
jp(m) the

jth moment of the number of RNAs per cell. The vectors m(0) is the steady-state probability
distribution of the Markov chainK (i.e. m(0) is a solution of equation (16)).

The vectorsm(1) is the solution of the equation

(K−∆)m(1) + Tm(0) = 0. (19)

(see equation 4 in Sánchez and Kondev [2008]).

4.3 Mean and variance of the number of RNAs as a function of the con-
tact probability

In the enhancer-promoter model, the contact probability is the steady-state probability that the
enhancer is in the close state. It can be directly calculated from the close rate and the far rate,

pc =
kclose

kclose + kfar
. (20)

From equation (20), we can express kclose in terms of kfar and pc,

kclose =
kfarpc
1− pc

. (21)

We substitute equation (21) for kclose in equation (15) and obtain the mean and the variance of
the number of RNA molecules as a function of the rate parameters kfar, kback, kforward, k

basal
on , kenhon ,

koff , µ, the number of intermediate regulatory steps n, and the contact probability pc.
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5 Qualitative study of the transcriptional response to changes
in contact probabilities

The fit of the kon two-state model (see Section 3) shows that the mean and the cell-to-cell
variability in number of mRNAs per cell can be explained by a two-state model in which the on
rate depends on the contact probability between the enhancer and the promoter in a sigmoidal
manner. However, the model of enhancer-promoter communication described in Section 4 can
not in general be approximated by a two-state model. In this Section, we investigate for which
parameters our mechanistic enhancer-promoter model reduces to an apparent two-state model
in which the on rate, kappon , depends ”sigmoidally” on contact probability.

5.1 Reduction of the enhancer-promoter model to an apparent two-state
model

We apply the theory of aggregation of states in Markov chain with weak interaction Gaitsgori
and Pervozvanskii [1975]. When enhancer-promoter interactions and intermediate regulatory
steps kinetics are both faster than the promoter’s intrinsic transcriptional dynamics, the Markov
chain described by the chemical equation (15) can be separated in a fast Markov chain describ-
ing the transitions between the enhancer states and the promoter regime states, and an apparent
(or slow) Markov chain describing the transitions between the promoter states (i.e. on and off
states) and the number of mRNAs. The rates of the apparent chain are the weighted average of
the rates across all the combinations of enhancer states (close, far) and promoter regime states
(1, . . . , n+ 1). The weights are given by the steady state distribution of the fast chain evaluated
at each combinations of states. Since the on rate only depends on promoter regime states (i.e.
kbasalon when the promoter is in the states 1, . . . , n, and kenhon when the promoter is in the state
n+ 1), the on rate of the apparent chain is

kappon = penhk
enh
on + (1− penh)kbasalon (22)

= kbasalon + penh(k
enh
on − kbasalon ). (23)

where penh is the probability, at steady-state of the fast Markov chain, that the promoter is in the
enhanced regime (i.e. in the state n+ 1). Since the off and the initiation rates do not depend on
the enhancer state and neither on the promoter regime state, they are unchanged for the apparent
chain (i.e. kappoff = koff and µapp = µ.) Theorem 1 in Gaitsgori and Pervozvanskii [1975]
shows that when the difference of time scales is large enough (i.e. kclose, kfar, kback, kforward are
sufficiently larger than kbasalon , kenhon , koff , µ), the marginal distribution of the promoter states in
the steady-state of the full model is well approximated by the steady-state distribution of the
apparent chain.

In conclusion, when enhancer-promoter interactions and intermediate regulatory steps ki-
netics are both faster than the promoter’s intrinsic transcriptional dynamics, the full model of
enhancer-promoter communication reduces to an apparent two-state model in which the on
rate is given by equation (22). We now ask for which parameters this apparent on rate depends
sigmoidally on contact probability.

5.2 Sigmoidallity of the apparent on rate
We first focus on the low sensitivity of the apparent on rate at high contact probability. We
search parameters values for which the apparent on rate ”plateaus” at high contact probability.
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In order to select those parameters, we first note that in the apparent two-state model, con-
tact probability affects kappon by modulating the probability that the promoter is in the enhanced
regime (see equation (23)). Thus the desire parameters are the ones for which the enhanced
regime probability penh is poorly sensitive to change in contact probability at high contact prob-
abilities. The enhanced regime probability, penh, is calculated from the steady state probability
distribution v of the Markov chain K (see equation (16)) by summing its elements that corre-
spond to the enhanced regime (i.e. (i, j, n + 1) for i = 1, 2 and j = 1, 2) which corresponds
to

penh = eenhv, (24)

where eenh is the vector of length 4(n+ 1) whose elements eenhf(i,j,k) = 1 are 1 if k = n+ 1 and
0 elsewhere.

The sensitivity of penh(pc) at high contact probability can be assessed by calculating its first
and second derivatives at contact probability 1. The sensitivity is the lowest when both the first
and second derivatives are the lowest. At contact probability 1, the first and second derivatives
of the enhanced regime probability are given by

∂penh
∂pc

(1) =
un

(n+ (n− 1)u+ · · ·+ un−1)2
(25)

and
∂2penh
∂p2

c

(1) =
zp1(u) + p2(u)

z(1 + u+ · · ·+ un)3
(26)

where z =
kfar

kback
and u =

kforward

kback
, p1 is a polynomial in variable u of degree 3n − 1, and p2 is a

polynomial in variable u of degree 3n. Equations (25) and (26) were calculated for different
value of n using the symbolic toolbox in Matlab (version 2019b). We deduce from equations
(25) and (26) that sensitivity is minimised when u and z are large, which means when the ratio
kforward

kback
and the ratio kfar

kback
are large. Thus, the rate parameters should be such that memory is

long, i.e. the promoter remains in the enhanced regime much longer than the average duration
of an interaction ( kfar

kback
>> 1), and the intermediate regulatory steps are fast (kforward

kback
>> 1).

The condition kfar

kback
>> 1 implies that the timescales of the enhancer-promoter interactions

and the regulatory steps kinetics are decoupled. Hence, we can apply the theory of aggregation
of states in Markov chain with weak interaction Gaitsgori and Pervozvanskii [1975] to the
Markov chain describing the transition between enhancer states and promoter regime states.
We denote this chain by Kf . In this way, we can deduce an approximation of the enhanced
regime probability penh which is valid in the limit kfar

kback
>> 1. We separate the Kf chain

in a ”super” fast Markov chain, Kff , describing the transitions between the enhancer states
(i.e. Close and Far), and a slower Markov chain, Kfs, describing the transitions between the
promoter regime states (i.e. 1, . . . , n + 1). The forward and backward rates of the slower
chain Kfs are the weighted average of the forward and backward rates across all the enhancer
states. The weights are the corresponding values of the steady state distribution of the super
fast chain Kff . Since only the forward rate depends on the enhancer state (i.e. kforward when
the enhancer is close, and 0 when the enhancer is far), the forward rate of the slower chain is

kfsforward = pckforward. (27)
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and the backward rate of the slower chain is kback, yielding the transition matrix

Kfs =



−γ+ γ+

γ− −(γ+ + γ−) γ+

. . . . . . . . .

γ− −(γ+ + γ−) γ+

γ− −γ−


(28)

where γ+ = pckforward and γ− = kback. By solving the equation wTKfs = 0, we obtain the
steady-state distribution of the slower chain Kfs,

wk =
(1− γ+/γ−)(γ+/γ−)k−1

1− (γ+/γ−)n+1
, for k = 1, . . . , n+ 1 (29)

Theorem 1 in Gaitsgori and Pervozvanskii [1975] shows that when the difference of time scales
is large enough (i.e. kclose, kfar are sufficiently larger than kback, kforward), the marginal distribu-
tion of the promoter regime states in the steady-state of the chain Kf is well approximated by
the steady-state distribution of the slower chain Kfs. In this limit case, the enhancer probability
penh is thus given by wn+1, i.e.

penh =
(1− pcβ)(pcβ)n

1− (pcβ)n+1
(30)

where β = kforward/kback. This function is sigmoidal-like only if n > 1 and if β < 1.
In conclusion, the two-state behaviour observed in the smFISH data and sigmoidal-lilke

shape of the mean transcriptional response to change in contact probability can be recapitulated
with our enhancer-promoter model when the timescales of enhancer-promoter interactions are
faster than those of the intermediate regulatory steps, and both are faster than the promoter’s
intrinsic bursting dynamics (i.e. kclose, kfar >> kback, kforward >> kbasalon , kenhon , koff , µ), there are
more than 1 regulatory step (i.e. n > 1), and forward reaction are favoured over backward
reactions. In this scenario, the marginal steady-state-distribution of the promoter states and
mRNA number of the full enhancer-promoter model is well approximated by the steady-state
distribution of an apparent two-state model with off rate koff , initiation rate µ, and on rate

kappon = kbasalon +
(1− pcβ)(pcβ)n

1− (pcβ)n+1

(
kenhon − kbasalon

)
. (31)

6 Enhancer-promoter model fitting
Analysis of the enhancer-promoter model (see Section 5) concludes that the model could repro-
duce qualitatively the observed data when the timescales of enhancer-promoter interactions are
faster than those of the intermediate regulatory steps, and both are faster than the promoter’s
intrinsic bursting dynamics, there are more than 1 regulatory step (i.e. n > 1), and forward
reaction are favoured over backward reactions. In this scenario we shown that the model is
well approximated by an apparent variable two state model with the on rate described in equa-
tion (31). We thus fit this apparent two-state model to the data. In the sequel, all the rates are
expressed in unit of 1 over the mean life time of a mRNA molecule (i.e. we set δ = 1).
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6.1 Full SCR data set
We fit the apparent two-state model simultaneously to the mean eGFP levels measured in indi-
vidual cell lines and to the distributions of RNA numbers measured by smRNA FISH in 6 cell
lines where the full-length Sox2 control region (SCR) was located at different distances from
the promoter. The fitted parameters are the number of regulatory steps, n, the ratio between the
forward and backward rates of the regulatory steps, β, the basal and enhanced on rates, kbasalon

and kenhon , and the off and initiation rates, koff and µ. We follow the same procedure described
in Section 3 for the variable kon two-state model. Since the number of regulatory steps n is
an integer parameter, we maximise the total log likelihood function LLtot for each value of n
separately. For the parameter n, we set a lower bound of 1 and an upper bound of 10. For all
the other parameters (i.e. β, kbasalon , kenhon , koff , µ), we set a lower bound of 0 and an upper bound
of 1000 for the parameters kbasalon , kenhon , koff , µ and an upper bound of 100 for the parameter β.
We ensured that the best fit parameters found were not at the boundaries. For all the maximi-
sations we use a global search approach. Specifically, we use the Matlab function MultiStart
in the Global Optimization toolbox. All codes were written in Matlab (version 2019b) and are
available at https://github.com/gregroth/Zuin_Roth_2021.

6.2 Truncated SCR data set
In the apparent two-state model, the enhancer can affect transcription through 2 parameters,
namely β which determines the ratio between the forward and the backward rates of the reg-
ulatory steps and/or kenhon the on rate in the enhanced regime. To determine which of those
parameters does the enhancer strength affect, we compare 3 versions of the apparent two-state
model in which the parameter β (model 1) or kenhon (model 2), or both (model 3) are free param-
eters and the other ones are fixed to the best fit values θ∗ obtained for the full-length SCR data
set (see Section 6.1). We fit each model to the binned mean number of RNA molecule inferred
from the eGFP+ cell lines with the truncated version of the SCR. For each model we calculate
the maximum log likelihood i.e.

`1 = max
{θ1}

LLmean(θ1, θ
∗
2, . . . , θ

∗
6) (32)

`2 = max
{θ3}

LLmean(θ∗1, θ
∗
2, θ3, θ

∗
4, θ
∗
5, θ
∗
6) (33)

`3 = max
{θ1,θ3}

LLmean(θ1, θ
∗
2, θ3, θ

∗
4, θ
∗
5, θ
∗
6) (34)

For each model, we calculate the maximum log-likelihood ratio

λj = −2(`j − `∗). (35)

where `∗ = max{θ} LLmean(θ) is the maximum log likelihood over all the parameters. Under
the null-hypothesis that the data can be explained by the jth model, the ratio λj converges to
a chi squared distribution with 4 degrees of freedom Wilks [1938]. Only the model with kenhon

as free parameter was able to account for the data (p-value = 0.4967). The models with β and
kbasalon as free parameters were not able to reproduce the data (p-values < .00001).
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Álvaro Sánchez and Jané Kondev. Transcriptional control of noise in gene expression. Pro-
ceedings of the National Academy of Sciences, 105(13):5081–5086, 2008.

S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite
Hypotheses. The Annals of Mathematical Statistics, 9(1):60 – 62, 1938.

12



Rate Expression From To
Hyper state transition rates

k(1,j,k;2,j,k) kfar close far
for j = 1, 2, k = 1, . . . , n+ 1

k(2,j,k;1,j,k) kclose far close
for j = 1, 2, k = 1, . . . , n+ 1

k(i,1,k;i,2,k) kbasalon off/low on/low
for k = 1, . . . , n
k(i,1,n+1;i,2,n+1) kenhon off/high on/high

for i = 1, 2
k(i,2,k;i,1,k) koff on/low off/low

for k = 1, . . . , n+!
k(1,j,k;1,j,k+1) kforward close/rk close/rk+1

for j = 1, 2, k = 1, . . . , n
k(2,j,k;2,j,k+1) 0 far/rk far/rk+1

for j = 1, 2, k = 1, . . . , n
k(i,j,k;i,j,k−1) kback rk rk−1

for j = 1, 2, k = 2, . . . , n+ 1
Initiation rates

µi,2,k µ on on+1 RNA
for i = 1, 2, k = 1, . . . , n+ 1

Table 1: Transition rates used in equations (11) and (15). All the rates µ(i,j,k) and k(i,j,k;̄i,j̄,k̄) that are
not described in the table have value equal to 0.
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Figure 1: Difference between the squared coefficient of variation and the inverse of the mean, ∆,
plotted against contact probabilities between the ectopic Sox2 promoter and the locations of SCR in cell
the lines shown in Fig. 2C-D (∆ = 0 for a Poisson distribution).
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Figure 2: Scheme of the enhancer-promoter model. For simplicity every rate is indicated only once in
similar reactions. Opacity differences are only intended to increase the clarity of the figure and do not
relate to properties of the states themselves.
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Gating Strategy for Nonlinear control of 
transcription through enhancer-promoter 
interactions 

Content 

1. Gate Strategy: Single Cell FACS sort of GFP+ cell lines from PiggyBac-
enhancer Founder lines

2. Gate Strategy: Single Cell FACS sort of GFP+ cell lines from Promoter only
Founder line

3. Gate Strategy: Single Cell FACS sort of GFP+ cell lines from PiggyBac-
enhancer Founder line using the Standard Gate Strategy on eGFP levels
(Extended Data Fig. 1l, top panel)

4. Gate Strategy: Single Cell FACS sort of GFP+ cell lines from PiggyBac-
enhancer Founder line using a less stringent Gate Strategy on eGFP level
(Extended Data Fig. 1l, bottom panel)

5. Gate Strategy: FACS sort of pools of cells for tagmentation-based mapping of
PiggyBac-enhancer insertions (Extended Data Fig. 1m)
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Gate Strategy: Single Cell FACS sort of GFP+ cell lines from PiggyBac-enhancer Founder lines

Gating Strategy:

FSC / SSC: to discard big cells with high granularity;
FSC-W / FSC: to discard doublets;
SSC-W / SSC: to discard doublets;
530/40[488] / 610/20[561]: to discriminate between negative (P5) and GFP positive cells (P4)
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Gate Strategy: Single Cell FACS sort of GFP+ cell lines from Promoter only Founder line

Gating Strategy:

FSC / SSC: to discard big cells with high granularity;
FSC-W / FSC: to discard doublets;
SSC-W / SSC: to discard doublets;
530/40[488] / 610/20[561]: to discriminate between negative (P5) and GFP positive cells (P4)
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Gate Strategy: Single Cell FACS sort of GFP+ cell lines from PiggyBac-enhancer Founder line using 
the Standard Gate Strategy on eGFP levels (Extended Data Fig. 1l, top panel)

Gating Strategy:

FSC / SSC: to discard big cells with high granularity;
FSC-W / FSC: to discard doublets;
SSC-W / SSC: to discard doublets;
530/40[488] / 610/20[561]: to discriminate between negative (P5) and GFP positive cells (P4)

19



xl000 

60 

so 

40 

u 
VI 

VI 
30 

20 

10 

0 

0 10 

xl000 

60 

so 

40 

u 
VI P3 
VI 30 

20 

10 

0 

0 10 

discard big cells with 
high granularity

20 30 40 so 

FSC[Perp] 

discard doublets

20 30 40 so 

SSC Width 

60 

xl000 

60 

xl000 

Statistics:  

Populations Events 

■ All Events 791,303 

■ Pl 578,632 

■ P2 500,000 

■ P3 500,000 

■ P4 4,779 

■ PS 429,497 

xl000 discard doublets
60 

so 

0: 40 

VI 
30 

20 

10 

0 

0 10 20 30 40 so 60 

xl000 

FSC[Perp] Width 

discriminate between 
negative (P5) and 
intermediate+GFP positive cells (P4)

10
3 

P4 

10
1 

10
2 

10
3 

10
4 

530/40[488] 

530/40[ ... 610/20[ ... 

%Total % Parent Mean Mean 

100.00% #### 5 4 

73.12% 73.12% 5 3 

63.19% 86.41% 5 3 

63.19% 100.00% 5 3 

0.60% 0.96% 14 4 

54.28% 85.90% 4 3 

Gate Strategy: Single Cell FACS sort of GFP+ cell lines from PiggyBac-enhancer Founder line using 
a less stringent Gate Strategy on eGFP level (Extended Data Fig. 1l, bottom panel)

Gating Strategy:

FSC / SSC: to discard big cells with high granularity;
FSC-W / FSC: to discard doublets;
SSC-W / SSC: to discard doublets;
530/40[488] / 610/20[561]: to discriminate between negative (P5) and intermediate+GFP positive cells (P4)
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Gate Strategy: FACS sort of pools of cells for tagmentation-based mapping of PiggyBac-enhancer 
insertions (Extended Data Fig. 1m)

Gating Strategy:

FSC / SSC: to discard big cells with high granularity;
FSC-W / FSC: to discard doublets;
SSC-W / SSC: to discard doublets;
530/40[488] / 610/20[561]: to discriminate between negative (P4 - low 2), intermediate (P5 - low 1) and 
GFP positive cells (P6 - high)
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