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1. Additional information on data collection 13 

Dengue. The incidence of dengue fever is calculated by dividing the number of dengue 14 
cases by the total population that year. The dengue incidence in 2020 is subtracted from 15 
the average of the incidence in the same time from 2014 to 2019 in the corresponding 16 
country and then divided by the average of the incidence to obtain the net change of 17 
dengue incidence in 2020. 18 
2m temperature. The temperature of the air 2 meters above the earth's surface. Taking 19 
atmospheric conditions into account, 2m temperature is calculated using the 20 
interpolation method between the lowest model layer and the surface. The Kelvin 21 
temperature minus 273.15 is converted to degrees Celsius (°C). 22 
Surface temperature. The temperature of the earth's surface. Surface temperature is 23 
the theoretical temperature required to satisfy the surface energy balance. It represents 24 
the temperature at the top layer, which has no heat capacity and therefore responds 25 
instantly to changes in surface flux. The Kelvin temperature minus 273.15 is converted 26 
to degrees Celsius (°C). 27 
Relative humidity. The humidity of the air 2 meters above the surface. Its original data 28 
is the dew point temperature of 2 meters. Combined with temperature and pressure, it 29 
can be used to calculate the relative humidity. 30 
Total precipitation. Liquid and frozen water, including rain and snow, falling on the 31 
earth's surface. It is the sum of mass precipitation (precipitation produced by large-scale 32 
weather patterns, such as troughs and cold fronts) and convective precipitation 33 
(precipitation produced by convection when the air in the lower part of the atmosphere 34 
is warmer and less dense than the air in the upper part of the atmosphere). The 35 
precipitation variable does not include fog, dew, or precipitation that evaporates in the 36 
atmosphere before it falls to the Earth's surface. Precipitation is measured at a depth of 37 
meters. 38 
Convective precipitation. The cumulative amount of convective precipitation falling 39 
to the Earth's surface. It is the precipitation phenomenon caused by atmospheric 40 
convection movement, and the rainfall is large in a short period of time. The units of 41 
precipitation are depth in metres. 42 
Government stringency index (SI). SI is the simple average of 9 component indicators, 43 
including 8 indexes of containment and closure policies and 1 public information 44 
campaigns of health system policies. OxCGRT published the calculation formula and 45 
detailed definition of specific indicators.1 The indexes range from 0 to 100. A higher 46 
score indicates a more stringent COVID-19 response policy (0 for no response policy 47 
and 100 for the most stringent response policy). 48 
Human mobility. The Google Mobility Trends data set measures the number of visitors 49 
per day in a particular site category and compares this change to the baseline day before 50 
the outbreak of the COVID-19 pandemic. The baseline is the median value of the first 51 
five-week period of 2020 (3 January to 6 February). The baseline human mobility was 52 
defined as 100% in this study. 53 
  54 

2. Detailed information on the analytical framework 55 

2.1 Computation on Mann-Kendall test 56 

In the Mann - Kendall test, the null hypothesis H0 for climate time series data 57 
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,..., )1 12X X（ were independent of n, random variable with the distribution of the sample. 58 
The alternative hypothesis 1H   is bilateral inspection, to ,k j 12≤  , and k n≠  , iX  59 
and jX  distributed is not the same, the test statistic S calculation is as follows: 60 
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S   is a normal distribution with a mean of 0 and a variance of 62 
( ) ( 1)(2 5) /18Var S n n n= − + . 63 

When n 10>  , the standard positive system variable is calculated by the following 64 
formula: 65 

1 0
var( )

0 0
1 0

var( )

s S
s

Z S
s S

s

− >
 =
 + <


 66 

So, in the trend of the bilateral inspection, on a given a confidence level α, if 67 
(1 / 2)| |Z Z σ−≥ , the null hypothesis is not acceptable. On a confidence level, the time 68 

series data exist obvious up or down trend. For statistic Z , when it is greater than zero, 69 
it has an upward trend, and when it is less than zero, it has a downward trend. The 70 
absolute value of Z  in greater than or equal to 1.28, 1, 64 and 2.32, respectively by 71 
the reliability of 90%, 95%, 99% of the test of significance. 72 

2.2 Details on the Spatiotemporal Bayesian hierarchical model 73 

We specified a spatiotemporal Bayesian hierarchical model that responded to the 74 
monthly dengue cases in 23 countries from 2014 to 2019.2 Hypothesis of negative 75 
binomial distribution explains the possible overdistribution of dengue cases: 76 
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 79 

Where, ,c ty  is the number of dengue cases, and is equal to ( ) 2014,..., 2019ta = , the 80 
number of annual population per 100,000 , ( )c a tpopulation  multiplied by the estimated 81 
value of country 1,..., 23c =  for the incidence of unknown dengue fever 82 

c, tdengue case , κ  is an over-discrete parameter. At the same time, we also test the 83 
Poisson distribution model, but the goodness of fit standard, including the deviance 84 
information criterion (DIC) is higher, so we use the negative binomial formula to 85 
consider residual over-discreteness. 86 

We first construct a baseline model that includes spatiotemporal random effects to 87 
explain inter-annual variability in seasonal and spatiotemporal correlation structures at 88 
national levels. Using cyclic first-order random walk priors, which allow each month 89 
to depend on the previous month. Interannual variations and long-term trends are 90 
explained by annual spatial random effects, which make any annual trend different over 91 
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the entire time period at a given location. Unstructured random effects allow for 92 
independent region-specific noise, such as differences in media ecology, healthcare 93 
access, and reporting rates. Structured spatial random effects allow for dependence 94 
between adjacent countries due to common environmental and socio-economic 95 
characteristics such as climatic zones and mobility of people. 96 

The model parameters are estimated using the integrated nested Laplace approximation 97 
in the Bayesian framework. INLA is directly used for full Bayesian inference in disease 98 
mapping, avoiding the computationally intensive Markov chain Monte Carlo 99 
technique.3 Parametric uncertainty is resolved by assigning prior distributions to 100 
parameters. Month autocorrelation random effects were used for 23 countries, in which 101 
each month's effect was derived from the effect of the immediately preceding month. 102 
This country-specific monthly random effect, , ( )c m tβ  was assigned a cyclic random 103 
walk of order one, or first difference prior distribution, in which each effect is derived 104 
from the immediately preceding effect, 105 

2
, ( ) , ( ) - 1 - ~  (0, )c m t c m t N ββ β σ  106 

where , (1)c mβ  represents the parameter estimate for the month of January for 107 
country c. 108 

Fig.S13 shows the marginal posterior distribution of the monthly random effects in each 109 
country using the best-fit “historical” model. Spatial unstructured and structured 110 
random effects with specific countries can account for inter-annual variations due to 111 
unknown and unmeasurable spatial characteristics (e.g., the introduction of new dengue 112 
serotypes or arboviruses at specific times and places) and long-term trends. For the 113 
spatial components, we use a modified Besag-York-Mollie (BYM) model with a scaled 114 
spatial component, which helps to assign interpretive superpriors and make these 115 
superpriors transferable across different geographic environments. The modified BYM 116 
model consists of one precision parameter and one mixing parameter. The precision 117 
parameter represents the marginal precision and controls the variability explained by 118 
the spatial effect. The mixing parameter distributes existing variables between an 119 
unstructured and structured component, , ( ) , ( )c a t c a tϕ υ+ . The unstructured component 120 
helps explain unknown or unobserved confounders, such as population immunity, 121 
quality of health care, and local vector control interventions. In addition to the single-122 
scale parameters in the negative binomial model, it introduces an additional source of 123 
variability (potential effects) into the model, which helps to model excessive dispersion. 124 
Structured components assume that if regions share boundaries, there is spatial 125 
dependency that acts as a substitute for spatial autocorrelation between nearby regions 126 
due to shared environmental or socio-economic characteristics.4 127 

2.3 Details on the DLNM  128 

The influence of meteorological factors on human health is nonlinear (such as J, V or 129 
U shaped relationship) and shows lagged effect. Gasparrini introduced the Distributed 130 
Lag non-linear model (DLNM) into the study of the health effects of air temperature 131 
for the first time.5,6 Based on the ideas of traditional models such as generalized linear 132 
model and generalized additive model, they introduced a cross basis process to describe 133 
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the distribution of dependent variables in the independent variable dimension and lag 134 
dimension at the same time, so as to evaluate the lag effect and nonlinear effect of 135 
exposure factors at the same time. 136 
  137 
We used a distributed lag nonlinear model (DLNM) to establish a negative binomial 138 
distribution to derive an estimate of a specific variable-dengue cases association, 139 
expressed as relative risk (RR). This model can describe complex nonlinearity and lag 140 
correlation by defining a combination of two functions that define the traditional 141 
exposure - response correlation and the additional lag - response correlation, 142 
respectively. Lag-response associations represent temporal changes in given exposure 143 
risk and estimates the distribution of immediate and delayed effects that accumulate 144 
during the lag.  The technical details and terminology are explained in detail in 145 
literature and tutorials.6 146 
  147 
Basis function refers to the function that converts the independent variable into a new 148 
variable set and includes it in the design matrix of the model to estimate its effect. 149 
  150 
The dependent variable is the number of dengue cases.6 In this study, the exposure 151 
factors were 2m temperature, convective precipitation environmental factors and 152 
PHSM policy factors. For environmental covariates, we used population-weighted 153 
averages to reduce the biases particular for sparsely populated countries with big 154 
meteorological gradients: 155 
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Where cPrDen  is the population-weighted environmental factors in country c , ipop  157 
is the population in pixel i , and iEnv  is the environmental factor in pixel i , and n  is 158 
the total number of pixels in country c . 159 
  160 
The new variable generated by the transformation of the basis function of the 161 
independent variable is called the change relationship between the basis variable and 162 
the dependent variable can be described in a more detailed way through the 163 
transformation of the independent variable, and a more accurate exposure response 164 
relationship can be obtained. The basis functions of the independent variable dimension 165 
include the meteorological cross basis function of a natural cubic spline of time with 3 166 
degrees of freedom (df), and the cross basis function of PHSM and human mobility of 167 
a natural cubic spline of time with 1 df. Their boundary sections are the minimum and 168 
maximum values of their respective variables, respectively. 169 
  170 
Due to the hysteresis of the influence of exposure, the outcome of the day may be 171 
affected by the exposure L months ago at the longest. In order to describe the hysteresis 172 
effect of exposure, it is also necessary to select a basis function to transform the 173 
hysteresis to form a matrix. Based on the available literature and knowledge of the 174 
vector-borne process of human disease transmission, the lag time for weather variables 175 
is up to three months.7-9 In order to describe the lag effect of exposure, the basis function 176 
of the lag dimension is a natural cubic spline of time with 1 df, and the maximum lag 177 
is 3 months. The boundary nodes are placed at 0 and 3 months respectively, and two 178 
internal nodes are distributed for 1 month and 2 months. The difference between cases 179 
reported in last year and mean annual cases 2013-2019 were introduce to account for 180 
population immunity built up. Since dengue risk and vulnerability to COVID-19 related 181 
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disruptions is likely to be affected by wealth, GDP per capita was also included in the 182 
model. Population size was included as an offset variable. Q AIC information criteria 183 
are used to evaluate the model. 184 

2.4 Computation of the preventive fraction 185 

Measuring attributable risk and prevention is an integral part of epidemiological 186 
analysis, especially when it is aimed at planning and evaluating public health 187 
interventions. Forward attribution is well suited to separating the risks attributable to 188 
different ranges of components because their sum matches the overall risk. In addition, 189 
from current exposures to future risks, a forward-looking view seems better suited to 190 
quantifying the health burden and prevention from a specific exposure event, as it is 191 
based on more consistent counterfactual conditions.7 192 
  193 
We select the forward attribution method to quantify the preventive fraction (PF) for 194 
COVID-19 dengue transmission. For a particular month t   in 2020, the dengue 195 
prevention attributable to a policy index or human mobility tX   is defined as the 196 
fraction x, tPF  of dengue cases with 3 months as the maximum lag period, defined by: 197 

, 0
1 exp( ,1)L

x t xtI
PF β

=
= − ∑  198 

With , 1txβ∑  as the overall cumulative log-relative risk for policy index or human 199 
mobility tx   in month t. The risk estimate , 1txβ∑   is calculated by the cumulative 200 
correlation of the policy index or human mobility over three months and re-centered on 201 
the base values of the non-PHSM. The basic value is the counterfactual condition to 202 
define the culpable protective factors. Therefore, the attributable prevention can be 203 
interpreted as the excess cases due to non-basic value.  204 
This method is described in detail in Gasparrini's previous article.7 205 

2.5 Model variable description table 206 

Variable Description 

1,..., 23c =  Number of countries 

1,...,72t =  Number of months between January 2014 and 
December 2019 

( ) 2014,..., 2019ta =  Annual 

( ) 1,...,12tm =  January to December 

κ  Overdispersion parameter 

NS Natural cubic spline 

var df Degree of freedom of variable 

lag df Degree of freedom of lag 
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,c ty  Number of reported cases 

( ( ) 1)a tannual anomaly −  Short-term immunity 

, ( )c m tβ  Country-specific monthly random effect 

, ( )c a tϕ + , ( )c a tυ  Yearly spatial random effects. 

Climate factors Surface temperature and convective precipitation 

Population Per 100 000 population in each country 

PHSM Public health and social measures 

HMB Human movement behaviours 

ŷ  The mean predicted case counts for 2020 from the 
historical model on the log scale 

207 
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1. Supplementary Table S1-S4 

Table S1: 2014-2019 Monthly Dengue - Environment (i.e., non-PHSM, non-HMB) 
covariate DLNM model adequacy results for models of increasing complexity. The 
deviance information criterion (DIC) and the cross-validated (CV) mean logarithmic 
score for models of increasing complexity. Lower scores indicate a better fitting model.   

Model Dengue incidence rate estimate  DIC CV mean log 
score 

Baseline Environmental covariates + 
Spatiotemporal random effects  27345.71 8.288 

mt Base model + mt DLNM 27302.61 8.27 
st Base model + st DLNM 27301.43 8.269 
rh Base model + rt DLNM 27320.72 8.275 
tp Base model + tp DLNM 27335.83 8.28 
cp Base model + cp DLNM 27328.32 8.275 

mt+rh Base model + (mt + rh) DLNM 27276.04 8.259 
mt+tp Base model + (mt + tp) DLNM 27279.92 8.26 
mt+cp Base model + (mt + cp) DLNM 27274.22 8.256 
st+rh Base model + (st + rh) DLNM 27275.17 8.259 
st+tp Base model + (st + tp) DLNM 27275.15 8.258 
st+cp Base model + (st + cp) DLNM 27269.41 8.255 
rh+tp Base model + (rh + tp) DLNM 27323.98 8.274 
rh+cp Base model + (rh + cp) DLNM 27312.84 8.268 

mt+rh+tp Base model + (mt + rh + tp) DLNM 27278.59 8.259 
mt+rh+cp Base model + (mt + rh + cp) DLNM 27275.31 8.256 
st+rh+tp Base model + (st + rh + tp) DLNM 27275.33 8.258 
st+rh+cp Base model + (st + rh + cp) DLNM 27270.91 8.255 

Environmental covariates: population immunity;  
mt: 2m temperature; st: Surface temperature; rh: Relative humidity; tp: Total precipitation; cp: Convective 
precipitation. 
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Table S2: 2014-2019 Monthly Dengue - Environment (i.e., non-PHSM, non-HMB) 
covariate DLNM model including per capita GDP adequacy results for models of 
increasing complexity. The deviance information criterion (DIC) and the cross-
validated (CV) mean logarithmic score for models of increasing complexity. Lower 
scores indicate a better fitting model.   

Model Dengue incidence rate estimate  DIC CV mean log score 

Baseline+GDP Environmental covariates + 
Spatiotemporal random effects  27344.83 8.287 

mt+GDP Base model + mt DLNM 27302.15 8.27 
st+GDP Base model + st DLNM 27301.64 8.269 
rh+GDP Base model + rt DLNM 27320.67 8.275 
tp+GDP Base model + tp DLNM 27336.96 8.28 
cp+GDP Base model + cp DLNM 27329.10 8.276 

mt+rh+GDP Base model + (mt + rh) DLNM 27275.46 8.259 
mt+tp+GDP Base model + (mt + tp) DLNM 27279.23 8.26 
mt+cp+GDP Base model + (mt + cp) DLNM 27274.69 8.256 
st+rh+GDP Base model + (st + rh) DLNM 27275.22 8.259 
st+tp+GDP Base model + (st + tp) DLNM 27275.34 8.258 
st+cp+GDP Base model + (st + cp) DLNM 27269.45 8.254 
rh+tp+GDP Base model + (rh + tp) DLNM 27324.94 8.275 
rh+cp+GDP Base model + (rh + cp) DLNM 27312.86 8.268 

mt+rh+tp+GDP Base model + (mt + rh + tp) DLNM 27278.65 8.259 
mt+rh+cp+GDP Base model + (mt + rh + cp) DLNM 27274.75 8.256 
st+rh+tp+GDP Base model + (st + rh + tp) DLNM 27274.08 8.257 
st+rh+cp+GDP Base model + (st + rh + cp) DLNM 27271.13 8.255 

Environmental covariates: population immunity + GDP per capita;  
mt: 2m temperature; st: Surface temperature; rh: Relative humidity; tp: Total precipitation; cp: Convective 
precipitation. 
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Table S3: Overall cumulative 4-month association between PHSM, HMB and dengue transmission relative risk. 95% CI = 95% confidence 
interval. 

CHI 
PHSM (%) HMB (%) 

SI (95% CI) C1 (95% CI) Non-Residential 
(95% CI) Transit (95% CI) Park (95% CI) Grocery (95% CI) Retail (95% CI) 

0 1 1 / / / / / 
10 0.86 (0.8 - 0.93) 0.84 (0.79 - 0.89) / / / / / 
20 0.74 (0.63 - 0.87) 0.7 (0.62 - 0.79) / 0.03 (0 - 0.23) / / 0.03 (0 - 0.25) 
30 0.64 (0.5 - 0.81) 0.59 (0.49 - 0.7) 0.28 (0.13 - 0.59) 0.05 (0.01 - 0.28) 0.05 (0.01 - 0.31) 0.01 (0 - 0.04) 0.05 (0.01 - 0.3) 
40 0.55 (0.4 - 0.76) 0.49 (0.38 - 0.62) 0.33 (0.17 - 0.63) 0.08 (0.02 - 0.33) 0.08 (0.02 - 0.36) 0.01 (0 - 0.07) 0.08 (0.02 - 0.36) 
50 0.48 (0.32 - 0.71) 0.41 (0.3 - 0.56) 0.4 (0.23 - 0.68) 0.12 (0.03 - 0.4) 0.12 (0.03 - 0.43) 0.03 (0.01 - 0.1) 0.12 (0.03 - 0.42) 
60 0.41 (0.25 - 0.66) 0.34 (0.24 - 0.49) 0.48 (0.31 - 0.74) 0.18 (0.07 - 0.48) 0.19 (0.07 - 0.51) 0.06 (0.02 - 0.16) 0.18 (0.07 - 0.5) 
70 0.35 (0.2 - 0.62) 0.29 (0.19 - 0.44) 0.58 (0.42 - 0.8) 0.28 (0.13 - 0.58) 0.28 (0.13 - 0.6) 0.12 (0.06 - 0.26) 0.28 (0.13 - 0.6) 
80 0.31 (0.16 - 0.58) 0.24 (0.15 - 0.39) 0.69 (0.56 - 0.86) 0.43 (0.26 - 0.69) 0.43 (0.26 - 0.71) 0.25 (0.15 - 0.4) 0.43 (0.26 - 0.71) 
90 0.26 (0.13 - 0.54) 0.2 (0.12 - 0.35) 0.83 (0.75 - 0.93) 0.65 (0.51 - 0.83) 0.66 (0.51 - 0.84) 0.5 (0.39 - 0.64) 0.65 (0.51 - 0.84) 
100 0.23 (0.1 - 0.51) 0.17 (0.09 - 0.31) 1 1 1 1 1 
110 / / / / 1.52 (1.18 - 1.96) 2.01 (1.57 - 2.58) / 
120 / / / / / 4.06 (2.47 - 6.65) / 

C1-School closing; HMB-Reduction in human mobility; ‘/’- Without the intervention; RR of the baseline values of PHSM=0 and Mobility=100 is 1. 
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Table S4: Overall cumulative proportion of dengue cases averted by PHSM and HMB in each countries and region. 

Areas 
PHSM (%) HMB (%) 

SI (95% CI) C1 (95% CI) Non-Residential (95% CI) Transit (95% CI) Park (95% CI) Grocery (95% CI) Retail (95% CI) 

All 54.18 (32.76 - 69.13) 70.95 (55.55 - 80.48) 30.95 (15.75 - 43.65) 75.37 (44.21 - 90.91) 70.51 (41.41 - 87.44) 29.48 (12.17 - 49.03) 75.56 (44.89 - 91.15) 

Americas 53.6 (33.27 - 69.93) 71.53 (58.11 - 81.42) 30.66 (15.75 - 45.38) 73.54 (43.45 - 89.04) 71.25 (41.51 - 87.11) 29.05 (12.54 - 50.04) 75.55 (45.02 - 90.55) 
Southeast 

Asia 56.46 (36.39 - 70.94) 67.73 (53.38 - 78.03) 32.1 (16.64 - 47.15) 81.08 (53.28 - 93.79) 66.56 (37.13 - 83.6) 31.5 (13.76 - 51.1) 75.64 (43.14 - 91.92) 

Belize 51.75 (31.44 - 67.71) 71.88 (57.55 - 82.1) 30.66 (15.87 - 45.23) 82.7 (51.05 - 94.44) 54.34 (25.4 - 77.34) 38.99 (18.2 - 61.94) 69.73 (35.9 - 88.99) 

Bolivia 31.04 (16.21 - 47.52) 44.27 (30.84 - 57.34) 28.81 (12.45 - 45.28) 76.86 (42.03 - 93.55) 70.58 (32.2 - 91.59) 59.31 (26.96 - 84.8) 77.19 (36.29 - 94.12) 

Brazil 46.38 (25.21 - 63.3) 57.91 (42.66 - 68.71) 27.41 (14.34 - 40.03) 69.86 (42.56 - 85.98) 71.64 (42.73 - 87.83) 14.92 (6.98 - 23.29) 74.9 (43.91 - 89.68) 

Colombia 55.37 (33.69 - 71.37) 69.69 (54.23 - 80.08) 43.26 (23.24 - 60.57) 85.61 (57.54 - 96.23) 81.28 (50.33 - 94.1) 63.49 (35.7 - 82.69) 86.6 (57.61 - 96.4) 

Costa Rica 60.59 (39.89 - 75.46) 79.43 (67.16 - 87.24) 49.14 (27.74 - 64.82) 87.37 (65.3 - 96.03) 87.02 (63.37 - 95.92) 60.4 (35.7 - 76.39) 84.5 (59.4 - 94.94) 

DR 45.05 (23.94 - 62.4) 60.11 (44.73 - 72.92) 30.19 (15.92 - 45.37) 80.03 (48.73 - 94.45) 63.43 (31.18 - 84.33) 44.69 (22 - 65.73) 71.47 (39.5 - 90.08) 

Ecuador 56.35 (33.67 - 72.99) 70.86 (56.64 - 81.22) 47.15 (24.43 - 64.37) 87.31 (59.09 - 96.36) 83.72 (54.21 - 95.26) 69.2 (37.76 - 87.82) 86.27 (56.76 - 96.44) 

ES 63.84 (39.82 - 78.75) 75.17 (61.89 - 84.36) 50.25 (30.94 - 66.95) 88.73 (62.92 - 97.1) 85.7 (57.62 - 95.93) 69.49 (42.19 - 86.35) 88.91 (63.47 - 96.95) 

Guatemala 61.6 (39.68 - 77.7) 71.74 (58.04 - 81.98) 42.42 (21.31 - 59.1) 88.26 (61.97 - 96.81) 74.33 (44.47 - 89.17) 60.77 (33.72 - 78.69) 81.05 (51.1 - 93.65) 

Honduras 65.33 (39.23 - 80.26) 75.5 (63.64 - 84.9) 50.8 (28.25 - 66.31) 90.92 (67.44 - 97.8) 77.98 (49.59 - 90.7) 73.46 (43.15 - 88.86) 89.65 (60.87 - 97.57) 

Jamaica 47.18 (28.92 - 63.72) 61.15 (45.21 - 72.96) 24.45 (12.51 - 36.21) 57.64 (31.23 - 77.43) 63.23 (34.84 - 83.51) 36.6 (17.91 - 53.89) 59.14 (31.91 - 78.82) 

Mexico 62.47 (41.39 - 76.74) 80.53 (68.91 - 87.96) 42.12 (23.62 - 56.82) 84.17 (60.96 - 94.18) 78.02 (50.89 - 90.6) 35.67 (19.18 - 49.41) 80.92 (55.87 - 93.04) 

Nicaragua 17.67 (10.46 - 24.72) 47.72 (36.15 - 58.61) 25.08 (13.48 - 35.86) 64.6 (39.72 - 80.35) 50.37 (27.4 - 66.84) 31.1 (16.52 - 43.74) 60.87 (35.27 - 77.45) 

Panama 52.71 (30.22 - 69.71) 67.61 (52.13 - 78.44) 46.6 (24.19 - 65.17) 87.79 (59.7 - 96.49) 84.22 (50.1 - 95.92) 69.57 (39.35 - 87.62) 88.5 (59.73 - 97.21) 

Peru 63.29 (40.49 - 77.26) 72.11 (58.74 - 81.01) 52.78 (29.61 - 70.39) 90.28 (66.05 - 97.36) 84.71 (53.8 - 95.47) 73.31 (43.77 - 88.69) 90.63 (66.71 - 97.83) 

Venezuela 61.66 (38.19 - 76.13) 75.88 (61.91 - 84.76) 39.29 (19.9 - 55.09) 81.64 (54.11 - 93.05) 74.24 (47.27 - 88.4) 52.61 (29.17 - 70.38) 79.38 (49.02 - 91.81) 
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Cambodia 46.54 (28.51 - 60.75) 79.68 (67.18 - 87.31) 31.73 (17.08 - 43.58) 83.47 (60.77 - 93.46) 44.8 (25.36 - 60.14) 37.9 (20.9 - 53) 57.61 (34.21 - 74.03) 

Laos 50.39 (29.12 - 66) 61.73 (47.71 - 72.53) 22.06 (11.99 - 32.5) 75.6 (46.96 - 89.94) 28.07 (14.98 - 39.57) 28.89 (12.27 - 46.78) 60.86 (28.41 - 81.09) 

Malaysia 52.43 (31.54 - 66.74) 68.61 (54.06 - 78.75) 38.24 (19.45 - 53.67) 85.35 (56.52 - 95.53) 71.64 (43.26 - 89.38) 44.79 (21.13 - 65.4) 84.65 (55.09 - 96) 

Philippines 59.48 (36.64 - 74.35) 73.58 (60 - 83.04) 45.07 (24.45 - 62.68) 89.92 (67.51 - 97.47) 70.77 (40.97 - 86.72) 61.32 (33.37 - 81.22) 87.88 (59.57 - 96.99) 

Singapore 56.42 (37.27 - 70.09) 61.78 (48.19 - 73.33) 45.63 (26.63 - 61.58) 86.75 (62.57 - 95.9) 83.25 (55.51 - 94.62) 31.78 (16.35 - 44.88) 84.43 (57.96 - 94.98) 

Thailand 57.24 (36.84 - 72.11) 71.22 (57.3 - 80.5) 30.47 (16.53 - 43.08) 80 (55.49 - 92.02) 68.4 (41.06 - 84.67) 9.55 (3.79 - 16.57) 64.32 (36.53 - 82.42) 

Vietnam 62.02 (41.83 - 75.74) 69.1 (55.56 - 78.64) 17.11 (9.16 - 25.16) 54.59 (28.57 - 75.77) 56.03 (33.07 - 71.65) 8.37 (1.62 - 19.83) 57.65 (29.59 - 76.84) 
DR, Dominican Republic; ES, El Salvador; HMB-Reduction in human mobility; ‘/’- Without the intervention. 
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2. Supplementary Figure S1-S20 

Figure S1: Seasonal variation in monthly dengue incidence for 2020 and average 
monthly dengue incidence for 2014-2019 in Latin America and Southeast Asia. (A) 
Seasonal variation of monthly dengue incidence for countries in Latin America. (B) 
Seasonal variation of monthly dengue incidence for countries in Southeast Asia. The 
percentage is the relative change ratio of annual dengue incidence in 2020 to the mean 
of 2014-2019. The gray dotted line is when countries started taking COVID-19 PHSM. 
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Figure S2: Seasonal variation in monthly dengue incidence for 2020 and maximum 
monthly dengue incidence for 2014-2019 in Latin America and Southeast Asia. (A) 
Seasonal variation of monthly dengue incidence for countries in Latin America. (B) 
Seasonal variation of monthly dengue incidence for countries in Southeast Asia. The 
percentage is the relative change ratio of annual dengue incidence in 2020 to the 
maximum value of 2014-2019. The gray dotted line is when countries started taking 
COVID-19 PHSM. 
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Figure S3: Yearly dengue case fatality rates from 2014-2019. 

 
DR, Dominican Republic; ES, El Salvador. 
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Figure S4: Distribution of annual dengue incidence for each country in 2019 and 
2020. 
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Figure S5: The change of 8 PHSM index response to COVID-19 in the Latin 
America and Southeast Asia, 2020. When the baseline value is 0, there is no COVID-
19 response policy. The data are percentages. 
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Figure S6: The change of HMB response to COVID-19 in the Latin America and 
Southeast Asia, 2020. There are six categories of community mobility: residential, 
workplace, transit stations, park, grocery and pharmacy, retail and recreation. Global 
human mobility data is obtained from Google Community Mobility Reports. The 
selected observation time period is the mean value within 35 days after the national 
emergency response. The baseline is the median value, for the corresponding day of the 
week, during January 3, 2020 to February 6, 2020.The baseline value is 100 and data 
are percentages. 
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Figure S7: Mann-Kendall test for significance of trends in meteorological factor 
for each country in the Latin America and Southeast Asia, 2014-2020. (A) Mann-
Kendall significance test for surface temperature. (B) Mann-Kendall significance test 
for convective precipitation. The red line represents the UF value, the blue line 
represents the UB value, and the dashed line represents the 95% CI. When the red line 
exceeds the critical line of I, the variable has a significant change trend at this time.
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Figure S8: Posterior distributions of country-specific autocorrelated monthly 
random effects. Posterior mean of marginal posterior distribution of the autocorrelated 
month random effects (e.g., the annual cycle) at the linear predictor scale from January 
to December for the 23 countries in Latin America and Southeast Asia. This shows the 
contribution of the random effects to the log of the dengue incidence rate (DIR) using 
the “historical” model.  
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Figure S9: Contribution of year-specific spatial random effects to dengue 
incidence rate estimates. Marginal posterior mean of the combined spatially structured 
and unstructured random effects at the linear predictor scale in 2020. This shows the 
contribution of the spatial random effects to the log of the dengue incidence rate using 
the “historical” model.  
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Figure S10: Added value of using “historical” model compared to baseline model. 
Difference between mean absolute error (MAE) for the baseline model (state-specific 
monthly random effects and year-specific spatial random effects) and MAE for the 
“historical” model. Countries with positive values (red) suggest that capturing the 
nonlinear and delayed impacts of climate factors, improves the model in these areas. 
Countries with negative values (blue) suggest that climate factors information did not 
improve the model fit and other unexplained factors may dominate space-time 
dynamics in these countries. The MAE of the“Historical” model was smaller than the 
baseline model for 12 of the 23 countries (52%).  
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Figure S11: Sensitivity testing of "historical" models using complete and seperate 
(Latin American and Southeast Asian) datasets. Countries with positive MAE values 
(red) indicate that modeling independently of countries in two large regions can 
improve these regional models. Countries with negative values (blue) indicate that 
modeling independently for two large regions does not improve the model fit, and is 
better for all countries. In 12 of the 23 countries (52%), the MAE of the complete dataset 
model was smaller than that of the two-region dataset model. 
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Figure S12: The association between different selected intervention variables with 
dengue risk over different lags. (A) Contour plot of the association between PHSM 
and risk of dengue, relative to the baseline without government interventions (PHSM = 
0). The deeper the shade of red, the greater the increase in relative risk (RR) of dengue 
compared with the baseline. The deeper the shade of blue, the greater the decrease in 
RR of dengue compared with the baseline. (B) Dengue lag–response association for 
loose (PHSM = 10), moderate (PHSM = 50), and strict (PHSM = 90) government 
interventions relative to the baseline. (C) Cumulative lags over the three month 
associations between PHSM and risk of dengue, relative to the baseline without 
government interventions. Shaded regions mark the prediction with 95% empirical CI. 
Predictions are from the “intervention” models. The PHSM index ranges from 0 to 100. 
A higher score indicates a more stringent, more geographically comprehensive COVID-
19 response policy (0 for no response policy and 100 for the most stringent response 
policy). 
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Figure S13: The association between different selected human movement variables 
with dengue risk over different lags. (A) Contour plot of the association between 
HMB and risk of dengue, relative to the baseline without government interventions 
(HMB = 100). The deeper the shade of red, the greater the increase in relative risk (RR) 
of dengue compared with the baseline. The deeper the shade of blue, the greater the 
decrease in RR of dengue compared with the baseline. (B) Dengue lag–response 
association for loose (HMB = max), moderate (HMB = 80), and strict (HMB = 30) 
government interventions relative to the baseline. (C) Cumulative lags over the three 
month associations between HMB and risk of dengue, relative to the baseline without 
government interventions. Shaded regions mark the prediction with 95% empirical CI. 
Predictions are from the “intervention” models. The baseline of human mobility was 
the median for the first five weeks of 2020 (3 January to 6 February), which was defined 
as 100%. 
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Figure S14: The uncertainty in hierarchical cluster analysis of PHSM and human 
mobility time series. The height of nodes connecting two variables on the dendrogram 
represents the degree of similarity. For each cluster in hierarchical clustering, quantities 
called p-values are calculated via multiscale bootstrap resampling. P-value of a cluster 
is a value between 0 and 1, which indicates how strong the cluster is supported by data. 
Red values are AU (Approximately Unbiased) p-values, and green values are BP 
(Bootstrap Probability) values. AU p-value, which is computed by multiscale bootstrap 
resampling, is a better approximation to unbiased p-value than BP value computed by 
normal bootstrap resampling. Clusters with AU larger than 95% are highlighted by 
rectangles, which are strongly supported by data.  

 
  



 

 28 

Figure S15: Heat map of correlations between variables in the Latin America and 
Southeast Asia, 2020. C1 - C8 is 8 specific indicators of the containment and closure 
policies, namely “school closing”, “workplace closing”, “cancelling of public events”, 
“restrictions on gathering sizes”, “closure of public transport”, “stay at home 
requirements”, “restrictions on internal movement” and “international travel controls”. 
Red indicates a positive correlation between the two variables, blue indicates a negative 
correlation between the two variables, and the numbers in each grid indicate correlation 
coefficients. 
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Figure S16: Distributions of residuals between model prediction and observed 
dengue incidence rate (DIR). The residuals between “historical” and “intervention” 
model prediction and observed DIR per 100,000 population from January to December 
for the 23 countries in Latin America and Southeast Asia.  
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Figure S17: Proportion of dengue cases averted by PHSM/ human mobility in each 
country and region at different ranges.  
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Figure S18: Predicted and observed monthly dengue cases from the “historical” 
model. 
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Figure S19: Predicted and estimated case numbers for the example year 2018 
when the historical model was fit to monthly dengue case data 2015-2017. 
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Figure S20: Predicted and estimated case numbers for the example year 2020 
when the historical model was fit to monthly dengue case data 2014-2019. 
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