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Supplementary Figures 
 

 

 
Supplementary Figure 1. Overview of model fitting procedure. (a) Time-resolved matrices of functional 

connectivity are obtained from empirical functional MRI via the sliding-window approach: regional BOLD time-

series are partitioned into windows of 30 TRs, sliding by 3 TRs at a time, following the same approach as previous 

work using the DMF model; functional connectivity between each pair of regions is computed within each window 

by means of Pearson correlation, generating a stack of FC matrices representing the evolution of FC over time. 

(b) The same procedure is repeated for the simulated BOLD timeseries produced by the model with various levels 

of the global coupling parameter, G. (c) For both the empirical and simulated functional connectivity dynamics 

(FCD), a time-versus-time FCD matrix is computed by correlating the time-dependent FC matrices centred at 

each timepoint. (d) Histograms of the distribution of FCD values in each matrix are obtained over all participants 

(blue) and for each simulation (red), and their similarity is evaluated by means of the Kolmogorov-Smirnov 

distance. (e) Across values of the global coupling parameter G, we compute the KS-distance between the empirical 

FCD and the FCD of each simulation (red solid line; dashed lines indicate standard deviation). The optimum value 

of G for the model (blue vertical line) is chosen as the one that minimises the average KS-distance across n=100 

simulations (here shown for the awake condition of the propofol dataset, where G=1.8). This procedure determines 

the value that allows the model to best simulate the empirical dynamics of functional connectivity in the healthy 

human brain. 
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Supplementary Figure 2. Replication of results from inhibitory neuromodulation using 2-dimensional KS-

distance fitting criterion. (a) The model informed by the empirical distribution of GABA-A receptors and with 

inhibitory gain scaling optimised to fit the Propofol data (shaded column), is compared against the same model 

but with inhibitory gain scaling optimised to fit the Awake data (b), or against the same model but after randomly 

reshuffling the regional receptor densities across the cortex (c), or setting them all to a uniform value (mean of 

the empirical distribution) (d). Box-plots show the model fit to the propofol data for n=100 simulations, (middle 

line: median; box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range; “+” symbol indicates 

outliers) quantified as 2D KS-distance (see Methods) between simulated and empirical FCD, for each variant of 

the model. * p < 0.05; *** p < 0.001. 
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Supplementary Figure 3. Replication of connectome replacement results using 2-dimensional KS-distance 

fitting criterion. Box-plots show the difference in model fit (2D KS-distance; see Methods) between the two 

conditions (fit to DOC patients’ data minus fit to healthy controls’ data, over n=100 simulations), for the initial 

model calibrated based on the healthy connectome (a), and after replacing the model’s initial connectome with 

either the DOC patients’ empirical consensus connectome (b), or after rewiring the initial connectome into a 

random network (c), or into a regular (lattice) network (d). Middle line: median; box limits, upper and lower 

quartiles; whiskers, 1.5x inter-quartile range; “+” symbol indicates outliers;  ***, p < 0.001; n.s., not significant 

(p > 0.05).. 
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Supplementary Figure 4. Replication of connectome replacement results using a consensus DOC 

connectome obtained from only the patients with 63-direction diffusion MRI data. Box-plot shows the 

difference in model fit (KS-distance) between the two conditions (fit to DOC patients’ data minus fit to healthy 

controls’ data, over n=100 simulations), for the initial model calibrated based on the healthy connectome (left), 

and after replacing the model’s initial connectome with either the DOC patients’ empirical consensus connectome, 

constructed from the N=15 DOC patients with 63-direction diffusion MRI data (right). Middle line: median; box 

limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range; “+” symbol indicates outliers;  ***, p < 

0.001 
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Supplementary Figure 5. Regionally heterogeneous inhibitory neuromodulation following the regional 

transcriptomic distribution of major inhibitory interneuron types. The model informed by the empirical 

distribution of GABA-A receptors and with regionally uniform inhibitory gain scaling optimised to fit the 

Propofol data (shaded column), is compared against the same model but with additional regionally heterogeneous 

inhibitory gain scaling, according to the distribution of three major types of inhibitory interneurons obtained from 

the Allen Institute for Brain Science transcriptomic dataset: vasoactive intestinal peptide-positive (VIP+), 

parvalbumin-positive (PVALB+), and somatostatin-positive (SST+). Box-plots show the model fit to the propofol 

data for n=100 simulations, (middle line: median; box limits, upper and lower quartiles; whiskers, 1.5x inter-

quartile range; “+” symbol indicates outliers). Middle line: median; box limits, upper and lower quartiles; 

whiskers, 1.5x inter-quartile range; “+” symbol indicates outliers;  ,* p < 0.05; ***, p < 0.001; n.s., not significant 

(p > 0.05). 
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Supplementary Note 1: Jacobian spectral analysis 

As the dynamic mean field model we employ is nonlinear, the Jacobian is not constant but 

changes at every point in time. However, we adopted a recently developed method (Barter et 

al., 2021) to reconstruct the Jacobian of a dynamical system from time-series covariance, when 

there is information about the underlying network structure connecting the system’s variables 

– which is precisely our case, since we have information about the anatomical connectivity 

between brain regions. The Jacobian J is related to Γ, the stationary covariance matrix of the 

system, and D, the covariance matrix of the fluctuations (i.e., the noise injected at each time-

step), by the following relation: 

JΓ+ΓJT=−2D 

(1) 

We obtained Γ numerically from simulated firing rate time-series, and D analytically from the 

system’s parameters and differential equations. Since noise is only injected in the system via 

white noise of amplitude 𝜎 added to 𝑆𝑛
(𝐸)

and 𝑆𝑛
(𝐼)

, it is easy to compute D, the fluctuations 

covariance induced in 𝑟𝑛
(𝐸)

, using standard uncertainty propagation techniques. Since 𝐼𝑛
(𝐸)

is a 

linear combination of 𝑆𝑛
(𝐸)

, 𝑆𝑛
(𝐼)

, its covariance can be calculated exactly with the usual 

formulae for Gaussian variables. Since 𝑟𝑛
(𝐸)

  is a non-linear function of 𝐼𝑛
(𝐸)

, we perform a first-

order Taylor approximation, evaluate the derivative of 𝑟𝑛
(𝐸)

 = F(𝐼𝑛
(𝐸)

) at the value of the 

stationary mean of 𝐼𝑛
(𝐸)

, and compute the induced covariance in 𝑟𝑛
(𝐸)

   using the same Gaussian 

formulae. With D and Γ in hand, we can then use the method of Barter et al (2021) and 

information about the connections between regions (encoded in the connectome) to reconstruct 

the Jacobian and subsequently obtain its eigenvalues. 

To summarise, we generated time-series of regional firing rates using the models with either 

the original healthy connectome, the DOC patients’ consensus connectome, or the rewired 

connectomes (random and lattice). For each of these four cases, we then used the generated 

regional time-series to obtain a covariance matrix, and we used this covariance matrix, together 

with the corresponding connectome and an estimate of the regional noise fluctuations, to 

reconstruct the system’s Jacobian according to the method of  Barter et al., (2021). We repeated 

this procedure n=20 times for each connectome. We observed that the Jacobian eigenvalues 

were complex, including both positive and negative real parts. To quantify the similarity 
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between these different perturbations (DOC, random and lattice connectomes) to the model’s 

dynamics, we then measured the Spearman correlation between the real parts of the eigenvalues 

of the reconstructed Jacobians, resulting in an eigenvalue correlation matrix for each of the 20 

repetitions . On average across repetitions, the real part of the eigenvalues of the reconstructed 

Jacobians from the healthy connectome shows the least similarity with the eigenvalues 

obtained from perturbed connectomes (DOC, random and lattice), which are more highly 

correlated with each other (Supplementary Figure 6). 

 

 

 

Supplementary Figure 6. Spectral analysis of reconstructed Jacobian for different connectomes. Left: 

example of the real part of the eigenvalues of the reconstructed Jacobian, for each connectome. Right: average 

correlation between the real parts of the eigenvalues from each pair of n=20 Jacobians reconstructed from each 

connectome. 

 

  



9 
 

 

Supplementary Tables 
 

Supplementary Table 1. Statistical testing for the effects of local inhibitory GABA 

modulation, using permutation-based between-subjects t-tests. Alternative models are 

described in the row headers. 

 
 

Mean 

(Empirical 

GABA) 

Std 

(Empirical 

GABA) 

Mean 

(alternative 

model) 

Std 

(alternative 

model) 

df t-stat p-

value 

EffSize 

Versus 

Empirical 

GABA 

optimised 

for Awake 

0.128 0.051 0.186 0.086 198 -5.850 <0.001 -0.824 

Versus 

Scrambled 

GABA 

0.128 0.051 0.150 0.060 198 -2.842 0.005 -0.400 

Versus 

Uniform 

GABA 

0.128 0.051 0.155 0.055 198 -3.569 <0.001 -0.503 

 

 

 

 

 

Supplementary Table 2. Statistical testing for the effects of connectome replacement, using 

permutation-based between-subjects t-tests. Alternative models are described in the row 

headers. 

 
 

Mean (Healthy 

Connectome) 

Std (Healthy 

Connectome) 

Mean 

(alternative 

model) 

Std 

(alternative 

model) 

df t-stat p-

value 

EffSize 

Versus DOC 

Connectome 

0.074 0.103 -0.095 0.019 198 16.107 0.000 2.269 

Versus 

Random 

Connectome 

0.074 0.103 -0.098 0.024 198 16.211 0.000 2.284 

Versus 

Lattice 

Connectome 

0.074 0.103 0.059 0.097 198 1.036 0.301 0.146 
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Supplementary Table 3. Generalisation of local GABA modulation results to DOC patients, 

using permutation-based between-subjects t-tests. Alternative models are described in the row 

headers. 

  
Mean 

(Empirical 

GABA) 

Std 

(Empirical 

GABA) 

Mean 

(alternative 

model) 

Std 

(alternative 

model) 

df t-stat p-

value 

EffSize 

Versus 

Empirical 

GABA 

optimised 

for Awake 

0.168 0.068 0.287 0.092 198 -10.43 <0.001 -1.470 

Versus 

Scrambled 

GABA 

0.168 0.068 0.158 0.066 198 1.029 0.305 0.145 

Versus 

Uniform 

GABA 

0.168 0.068 0.159 0.054 198 0.938 0.349 0.132 

 

 

 

 

 

Supplementary Table 4. Generalisation of connectome replacement results to anaesthetised 

volunteers, using permutation-based between-subjects t-tests. Alternative models are described 

in the row headers. 
 

 
Mean (Healthy 

Connectome) 

Std (Healthy 

Connectome) 

Mean 

(alternative 

model) 

Std 

(alternative 

model) 

df t-stat p-

value 

EffSize 

Versus DOC 

Connectome 0.017 0.060 -0.043 0.008 198 9.775 <0.001 1.377 

Versus 

Random 

Connectome 0.017 0.060 -0.038 0.009 198 8.975 <0.001 1.264 

Versus 

Lattice 

Connectome 0.017 0.060 0.049 0.042 198 -4.491 <0.001 -0.633 

 


