

Supplementary Material

1 Supplementary Figures

Figure S1. Expression of STAT5A and 5B is knocked down in adipose tissue and adipocytes of STAT5^{AKO} male mice. Related to Figure 1. Male STAT5^{AKO} (AKO) mice and their floxed (FL) littermate controls were euthanized at 2 – 3 months of age and tissues were immediately collected for protein or gene expression analyses. A) Immunoblot of proteins resolved from iWAT samples (n = 7 per genotype; 5 representative samples shown for each genotype). B) Quantification of band intensities from A (n = 7 per group). Band intensities were normalized to the loading control, ERK1/2, and are presented as fold change relative to FL mice. C) *Stat5a (top)* and *Stat5b (bottom)* gene expression measured by RT-qPCR for the indicated tissues (n = 5 – 8 mice per group). D) Mice were injected with 1.5mg/kg mGH or vehicle (V; 0.9% Saline-NaOH) for 30 minutes prior to euthanasia and tissue collection. *Cish* gene expression, measured by RT-qPCR, is shown (n = 5 – 6 mice per group). Significance was determined by *t*-test for AKO versus FL comparisons and is denoted as * p < 0.05, ** p < 0.01, *** p < 0.001, n.s., not significant. For D, a 2-way ANOVA was used to assess treatment/genotype groups for each tissue; ## denotes p < 0.01 for GH versus V comparisons.

Figure S2. Male STAT5^{AKO} mice have increased subcutaneous adiposity when fed chow diet. Related to Figure 2. Male STAT5^{AKO} (AKO) and floxed (FL) littermate control mice were weaned onto regular chow diet (13% kcal from fat). A) Representative images of inguinal and gonadal white adipose tissue depots (iWAT and gWAT) from five-month-old mice. B) Weights of white adipose tissue depots (iWAT, gWAT, retroperitoneal - rWAT, mesenteric - mWAT), brown adipose tissue (BAT), gastrocnemius skeletal muscle (Gastroc), and liver from 10-week-old mice (n = 11-13). C) Mice (n = 5-6 per group) were housed at different temperatures beginning at weaning (3 weeks of age). Body composition was measured at 9 weeks of age, adiposity was calculated as fat mass divided by total body weight for each animal. D) Representative images of H&E-stained inguinal and gonadal white adipose tissue depots (iWAT and gWAT) from five-month-old mice. Quantification of total mean adipocyte area (E) and fat cell size distribution (F) from H&E-stained images shown in D (n = 3 mice per genotype). Significance was determined by *t*-test and is denoted as ## p < 0.01 or #### p < 0.0001 for AKO versus FL comparisons.

Figure S3. Body composition data for mice at ambient and thermoneutral housing temperatures. Related to Figures 2 and S2. Female (top) and male (bottom) mice (n = 5 - 6 per group) were housed at the indicated temperatures beginning at weaning (3 weeks of age) and fed chow diet (13% kcal from fat). Body weight and body composition (fat mass and lean mass measured by NMR) were assessed at 9 weeks of age. Significance was determined using multiple *t*-tests with the Holm-Sidak method, and the adjusted p-value is denoted as * p < 0.05, ** p < 0.01, *** p < 0.001, or **** p < 0.0001 for AKO versus FL comparisons.

Supplementary Material

Figure S4. Serum glycerol and non-esterified fatty acids (NEFA) measurements from mice that were housed at room temperature (23°C) or thermoneutrality (28°C) and fasted for 4h or 18h. Related to Figure 5. Chow-fed female (A, B, E, F, I, and J) and male (C, D, G, H, K, and L) STAT5^{AKO} (AKO) and floxed (FL) littermate control mice were housed at 23°C (room temp) or 28°C (thermoneutrality) upon weaning at 3 weeks of age (WOA). At 9 WOA, blood was collected via cardiac puncture following a 4h or 18h fast, and serum glycerol and NEFA levels were measured. Student's *t*-tests were used to test for significance between means (n = 4 - 6 mice per genotype). None of the comparisons reached significance (p < 0.05).

Females

Figure S5. Normalization of *ex vivo* assay data by adipocyte number/explant. Related to Figure 5. Ex vivo lipolysis (C and D) and de novo lipogenesis (E and F) assays were performed using gWAT and iWAT explants, respectively, from chow-fed 5-month-old female (top) and male (bottom) STAT5^{AKO} (AKO) and floxed (FL) littermate mice following a 4h fast. A and B) Using approximate adjocvtes diameters, which were calculated from the cross-sectional area data used to generate Figures 2 and S2 D-FG, an estimated number of adipocytes per mg tissue was calculated for each AT depot as described in Section 3.3 of the Results. C and D) Glycerol release from gWAT explants (~20mg) into media following a 2 h-incubation period was measured under both basal and isoproterenol (ISO)stimulated (10µM) conditions. E and F) Incorporation of ¹⁴C-glucose into total triglycerides was measured by incubating iWAT explants (~50mg) with 4μ Ci/ml of [¹⁴C]-U-glucose for 4.5 hours. The triglyceride (neutral lipid) fraction was purified and [¹⁴C] counts were measured by scintillation counting. All ex vivo assay data were normalized by an estimate of adipocyte number per explant. A and B) *t*-tests were used to test for significance between means (n = 3 - 4 mice per genotype). C and D) Two-way ANOVA with Tukey's post-hoc multiple comparison analysis was used to test for significance between genotypes and treatments (n = 3 - 6 mice per group). Significance is denoted as ** p < 0.01, *** p < 0.001, or **** p < 0.0001 for basal versus ISO or insulin comparisons and # p < 0.00010.05, ## p < 0.01, ### p < 0.001, or #### p < 0.0001 for AKO versus FL comparisons.

Figure S6. Glycerol release during ex vivo lipolysis assays performed on AT explants from female mice. Related to Figure 5. Chow-fed male STAT5^{AKO} (AKO) and floxed (FL) littermate control mice were housed at 23°C (room temp; RT) or 28°C (thermoneutrality; TN) upon weaning at 3 weeks of age (WOA). At 9 WOA, mice were euthanized following a 4h or 18h fast, and ex vivo lipolysis assays were performed on iWAT and gWAT explants. Conditioned media were collected following incubation of the AT explants (~20mg) with water vehicle (basal), isoproterenol (ISO; 1μ M for A – D and 200nM for E - F), or CL 316,243 (CL; 200nM for E and F) for 2h. The explants were rinsed in phosphate buffer saline and the transferred to fresh medium containing the vehicle, ISO, or CL treatments as before plus 10nM insulin, and then conditioned media were collected following a 1h incubation period. All glycerol levels were normalized by tissue weight and incubation time. A threeway, repeated measures ANOVA with Bonferroni's post-hoc multiple comparison analysis was used to test for significance between genotypes and treatments with insulin treatment as the repeated measure (n = 2 - 6 mice per group). Significance is denoted as * p < 0.05, ** p < 0.01, *** p < 0.001, or **** p < 0.0001 for basal versus ISO or CL comparisons within the same genotype and insulin condition; # p < 0.05, ## p < 0.01, ### p < 0.001, or #### p < 0.0001 for minus versus plus insulin comparison of same genotype and treatment condition; and p < 0.05 or p < 0.0001 for AKO versus FL comparisons.

iWAT

Figure S7. Glycerol release during ex vivo lipolysis assays performed on AT explants from male mice. Related to Figure 5. Chow-fed male STAT5^{AKO} (AKO) and floxed (FL) littermate control mice were housed at 23°C (room temp; RT) or 28°C (thermoneutrality; TN) upon weaning at 3 weeks of age (WOA). At 9 WOA, mice were euthanized following a 4h or 18h fast, and ex vivo lipolysis assays were performed on iWAT and gWAT explants. Conditioned media were collected following incubation of the AT explants (~20mg) with water vehicle (basal), isoproterenol (ISO; 1μ M for A – D and 200nM for E - F), or CL 316,243 (CL; 200nM for E and F) for 2h. The explants were rinsed in phosphate buffer saline and the transferred to fresh medium containing the vehicle, ISO, or CL treatments as before plus 10nM insulin, and then conditioned media were collected following a 1h incubation period. All glycerol levels were normalized by tissue weight and incubation time. A threeway, repeated measures ANOVA (A - E) or a mixed-effect model (F) with Bonferroni's post-hoc multiple comparison analysis was used to test for significance between genotypes and treatments with insulin treatment as the repeated measure (n = 5 - 6 mice per group). Significance is denoted as * p < 0.05, ** p < 0.01, *** p < 0.001, or **** p < 0.0001 for basal versus ISO or CL comparisons within the same genotype and insulin condition; # p < 0.05, # # p < 0.01, # # # p < 0.001, or # # # # p < 0.001for minus versus plus insulin comparison of same genotype and treatment condition; and p < 0.05 for AKO versus FL comparisons.

Figure S8. Body weight and fat-free mass of female (F) and male (M) floxed control (FL) and STAT5^{AKO} (AKO) mice measured in metabolic chambers. Related to Figure 6. Body weight (A) and fat-free mass (B) were measured within 24 hours prior to placing the mice in the metabolic chambers. Significance was determined using multiple *t*-tests with the Holm-Sidak method, and none of the FL versus AKO comparisons were significantly different.

Figure S9. Principal Components Analysis (PCA) scatterplot of RNA-sequencing gene expression data from male (M) and female (F) floxed (WT) and STAT5 adipocyte knockout (KO) mice. Related to Figure 7. PCA was performed on voom-adjusted log2 cpm data, after filtering out low expressed genes in limma. Each point represents data from an individual mouse. Floxed females - dark blue, KO females - light blue, floxed males – dark pink, and KO males – light pink.

2 Supplementary Tables

Gene	Primer 1 (5' – 3')	Primer 2 (5' – 3')
Cgi-58/Abhd5	CCCACATCTACATCACACCTT	GAGAGAACATCAGCGTCCATA
Adrb3	CCACCGCTCAACAGGTTT	CCAGAAGTCCTGCAAAAACG
Cish	GCTCCTTTCTCCTTCCATCC	CCGCCCAATTTGCTCCA
Atgl/Pnpla2	GAGCTCATCCAGGCCAAT	CTCATAAAGTGGCAAGTTGTCTG
Stat5a	**	**
Stat5b	GTTCAACATCAGCAGCAACC	TCAATACTTCCATCACGCCATC
Nono	CATCATCAGCATCACCACCA	TCTTCAGGTCAATAGTCAAGCC
Cyclophilin a (Ppia)	TCTTCAGGTCAATAGTCAAGCC	TGCAAACAGCTCGAAGGAGACGC

Table S1. Primer sequences for qPCR.

** Qiagen RT² qPCR Primer Assay for Mouse Stat5a – Cat No. PPM04026C-200

REAGENT or RESOURCE	SOURCE	IDENTIFIER		
Antibodies		·		
STAT5A	Santa Cruz Biotechnology	Cat#: sc-1081 (discontinued); RRID: AB_632448		
	Abcam	Cat#: ab32043; RRID: AB_778107		
STAT5B	R&D	Cat#: AF1584; RRID: AB_2197076		
Adiponectin (ADPN)	Thermo Fisher Scientific	Cat#: PA1-054; RRID: AB_325789		
ATGL (PNPLA2)	Cell Signaling Technology	Cat#: 2439: RRID: AB_2167953		
CGI-58 (ABHD5)	Santa Cruz Biotechnology	Cat#: sc-376931; RRID: AB_2868519		
ADRB3	Santa Cruz Biotechnology	Cat#: sc-515763; RRID: AB_2868520		
pERK1/2 (pTEpY)	Promega	Cat#: V8031; RRID: AB_430866		
ERK1/2	Santa Cruz Biotechnology	Cat#: sc-93 (discontinued); RRID: 631453		
Anti-rabbit HRP-conjugated	Jackson ImmunoResearch	Cat#: 111-035-003		
Anti-mouse HRP-conjugated	Jackson ImmunoResearch	Cat#: 115-035-071		
Chemicals Peptide and Red	combinant Proteins			
Acrylamide ProtoGel (30%)	National Diagnostics	FC-890		
	Worthington Picchomical			
Collagenase, Type I		10700		
(-)-Isoproterenol (+)-bitartrate	Sigma-Aldrich	12760		
Murine growth hormone	National Hormone and Peptide program	AFP904		
Insulin from bovine pancreas (for lipogenesis assays)	Sigma-Aldrich	15500		
Formalin	Thermo Fisher Scientific	5725		
TRIzol Reagent	Thermo Fisher Scientific	15596018		
Critical Commercial Assays/	Kits			
SuperSignal West Pico PLUS				
Chemiluminescent Substrate	Thermo Fisher Scientific	34578		
Glycerol Assay Kit		KG0100		
Glycerol Standard	Sigma-Aldrich	G7793		
	BioVision	K612-100		
NEFA Assay Kit				
	Wako diagnostics	99934691, 99534791, 99134891,		
		99335191, 27676491		
Triglyceride Assay Kit	Sigma-Aldrich	TR0100		
Mouse Insulin ELISA	Crystal Chem	90080		
Mouse IGE-1 ELISA	Crystal Chem	80574		
	Milliporo Sigma			
NOUSE GITELISA	Millipore Sigma	EZINIGI I-45K		
RNase H Plus), Rox Plus	Takara Bio USA	RR42LR		
Quant-Seq 3' mRNA-Seq				
Library Prep Kit FWD for	Lexogen	015.2X96		
Illumina				
Deposited Data				
Raw and analyzed RNA-seq				
data	This paper	GEO: GSE113939		
Experimental Models: Organisms/Strains				
B6.FVB-Tg(Adiopq-		028020		
cre)1Evdr/J	The Jackson Laboratory	020020		
STAT5 ^{fl/fl}	(Cui et al., 2004)	N/A		
STAT5 ^{AKO}	This paper	N/A		

Table S2. Key resources table.

Oligonucleotides		
Primers for qPCR	Table S1	N/A
Software and Algorithms		
Graph Pad Prism 6 & 8.4	GraphPad Software	N/A
JMP v. 14	SAS Institute Inc.	
Image Studio Lite Ver 5.2	LI-COR Biosciences	N/A
NanoZoomer Digital Pathology; NDP.view 2.7.52	Hamamatsu	N/A
QuantSeq pipeline V1.8.8 on Bluebee platform	https://www.lexogen.com/store/quantseq- data-analysis-bluebee-platform/	N/A
Other		
Chow Diet	LabDiet®	5001 (standard) and 5015 (breeder)
Low Fat Diet (LFD), no sucrose	Research Diets	D12450K
High Fat Diet (HFD)	Research Diets	D12492
IACUC Protocol Numbers	n/a	P863, P977, P985
Glucometer	Bayer	Breeze 2
Sarstedt Capillary blood collection tube	Fisher Scientific	NC9059691
Microplate spectrophotometer	Molecular Devices	VersaMax
NMR Machine	Bruker	Minispec LF110
7900HT qPCR Machine	Applied Biosystems	N/A
Metabolic Chambers	Sable Systems International	Promethion
NextSeq 500 Sequencer	Illumina	N/A

Table S3. Differentially expressed genes in male and female STAT5^{AKO} mice from RNA sequencing analysis.

Table S3.xlsx

Table S4. Differentially regulated KEGG pathways identified by gene-set enrichment analysis (GSEA).

Table S4.xlsx