
Supplementary Materials for
Predicting RNA splicing from DNA sequence using Pangolin

Supplementary Notes

Supplementary Note 1: Binary versus continuous prediction output

SpliceAI outputs the probability that a dinucleotide is a splice site. We sought to test whether
directly predicting splice site usage can improve prediction of splice site usage as compared to using
the probability that a dinucleotide is a splice site as usage. To do this, we first placed sites into bins
of usage [0, 0.1], (0.1, 0.5], (0.5, 0.9], and (0.9, 1]. For sites in adjacent bins (for example, sites with
usage between (0.1, 0.5] or between (0.5, 0.9]), we used Pangolin’s probability and usage outputs to
predict which of the two bins the sites belonged to (Fig. S13). Directly predicting splice site usage
led to an improvement in AUPRC of 0.018 to 0.050 (median: 0.025). Violin plots show di�erences
in the distributions of the probability and usage predictions for each bin (Fig. S13). Depending on
the application, we used either Pangolin’s probability or usage predictions (Methods).

Supplementary Note 2: Identifying a test set with minimal similarity to the
training data

We constructed Pangolin’s training set (Methods) such that all genes with annotated orthologs and
paralogs from rat, mouse, and rhesus macaque in the test-set genes were removed. Nevertheless,
genes with some homology to test-set genes may have been included in the training set (e.g. due
to being unannotated, distant paralogs). To evaluate Pangolin on a subset of genes with stricter
filtering, we used Lifto�, a genome annotation lift-over tool, to map human genes to the mouse, rat,
and rhesus macaque genomes [31]. Lifto� uses the Minimap2 aligner to align gene sequences to a
target genome, finding the alignment of exons and coding DNA sequence (CDS) that maximizes
sequence identity while preserving gene structure (referred to as alignment coverage). Furthermore,
Lifto� is able to identify sequence homologous to a gene. To remove test-set genes with similarity
to training-set genes, we ran Lifto� using two sets of cuto�s for sequence identity (parameter -s)
and alignment coverage (parameter -a), and removed genes that mapped to mouse, rat, and rhesus
macaque genomes with identity/coverage greater than these cuto�s. 3,037 genes (29%) of the genes
from our original test set passed a cuto� of 0.4 for both alignment coverage and sequence, while
1,585 genes (15%) passed a cuto� of 0.2.

For Pangolin and SpliceAI, we computed top-1 accuracies and AUPRC on these subsets (Table
S3—mid sim and low sim correspond to the 0.4 and 0.2 cuto� respectively). The improvements
of Pangolin over SpliceAI were similar for the original, mid sim, and low sim test sets: 5.2%,
4.1%, and 5.0% increases in top-1 accuracy, and 10.6%, 10.2%, and 11.5% increases in AUPRC
respectively. These results indicate that Pangolin’s improvements do not come from “memorization”
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of homologous sequences from the training data.

Supplementary Note 3: Training Pangolin using quantitative splicing data from
multiple species improve prediction

To identify the features of Pangolin responsible for its increased performance over SpliceAI, we
trained four additional models:

1. A model trained on human data only, with prediction on merged tissues with no usage
labels—only binary labels of spliced or unspliced. We merged tissues by taking the union of
splice sites across tissues. This model is most similar to that of SpliceAI, which was trained
to predict binary labels in a tissue-agnostic manner.

2. A model trained on data from all species, with prediction on merged tissues with no usage
labels.

3. A model trained on data from all species, with prediction on merged tissues and with usage
labels. We trained this model to predict both the existence and usage of splice sites. We
merged per-tissue usage labels by taking the average across tissues for which usage labels were
available.

4. A model trained on data from all species, with separate predictions for each tissue and with
usage labels. This model is equivalent to the full Pangolin model, except we train it without
fine-tuning on each individual tissue to allow for comparisons to models 1-3.

For each model, we trained until the validation loss stopped decreasing, which took 14 epochs for
model 1 and 6 epochs for the other models, following the training procedure described in Methods
except without the tissue-specific fine-tuning step. We repeated the training procedure twice, and
found that there was minimal variance between the replicates (Table S4). Furthermore, as expected,
we found that model 1 produces similar results as SpliceAI (average AUPRC of 0.764 for model
1, AUPRC of 0.765 for SpliceAI). Training on data from multiple species improved predictions
(AUPRC increase of 2.6%, model 2 over model 1), as did training with usage labels (AUPRC increase
of 2.4%, model 3 over model 2) and having separate output heads for each tissue (AURPC increase
of 1.8%, model 4 over model 3). These results demonstrate that each of the model additions we
made to Pangolin (compared to SpliceAI’s models) led to consistent improvements in predictive
performance.

Supplementary Note 4: Pangolin versus MTSplice on predicting tissue-type-
specific splicing

Cheng et al. [8] developed a deep learning model, MTSplice, for predicting tissue-specific e�ects of
variants on splicing. MTSplice consists of MMSplice [6] and TSplice, a deep learning model that
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considers 100 bases into the exon and 300 bases into the neighboring introns to predict tissue-specific
percent spliced-in (PSI). Cheng et al. [8] evaluated TSplice by computing—for each tissue—the
Spearman’s r correlation coe�cient between the observed and predicted log odds ratios of tissue
specific PSI for test set exons for which PSI deviated from the tissue-averaged PSI by at least
0.2 in at least one tissue and for which the corresponding gene is expressed in at least 10 tissues
(out of 51 total tissues). We evaluated Pangolin in an analogous fashion, but measured Spearman
correlation for observed and predicted di�erences in splice site usage rather than di�erences in
PSI (Methods). Due to di�erences in the phenotypes being predicted; the number of tissues
evaluated (4 for Pangolin, 51 for MTSplice); the datasets used for evaluation; and other di�erences
in implementation, Pangolin’s correlations are not directly comparable to those of TSplice.

Supplementary Note 5: Identifying motifs involved in tissue-specific splicing

To characterize the sequence features that Pangolin has learned to predict tissue-specific splicing,
we set to identify motifs that distinguish between predictions for tissue-specific and non-specific
splice sites. First, using DeepLIFT [33], a neural network feature-attribution method, we assigned
importance scores to each base in the sequences surrounding tissue-specific splice sites (sequences
±500 bp) as predicted using Pangolin. In particular, we ran DeepLIFT on 663 brain- and 1,738
testis-specific splice sites that Pangolin correctly predicted. We considered a tissue-specific site to be
correctly predicted if the measured and predicted di�erences in usage from the mean usage across
tissues were both >0.05. Since there were many fewer correctly predicted heart- and liver-specific
splice sites (60 and 46 splice sites respectively), we did not conduct analyses for these tissues. To
compute importance scores, DeepLIFT compares the target input against a reference or baseline
input, which we set as a vector of all zeros (corresponding to a sequence of all N’s, or unknown bases).
Additionally, for both brain and testis, we ran DeepLIFT on five random sets of non-tissue-specific
splice sites that had similar distributions in their usage levels as the corresponding tissue-specific
splice sites—these splice sites served as controls in our later enrichment analyses.

Next, we identified clusters of high-importance bases by calling peaks using MACS [34], using
an absolute importance score cuto� of 0.001, minimum peak size of 5, and maximum allowed gap
size of 10 as input parameters. Importantly, although MACS is generally used for finding peaks in
genomics data (e.g. ChIP-seq, or ATAC-seq), visual inspection of the peaks identified using this
approach on DeepLIFT scores appeared to be consistent with high-scoring regions that we would
annotate by hand. After extending each peak by 5 bases on each side, we conducted a di�erential
enrichment analysis on the sequences underlying the peaks to identify motifs enriched in brain-
and testis-specific splice sites relative to the control splice sites. To do this, we used the Multiple
Em for Motif Elicitation (MEME) Suite [35]. Specifically, with the MEME tool in its di�erential
enrichment mode, and allowing for any number of motif repetitions to occur in each input sequence,
we searched for motif enrichment in tissue-specific sequences against each of the five sets of control
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sequences. In addition, for five pairs of control sequence sets, we searched for motif enrichment in
control sequences against control sequences.

At a MEME E-value cuto� of 0.01, we found zero significant motifs from comparisons of control
against control sequences, but five di�erentially enriched motifs in brain-specific splice sites and six
in testis-specific splice sites. Next, we characterized the top five di�erentially enriched motifs from
each tissue. We first noticed that the motifs for both brain and testis look roughly similar (Fig.
S5). To analyze this further, we calculated pairwise Pearson correlations between the motifs for a
given tissue (within-group similarity) and correlations between brain and testis motifs (across-group
similarity), and found that they were moderate but not substantially di�erent from each other (r =
0.42 for the brain motifs, 0.53 for the testis motifs, and 0.48 between the brain and testis motifs).
This indicates that the brain and testis motifs may share common features.

To directly test for di�erences between motifs for brain- and testis specific splice sites, we used
MEME to identify di�erentially enriched motifs in brain sequences relative to testis sequences and
vice versa. We conducted this analysis both for brain- and testis- specific sites, and for sets of
control sites (comparing brain control sites against testis control sites and vice versa). Two motifs
were significantly enriched—one in testis-specific sites relative to brain-specific sites, and one in a set
of testis control sites relative to a set of brain control sites. We conclude that it is unclear whether
Pangolin has learned sequence features that distinguish testis-specific sites from brain-specific sites,
or broader di�erences in splicing between the two tissues.

Next, we looked at the positional distributions of the top five di�erentially enriched motifs from
each tissue. Using FIMO, a tool from the MEME Suite, we scanned the motif across 1,000 bases
surrounding each tissue-splice site, and plotted histograms of the locations of the significant motif
hits (Fig. S5). While significant hits are unevenly distributed across the entire range of positions,
they are generally low in number near the splice site. For many pairs of motifs, the distributions
are roughly similar, indicating that these motifs capture similar sequence features (Fig. S5).

Finally, we tested more stringent cuto�s for identifying motifs. First, we identified sharper peaks
by running MACS using an absolute importance score cuto� of 0.005 and maximum allowed gap
size of 2. Second, instead of using MACS, we identified peaks using a sliding-window approach,
where we computed the average importance scores over four bp windows, kept windows with average
scores Ø0.005, and merged overlapping windows—we used the resulting windows as peaks. For both
approaches, we searched for di�erential enrichment of motifs over a tighter motif size range than
before (8-15 bp using STREME from the MEME Suite). In comparing testis-specific sites to sets of
control sites, we found one motif at an E-value cuto� of 0.05 using each approach (Fig. S5). We
found no di�erentially enriched motifs for the control against control or the brain-specific against
control comparisons.

4



Supplementary Note 6: Mutations away from G at the -1 position of the 5’ splice
site cause strong decreases in 5’ splice site usage

The G is complementary with U1 snRNA at the -1 position. Interestingly, the e�ect of mutating away
from G does not reciprocate mutating to a G. We hypothesize that mutations on well spliced introns
in general have more room to decrease their splicing e�ciency than increase it. This observation
also holds for the -3 position at the 3’ splice site.

Supplementary Note 7: Predicting causal variants that explain inter-species
divergence in splice site usage

To predict causal sequence di�erences underlying inter-species divergence in splicing, we used
Pangolin to predict the e�ects of human-chimpanzee sequence di�erences near splice sites with large
di�erences in usage between human and chimpanzee. We calculated a false sign rate (FSR) for
di�erent Pangolin score thresholds, which corresponds to the fraction of sites for which the predicted
di�erences in splice site usage are of opposite directions from those of the observed di�erences. We
found that at a fixed FSR, Pangolin was consistently able to predict the correct directions of e�ects
(and thus the likely causal variants) for more splice sites in comparison to SpliceAI (Fig. S14).

As validation, we sought to estimate the splice site usage of human-chimpanzee divergent sites in
rhesus macaque. We reasoned that if the mutation predicted to explain human-chimp divergence in
splicing occurred in the human (or chimp) lineage, then splice site usage in rhesus macaque would
be closer to that in chimp (or human). To test this, we first obtained 46 di�erentially used splice
sites (5% FSR, cuto� = 0.14) for which chimpanzee, human, and rhesus macaque sequences showed
at most 10% divergence in regions near the splice site (20 di�erences within 100 bp upstream and
downstream of the splice site, pairwise comparisons between species). Out of these, we identified 17
sites where a single mutation su�ciently explains the predicted human-chimp di�erence in usage
(Methods); for 16 of these sites, the rhesus macaque sequence at the location of the causal variant
matched either the human or chimpanzee sequence. We found that for 14 of these 16 splice sites
(88%), the predicted di�erences in splice site usage between human and chimpanzee were consistent
with splice site usage measured in rhesus macaque. We considered a prediction to be consistent if
the mutation occurred in the human lineage and the splice site’s usage in rhesus is more similar to
that in chimp than that in human, or the mutation occurred in the chimp lineage and the splice
site’s usage in rhesus is more similar to that in human than that in chimp.
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Distance # variants % SDV Pangolin,
AUPRC

SpliceAI,
AUPRC

0-9 6141 8.8 75 68
10-19 7559 2.9 34 25
20-29 7052 2.2 29 18
30-39 4953 2.0 31 18
40-53 2028 1.8 25 13

Fig. S1. Precision and recall at di�erent distances from a splice site. The precision-recall
curves show the precision and recall for predicting splice-disrupting variants in the MFASS dataset
when restricted to variants in a given distance bin from a splice site (0-9, 10-19, 20-29, 30-39, and
40-53 bases from a splice site). For each distance bin, the table lists the total number of variants, the
percent that are splice-disrupting variants (SDV), and AUPRC for Pangolin and SpliceAI—Pangolin
outperforms SpliceAI for all distance bins.

6



r = 0.51 
N = 4,774

r = 0.61 
N = 4,440

Method Pearson r, in vitro Pearson r, in vivo

Pangolin 0.51 0.61

SpliceAI 0.40 0.50

MMSplice 0.57 0.37

Fig. S2. Pangolin scores correlate with changes in splicing e�ciency. Scatter plots showing
the correspondence between the predicted e�ect of a variant (x-axis) and the measured change
in splicing e�ciency (y-axis) for variants tested in vitro (top left) and in vivo (top right) using
MaPSy. The table lists the Pearson correlations for Pangolin, SpliceAI, and MMSplice for both
assays—MMSplice achieves the highest correlation for the in vitro assay, while Pangolin achieves the
highest correlation for the in vivo assay. Note that the correlations for MMSplice may be inflated
relative to that of Pangolin and SpliceAI because only SNPs near the splice sites were predictable
using MMSplice.
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Fig. S3. Prediction of epistatic e�ects on RNA splicing as a combination of single SNP

e�ects. Scatter plot showing measured (y-axis) versus predicted (x-axis) e�ects of combinations of
genetic variants on RNA splicing. Measured e�ects of combinations of variants were obtained from
Baeza-Centurion et al. [18]. Predictions were made using a linear model of the single variant PSIs
(see Methods).
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Testes (r=0.44)

Liver (r=0.50)Heart (r=0.35)

Brain (r=0.42)

Fig. S4. Prediction of tissue-specific splice site usage using Pangolin. Scatter plots
showing the mean empirical di�erence between splice site usage in the specified tissue and mean
usage across all tissues (y-axis) versus the predicted di�erence as determined using Pangolin (x-axis).
The prediction accuracies, although low, outperform or are comparable to those of MTSplice [8].
Our results suggest that predicting tissue-specific splicing remains challenging.
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Fig. S5. Motifs characterizing tissue-specific splice sites. Tables display E-values and
sequence logos (MEME) for the top motifs discovered for testis- (top left) and brain-specific splice
sites (top right). For testis, also shown are the two motifs identified using alternative sets of
peak calls (testis MACS strict and testis sliding window). The bottom plot shows the positional
distributions of significant hits from scanning the testis 3 and testis 5 motifs against the sequences
surrounding testis-specific splice sites. Light blue bars highlight some of the peaks that are found in
both distributions.
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Fig. S6. False sign rates of predicted causal variants underlying inter-species divergence

in splice site usage. False sign rates (FSR) at di�erent cuto�s for predicted scores determined
using Pangolin, calculated across 1,560 splice sites with large di�erences in usage (Ø 0.5) between
human and chimpanzee. We observed a FSR of about 5% at a cuto� of 0.14.
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Fig. S7. Survival function plots of tested BRCA1 variants. Survival function plots of
BRCA1 variants in di�erent annotation bins as a function of predicted splicing e�ects. The variants
are separated by their classification as loss-of-function (LOF, blue), intermediate (INT, orange), or
functional (FUNC, green). We observe a huge enrichment of LOF variants among variants with
large predicted splicing e�ects for several annotation classes, with splice regions the most enriched
and missense the least enriched. Functional data are from Findlay et al. [22].
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AUPRC: 
All: 0.60 
All exc. mis/nonsense: 0.95 
All exc. mis/nonsense/canonical: 0.88 
Canonical splice: 0.99 
Intronic: 0.56 
Missense: 0.31 
Nonsense: 1 
Splice region: 0.93 
Synonymous: 0.41

Fig. S8. Precision and recall for BRCA1 predictions and fraction LOF at di�erent

cuto�s. Left panel: Precision-recall curves, one for the variants in each annotation bin, representing
the precision and recall for using Pangolin predictions to distinguish loss-of-function (LOF) variants
from functional variants. Right Panel: Line plots showing the fraction of variants classified as
LOF as a function of Pangolin’s predicted e�ects on splicing. Despite a poor AUPRC for missense
variants, Pangolin maintains a roughly 60% and 80% precision for variants with predicted e�ects on
splicing greater than 0.4 and 0.8 respectively.
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Fig. S9. Predicted e�ects of variants in BRCA1. Predicted splicing e�ects of in silico

mutations in or flanking 13 BRCA1 exons from Findlay et al. [22]. Mutations identified to be LOF
or to have intermediate phenotypes, as well as mutations that are missense or nonsense, or a�ect
the canonical splice sites are annotated.
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Benign vs pathogenic, SNVs (table row 1) Likely benign vs likely pathogenic, SNVs (table row 2)

Benign vs pathogenic, simple indels (table row 3) Likely benign vs likely pathogenic, simple indels (table row 4)

+donor/acceptor -donor/acceptor

AUPRC, 
Pangolin 

AUPRC, 
SpliceAI

N (likely) 
pathogenic

N (likely) 
benign

AUPRC, 
Pangolin 

AUPRC, 
SpliceAI

N (likely) 
pathogenic

N (likely) 
benign

SNVs
Benign vs pathogenic 0.99 0.99 6,050 11,316 0.90 0.87 842 11,256

Likely benign vs likely pathogenic 0.98 0.98 5,455 28,961 0.83 0.80 597 28,864

Simple 
indels

Benign vs pathogenic 0.90 0.89 5,153 1,182 0.88 0.84 4,378 1,125

Likely benign vs likely pathogenic 0.80 0.78 1,910 1,693 0.57 0.52 1,218 1,608

Fig. S10. Precision and recall for pathogenic versus benign variant classification

using Pangolin versus SpliceAI. Top: Precision-recall curves for distinguishing ClinVar variants
annotated as pathogenic versus benign (left) or likely pathogenic versus likely benign (right) for
SNVs (top) and simple indels (bottom, indels where the reference or alternative allele is only a single
base) using Pangolin and SpliceAI, including (+donor/acceptor) or excluding (-donor/acceptor)
variants a�ecting annotated splice sites. Bottom: Table displaying AUPRC for each precision-recall
curve, and the number of variants in each of the classes represented in the curves.
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Fig. S11. Predicted e�ects of variants in CHEK2 . Many variants of unknown significance,
as labeled by ClinVar, are predicted to impact splicing and therefore are likely pathogenic.
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Fig. S12. Schematic for identifying single causal variants. The schematic shows a hy-
pothetical example where three SNVs (Mut1-3) cause in a large increase in the predicted usage
of a splice site; specifically, Mut2 is predicted to be the only causal SNV. Ch is the chimp
sequence ±5000 bp of the splice site, ChMut2 is Ch with Mut2, and ChMutAll is Ch with Mut1-
3. Hu is the human sequence ±5000 bp of the splice site but with the region near the splice
site (±100 bp) replaced by the chimp sequence. HuMut2 and HuMutAll are Hu with Mut2
and Mut1-3 respectively. We say that Mut2 is the single causal mutation for this splice site if
|scoreCh ≠ scoreHu| < ”, |scoreChMutAll ≠ scoreHuMutAll| < ”, |scoreChMutX ≠ scoreHuMutAll| < ”, and
|scoreHuMutX ≠ scoreHuMutAll| < ” for X = 2 but not for X = 1 or X = 3, where we define ” as
min (0.1, |scoreChMutAll ≠ scoreHuMutAll|/ 5).
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[0,0.1] vs 
(0.1,0.5]

(0.1,0.5] vs 
(0.5,0.9]

(0.5,0.9] vs 
(0.9,1]

AUPRC, probability vs usage predictions

Fig. S13. Comparison of training on binary classification of splice sites versus continuous

usage estimates. Heatmap shows AUPRC for classifying splice sites in di�erent usage bins using
Pangolin’s predictions of the sites’ usage and of P(Spliced), the probability that the sites are spliced.
As expected, directly training to predict usage improved performance as compared to using the
probability that a dinucleotide is a splice site. Violin plots show the distribution of Pangolin’s scores
(probability and usage predictions) for sites estimated to be used at di�erent ratios empirically in
heart, liver, brain, and testis.
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Fig. S14. Comparison between Pangolin and SpliceAI for predicting inter-species

variation in splice site usage. Fraction of sites with large di�erences in splicing (|�usage| Ø 0.5)
between chimp and human (1,560 total sites) for which predictions were made at di�erent false sign
rates.
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Top-1 AUPRC

Pangolin, 
mid sim

SpliceAI, 
mid sim

Pangolin, 
low sim

SpliceAI, 
low sim

Pangolin, 
mid sim

SpliceAI, 
mid sim

Pangolin, 
low sim

SpliceAI, 
low sim

Heart 82 80 80 78 87 80 85 78

Liver 76 73 74 70 82 72 79 68

Brain 79 77 75 73 85 78 81 73

Testis 75 70 73 67 82 75 79 72

Table S3. Evaluations on subsets of test genes. Table displaying top-1 scores and AUPRC for
Pangolin and SpliceAI on the test chromosomes after filtering genes that show moderate (or higher)
homology (mid sim) and genes that show weak (or higher) homology (low sim) to rat, mouse, and
rhesus macaque genes in the training set.
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Human, merged, 
-usage

Multi, merged, 
-usage Multi, merged Multi

Heart (1) 0.808 0.832 0.855 0.871

Heart (2) 0.807 0.831 0.856 0.871

Liver (1) 0.706 0.733 0.773 0.812

Liver (2) 0.703 0.731 0.774 0.812

Brain (1) 0.774 0.804 0.828 0.845

Brain (2) 0.774 0.805 0.827 0.845

Testis (1) 0.77 0.791 0.796 0.795

Testis (2) 0.77 0.79 0.797 0.795

Table S4. Comparison of AUPRC between models trained on multiple species and on

human only. Table showing comparison of AUPRC computed over the test set for models trained
on human, rhesus macaque, mouse, and rat RNA-seq data to models trained on human data only.
Models trained on multiple species show consistently better performance.
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