Supplementary Information

Sequencing ultra-rare targets with compound nucleic acid cytometry

Chen Sun¹, Kai-Chun Chang¹ and Adam R. Abate^{1,2,3*}

¹ Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA

² California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, CA 94158, USA

³ Chan Zuckerberg Biohub, San Francisco, CA 94158, USA

* Corresponding author: adam@abatelab.org

Table of Contents

Derivation of equations for enrichment power

Figure S1. Fluorescence images of droplets showing TaqMan sets reliably detect Φ X 174 DNA Figure S2. Gel images showing minimal DNA fragmentation during thermo cycling using 86 °C denaturation.

Table S1. A list of C_t values from the qPCR plots for single and double NACS

Table S2: A list of primers and probes used for compound enrichment of ΦX 174 DNA

Table S3: A list of primers and probes used for compound enrichment of HIV provirus DNA

Derivation of equations for enrichment power

We define the enrichment power as the ratio of target purity in the sample after enrichment to before,

Enrichment power =
$$\frac{\text{Target purity after enrichment}}{\text{Target purity before enrichment}}$$
 (1)

where N_T is the number of target molecules, N_O is the total number of off-target molecules, D is the total number of droplets and f is the false positive rate of the assay. In the mixed DNA sample, the total number of molecules is $N_T + N_O$ and thus

Target purity before enrichment =
$$\frac{N_T}{N_T + N_O}$$
 (2)

We encapsulate these $N_T + N_0$ molecules into D droplets, such that each drop contains $\frac{N_T + N_0}{D}$ molecules. The DNA mixture is partitioned at limiting dilution such that individual droplets rarely contain more than one target expected by Poisson statistics, thus N_T drops are PCR positive. We also expect fD false positive drops. Because the false positive rate is generally small and the target is ultra-rare, the instances of false positive and true positive in the same droplet are infrequent. In together, $N_T + fD$ drops are sorted and the number of molecules in the sorted sample is $\frac{N_T + N_0}{D}(N_T + fD)$, of which N_T molecules are the targeted ones. Therefore,

Target purity after enrichment =
$$\frac{N_T}{\frac{N_T + N_O}{D}(N_T + fD)}$$
 (3)

and to simplify the enrichment power to

Enrichment power =
$$\frac{\frac{N_T}{\frac{N_T + N_0}{D}(N_T + fD)}}{\frac{N_T}{\frac{N_T}{N_T + N_0}}} = \frac{1}{\frac{N_T}{D} + f}$$
(4)

Figure S1. TaqMan sets reliably detect ΦX 174 DNA in compound NAC. Fluorescence images of droplets after PCR amplification with TaqMan sets used in (a) 1st NAC and (c) 2nd NAC for ΦX 174 DNA templates at varying concentrations. 5 ng/µL Lambda DNA was added to each reaction to confirm the specificity of the TaqMan sets. The template copy number per droplet estimated by assuming a Poisson distribution scales with the input template concentrations during ddPCR in (b) 1st NAC, and (d) 2nd NAC.

Figure S2. Gel analysis showing minimal DNA fragmentation during thermo cycling using 86 °C denaturation. Lane 1, DNA ladders; Lane 2, DNA extracted from a human cell line; Lane 3, DNA went through 35 cycles of thermal cycling with 86 °C denaturation.

	Single enrichment			Double enrichment		
	unsort C_t	single sort C_t	ΔC_t	unsort C_t	double sort C_t	ΔC_t
ФХ 174	33.18	28.655	-4.525	33.180	31.193	-1.987
Lambda	15.055	17.733	2.68	15.055	27.020	11.965

Table S1: C _t values from the	e qPCR plots for	single and double e	nrichment
--	------------------	---------------------	-----------

Primer Name	Sequence (5→3')		
1 st NAC			
ΦX 174 probe1	/56-FAM/TAAATCGAA/ZEN/GTGGACTGCTGGCGG/3IABkFQ/		
ΦX 174 F1	GCAGGAATTACTACTGCTTGTTTAC		
ΦX 174 R1	GAATCGTTAGTTGATGGCGAAAG		
2 nd NAC			
ΦX 174 probe2	/56-FAM/CGTATGCAG/ZEN/GGCGTTGAGTTC/3IABkFQ/		
ΦX 174 F2	GCAGATGGATAACCGCATCA		
ΦX 174 R2	CCTTATGGCCGTCAACATACA		
Post sorting qPCR			
ΦX 174 probe3	/56-FAM/ATGGAACTG/ZEN/ACCAAACGT/3IABkFQ/		
ΦX 174 F3	GCGCTCTAATCTCTGGGCAT		
ΦX 174 R3	CAAAGAAACGCGGCACAGAA		
lambda probe3	/5Cy5/TGAGGTGCT/TAO/TTATGACTCTGCCGC/3IAbRQSp/		
lambda F	GCGAGTATCCGTACCATTCAG		
lambda R	TCCCTTTCGGCATACCATTT		

Table S2: Primers and probes for compound enrichment of ΦX 174 virus DNA

Primer	Fluorophore,	Sequence (5→3')
Name	quencher	
1 st NAC		
<i>pol</i> probe	FAM, ZEN-	AAGCCAGGAATGGATGGCC
	3'IBFQ	
pol F		/5Biosg/ GCACTTTAAATTTTCCCATTAGYCCTA
<i>pol</i> R		/5Biosg/ CAAATTTCTACTAATGCTTTTATTTTTC
2 nd NAC		
LTR probe	FAM, ZEN-	CTGGTAACTAGAGATCCCT
	3'IBFQ	
LTR F		GCCTCAATAAAGCTTGCCTTGA
LTR R		GCTAGAGATTTTCCACACTGACTARA
tat probe	Cy5, TAO-	CTATGGCAGGAAGAAGCGGAGACAGC
	3'IBRQSp	
tat F		TGTAAAAAGTGTTGCYTTCATTG
tat R		ACTACTTACTGCTTTGRTAGAG

Table S3: Primers and probes for compound enrichment of HIV provirus DNA