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Supplemental Material A: Data Sources  

Cerner Real World DataTM (CRWD) 

Cerner Real-World DataTM is a national, de-identified, person-centric dataset solution provided by 
Cerner Corporation to enable researchers to leverage longitudinal electronic health records (EHR) 
data from contributing organizations. Cerner offers one-year free access to a COVID-19 data 
science workspace, which includes access to a CRWD COVID-19 de-identified data cohort hosted 
on the HealtheDataLabTM—the Cerner data science ecosystem, built and deployed on Amazon 
Web Services (AWS). 

Data in the CRWD are extracted from the EHR of hospitals and clinics across the United States 
that have consented to such use. Encounters may include pharmacy, clinical, and microbiology 
laboratory, admission, and billing information from affiliated patient care locations. All 
admissions, medication orders, dispensing, laboratory orders, and specimens are date- and time-
stamped, providing a temporal relationship between treatment patterns and clinical information. 
Cerner de-identifies the CRWD in compliance with the Health Insurance Portability and 
Accountability Act (HIPAA).  

In our study, we used the latest freely available version (Q3), which includes patient data up to the 
end of September 2020. 

Optum® de-identified COVID-19 Electronic Health Record Dataset (OPTUM) 

Given the urgent need to clinically understand the novel virus of COVID 19, Optum developed a 
low latency data pipeline that enables minimal data lag, while preserving as much clinical data as 
possible.  The data are sourced from Optum’s longitudinal EHR repository, which is derived from 
dozens of healthcare provider organizations in the United States, including more than 700 hospitals 
and 7,000 clinics. The data are certified as de-identified by an independent statistical expert, 
following HIPAA statistical de-identification rules, and managed according to Optum® customer 
data-use agreements. The COVID-19 data asset incorporates a wide swath of raw clinical data, 
including new, unmapped COVID-specific clinical data points from inpatient and ambulatory 
electronic medical records (EMRs), practice management systems, and numerous other internal 
systems. Information is processed from across the continuum of care, including acute inpatient 
stays and outpatient visits. The COVID-19 data capture point of care diagnostics specific to the 
COVID-19 patient during initial presentation, acute illness, and convalescence, with over 500 
mapped labs and bedside observations, including COVID-19 specific testing. 

The Optum COVID-19 data elements include patient-level information: demographics, mortality, 
and clinical interventions, such as medications prescribed and administered. The data are 
composed of multiple tables that can be linked by a common patient identifier (an anonymous, 
randomized string of characters). The COVID-19 patient base includes patients in the EHR 
database who have documented clinical care from January 2007 to the most current monthly data 
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release (October 2020) with a documented diagnosis of COVID-19 or acute respiratory illness 
after February 1, 2020, and/or documented COVID-19 testing (positive or negative result). 

In our study, we used the 1015 version, which includes patient data until the October 15, 2020. 
We only included COVID-19 patients with a  hospital stay longer than one day and a confirmed 
COVID-19 diagnosis, either through a positive COVID-19 testing results or a documented 
COVID-19 diagnosis code (U071).  

Major differences and similarities between CRWD and OPTUM 

A key difference between both datasets is that they applied different de-identification strategies. 
The CRWD applied date shifting for date de-identification, whereas OPTUM did not apply date 
shifting for events but, rather, masked the exact day for patient identifiable dates, such as date of 
birth. OPTUM did not provide the exact encounter disposition for expired patients, whereas this 
is available on CRWD. 

CRWD and OPTUM used nearly the same standard codes for diagnosis, procedures, laboratory, 
and assessment results; thus, we did not need to apply any terminology normalization. Cerner used 
Multum codes for medications, whereas OPTUM used NDC codes. Thus, we used the Cerner 
Multum drug database mapping tool to map the OPTUM medication NDC codes to Multum codes.  

The CRWD results table includes the clinical interpretations of laboratory results and does not 
include the normal range for numerical values. Although the OPTUM laboratory results include 
the normal range for numerical values, they do not include the interpretation. As in our study, we 
converted all numerical laboratory results into a “below normal low, normal, or above normal 
high” classification, by using the interpretation value provided in the CRWD, or by defining the 
result categories, based on the assigned normal result ranges for OPTUM. In regard to 
demographics, the OPTUM version that we used did not include a race group for native Alaskans, 
and the South Atlantic and West South regions were merged, which is not the case in the CRWD. 
Supplementary Figure 1 shows the geographical coverage for the CRWD and OPTUM cohorts. 
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Supplementary Figure 1. Geographical distribution of CRWD and OPTUM cohorts 

Supplemental Material B: Data Preparation 

We predefined our prediction point as the first COVID-19 admission date, and we refer to it as the 
index date. For training and internal validation, we excluded all patients who stayed in the hospital 
for less than 1 day or died within 1 day (24 hrs) to ensure that there was no information leakage 
and to train the model on more difficult cases. We extracted all patient data available on or before 
the index date.  

For diagnoses, we included the diagnosis code types along with the diagnosis codes recorded 
before the index admission date. The CRWD and OPTUM datasets used mainly ICD-9, ICD-10, 
or SNOMED CT codes for recording diagnosis information. Therefore, we relied on these codes 
without any further normalization. We excluded diagnosis codes of other or unknown types. For 
medications, as the CRWD used Multum codes, whereas OPTUM used NDC codes, and given 
that we had access to the NDC to Multum mappings, we converted NDC codes to Multum drug 
identifiers that correspond to the drug generic name and major dosage form and used the multum 
drug identifiers and the multum therapeutic categories in our input variables. For procedures, we 
included all procedure codes, specifically ICD-9PCS, ICD10PCS, CPT, and HCPCS. For 
laboratory results, in addition to converting to categorical variables, we also mainly used LOINC 
codes. For an example patient record, we converted the information to look as follows: 
[ICD9_789.22, loinc_1244-1$High , Multumdnum_d03807, MCat_Antidiabetic, g_Female, 
r_White, a_87 . . . ].  
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Supplementary Table 1: Clinical codes used to define mVent outcome on CRWD 

Code Type Codes 

ICD-10-PCS  
 

5A1955Z, 5A1945Z, 5A1935Z, 5A09357, 
5A09457, 5A09557, 5A09358, 5A0935Z, 
5A0945Z, 5A0955Z, 5A09458, 5A09558, 
5A09559, 5A09459 

ICD-9-PCS 93.9, 96.71, 96.72 

CPT-4 94002, 94660, 94003, 78582 

SNOMED CT 47545007, 243142003, 251901004, 
26261000175105 

LOINC 19834-1, 19835-8, 19839-0, 19840-8, 19932-3, 
19976-0, 19994-3, 19996-8, 20054-3, 20055-0, 
20056-8, 20058-4, 20063-4, 20068-3, 20077-4, 
20079-0, 20112-9, 20116-0, 20124-4 ,33429-2, 
33438-3, 33446-6, 60794-5, 76007-4, 76222-9 
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Supplemental Material C: Implementation Details 
 
We used Scikit-learn package v.0.24 for LR, LGBM package v.3.1.1 for LGBM, and Pytorch v.1.7 
for CovRNN. For survival evaluation and visualizations, we used lifelines package v.0.23.7. The 
95-confidence intervals were calculated using 5000 stratified bootstrap replicates using Scikit 
Learn resampling with replacement function. For hyperparameter tuning, we used the Tree-
structured Parzen Estimator (TPE) algorithm available through Optuna package v.2.5  to search 
for the best hyperparameters combination, using a sample cohort extracted from OPTUM data. We 
evaluated the same on CRWD, and it showed improved model performance compared to the 
default parameters used in Experiment 1 (Table 4). Therefore, for later results, we used the 
following hyperparameter: For LGBM, we used a learning rate (lr) of 0.05, feature fraction 
(proportion of features included on each iteration) as 0.55, min_child_samples (minimum number 
of data in one leaf) as 77, min_split_gain (minimal gain to perform split) as 0·1, n_estimators 
(number of boosting iterations) as 150, bagging_fraction (randomly selecting part of the data 
without resampling) as 0·68, bagging_freq (frequency for bagging) as 4, num_leaves (max number 
of leaves in one tree) as 139,  reg_alpha (L1 regularization) as 0·52. For LR, we found that a 
weighted L2 regularized model trained with a liblinear solver (algorithm to use in optimization 
problem) and with C (inverse of regularization strength) as 0·004, was associated with the best 
performance. For RNN based models, we used the Adagrad optimizer with a starting learning rate 
(lr) of 0·05, weight decay (L2 penalty) of 0·0001, and the eps (term added to the denominator to 
improve numerical stability) as 1e-4. We used embedding and hidden dimensions of  64, as they 
were  associated with one of the best performances, as well as the efficient model size and running 
time. We used a training batch size of 128 for binary classification tasks and 256 for survival 
models. 
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Supplementary Table 2: Descriptive analysis for different test sets  
 

 Characteristics CRWD 
Training 

CRWD Valid CRWD Multi– 
Hospital Test 

Hospital 1 Hospital 2 OPTUM 
Fine-tuning 

OPTUM 
Test 

  n = 170,626 n = 24,378 n = 48,781 n = 3,469 n = 706 n = 29,416 n = 6,724 

Age on index Median (IQR) 57 (36–72) 57 (35–72) 57 (36–72) 58 (40–71) 43 (30–57) 60 (44–72) 59 (43–71) 

Gender        

   Female 89,844 (52%) 12,843 (52%) 25,693 (52%) 1,814 (52%) 346 (49%) 14,898 (50%) 3,339 (49%) 

   Male 80,269 (47%) 11,467 (47%) 22,915 (46%) 1,643 (47%) 359 (50%) 14,505 (49%) 3,380 (50%) 

Race & Ethnicity        

   Caucasian 116,342 
(68%) 

16,577 (68%) 33,278 (68%) 1,786 (51%) 623 (88%) 16,047 (54%) 3,657 (54%) 

   African American 24,748 (14%) 3,545 (14%) 7,034 (14%) 1,395 (40%) 40 (5%) 6,427 (21%) 1,409 (20%) 

   Asian 3,843 (2%) 539 (2%) 1,088 (2%) 15 (0%) 9 (1%) 742 (2%) 188 (2%) 

   American Indian /Alaska Native 2,919 (1%) 453 (1%) 908 (1%) 4 (0%) 1 (0%) NA NA 

   Hispanic 50,114 (29%) 7,247 (29%) 14,113 (28%) 101 (2%) 493 (69%) 4,708 (16%) 1,074 (15%) 

Comorbidities        

   Hypertension (HTN) 78,260 (46%) 11,274 (46%) 22,576 (46%) 2,105 (61%) 172 (24%) 18,039 (61%) 3,996 (59%) 

   Diabetes (DM) 43,918 (26%) 6,326 (26%) 12,471 (26%) 1,182 (34%) 126 (18%) 10,706 (36%) 2236 (33%) 

   Congestive Heart Failure (CHF) 24,598 (14%) 3,565 (15%) 7,189 (15%) 643 (19%) 45 (6%) 5,428 (18%) 1,140 (16%) 

   Chronic Kidney Disease (CKD) 23,827 (14%) 3,469 (14%) 6,794 (14%) 661 (19%) 38 (5%) 6,208 (21%) 1,309 (19%) 

   Cancer 13,074 (8%) 1,910 (8%) 3,826 (8%) 310 (9%) 25 (4%) 4,229 (14%) 865 (12%) 



7 
 

Outcomes        

   Mortality (iMort) 9,324 (5%) 1,321 (5%) 2,666 (5%) 263 (7%) 33 (4%) 3,946 (13%) 885 (13%) 

       Median TTE 3 (1–6) 3 (1–6) 3 (1–6) 2 (1–6) 1 (1–5) 5 (3–10) 5 (3–10) 

   Mechanical ventilation (mVent) 23,127 (13%) 3,225 (13%) 6,556 (13%) 496 (14%) 101 (14%) 7,845 (26%) 1,737 (25%) 

      Intubated on first day (% of mVent) 12,270 (53%) 1,703 (52%) 3,557 (54%) 215 (43%) 66 (65%) 3,676 (46%) 790 (45%) 

      Median TTE 2 (1–4) 2 (1–4) 2 (1–4) 2 (1–4) 1 (1–3) 3 (2–7) 3 (2–7) 

   Length of stay Median (IQR) 3 (1–6) 3 (1–6) 3 (1–6) 2 (1–6) 1 (1–5) 5 (3–10) 5 (3–10) 
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Supplementary Table 3: Additional prediction accuracy metrics for CovRNN binary 
classification models  

Cohort task AUROC AUPRC Specificity 
@ 95% 

Sensitivity 

Sensitivity* F1-score* Specificity* 

CRWD Training Set 
 

iMort 95·33% 63·74% 79·62% 90·35% 42·02% 86·15% 

mVent 95·91% 86·36% 76·88% 89·95% 65·41% 86·66% 

pLOS 90·75% 71·04% 64·98% 86·70% 61·38% 77·90% 

CRWD Valid Set 
 

iMort 92·30% 49·75% 67·52% 83·80% 38·38% 85·51% 

mVent 92·56% 77·93% 60·88% 83·01% 59·33% 85·24% 

pLOS 86·58% 59·07% 56·43% 80·32% 55·83% 75·70% 

CRWD Multi-
hospital Test Set 
 

iMort 93·03% 52·84% 70·93% 84·92% 39·22% 85·65% 

mVent 92·90% 79·51% 63·48% 83·39% 59·73% 85·12% 

pLOS 86·50% 60·00% 55·56% 79·74% 56·51% 76·28% 

Hospital 1 
 

iMort 91·77% 51·24% 70·87% 82·51% 44·24% 84·37% 

mVent 91·54% 73·71% 62·33% 76·01% 61·20% 87·92% 

pLOS 87·15% 57·86% 59·68% 76·96% 58·53% 79·64% 

Hospital 2 
 

iMort 97·00% 59·57% 86·18% 90·91% 51·72% 92·12% 

mVent 96·02% 85·25% 85·12% 83·17% 69·42% 90·58% 

pLOS 88·33% 61·41% 63·95% 75·42% 55·80% 80·95% 

OPTUM Test Set iMort 91·27% 70·63% 59·34% 82·94% 56·44% 83·18% 

mVent 91·46% 83·19% 55·02% 89·06% 67·54% 73·99% 

pLOS 80·97% 70·24% 35·52% 85·97% 64·42% 57·25% 

 
*Sensitivity, Specificity, and F1-Score are at the best identified threshold of 7·5% for iMort, 10% for mVent, and 20% 
for pLOS  
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Supplemental Material D: Additional Experiments 

Experiment 1: Ablation study investigating the impact of different data categories 
The first experiment was an ablation experiment to evaluate the added value for each clinical data 
category, starting with diagnosis information, followed by medication, medication categories, 
laboratory tests, assessments results, procedures, and, lastly, demographics.  
 
Our experiment showed that each clinical data category contributes to an increase in the model 
prediction accuracy. For example, the addition of medication or laboratory results contributed to a 
4% increase in the prediction accuracy for iMort or mVent tasks, not only for deep learning-based 
models but also for LR and LGBM (Supplementary Table 4).  
 
Supplementary Table 4. Experiment 1- Ablation study investigating the impact of different data categories 

Characteristics Number of 
covariates 

Mortality (iMort) Ventilator Use (mVent) 

LR LGBM CovRNN LR LGBM CovRNN 

Diagnosis only  
(ICD-9 / ICD-10 /SNOMED CT) 49,074 77·6 83·8 85·9 75·5 80·9 83·7 

Diagnosis + Medication 
(Multum dNUM & Multilevel categories) 52,177 81·4 86·6 88·3 80·8 85·2 87·8 

Diagnosis + Medication + Lab results 
(LOINC codes with categorical results/ 
interpretations) 

80,203 85·3 90·1 92·1 84·6 89·2 91·4 

Diagnosis + Medication + Lab and 
other assessments results + Procedures 
(CPT-4, HCPCS, SNOMED CT, 
 ICD-9/10Pcs) 

125,821 85·4 90·7 92·5 86·2 90·1 92·1 

Diagnosis + Medication + Lab and other 
assessments results + Procedures + 
Demographics 
(Race, gender, age, location) 

125,917 86·4 90·9 92·7 86·2 90·1 92·3 

LR: logistic regression, LGBM: light gradient boost machine  
 

Experiment 2: Model performance using the most recent visit data versus using full patient 
history 
The second experiment was a subgroup analysis to evaluate the validity of CovRNN for new 
patients who were admitted to the hospital for the first time and had no past medical history 
available in their records. Therefore, we compared the performance of CovRNN models on a 
modified version of the multi-hospital test set that includes only the last (index) visit information 
against the original full-history multi-hospital test set. 
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The experiment results showed that the use of the full patient history continuously had a better 
performance than using only the last (index) visit information only (Supplementary Table 5). 
Notably, the models’ performance remains acceptable without the use of previous medical records, 
especially for the iMort and mVent tasks, which show an AUROC of 92%. (Supplementary Table 
5). For the pLOS task, there is a higher decrease in the prediction accuracy, by 3.5%. Interestingly, 
this decrease in pLOS prediction accuracy also aligns with the higher prediction accuracy 
improvement of 6% for CovRNN models compared to LR-based model for the pLOS task versus 
an improvement of only 3% for the iMort and mVent tasks.  
 
 
Supplementary Table 5. Experiment 2 - Model performance using only last visit data versus using full patient 
history 

Outcome   Full History Last Visit only 

In-hospital Mortality 93·0 92·2 
Mechanical Ventilation 92·9 91·6 
Hospital Stay > 7 days 86·5 83·0 
In-hospital Mortality – Survival* 86·0 85·9 
Mechanical Ventilation - Survival* 92·6 91·3 

 
 
Experiment 3: Effect of possible label leakage on the need for mechanical ventilation 
prediction 
 
For a better understanding of the impact of any possible label leakage during model training, we 
conducted our third experiment using the binary classification CovRNN for the mVent task. As 
our cohort definition excluded any patients with a stay of less than one day, our cohort did not 
include any patients who died within one day of admission. Nevertheless, nearly half of the 
intubated patients were intubated on their first day. Therefore, we evaluated the effect of excluding 
such patients, which we refer to as a “restricted” dataset, and compared the performance against 
our original “full” cohort. 
We found that training a version of the mVent binary prediction model, using the “restricted” 
training set, reduced the prediction accuracy by 3% on the full test set for CovRNN and 5% for 
LR and LGBM (SupplementaryTable 6). CovRNN performance remains constant on the 
“restricted” test set, regardless of which cohort it was originally trained on.  
 
Supplementary Table 6. Experiment 3 - Effect of label leakage on the need for mechanical ventilation prediction 

 Full Test Data Restricted Test Data 

Trained  LR LGBM CovRNN LR LGBM CovRNN 

Full Data 89·5 91·2 92·9 81·5 82·8 85·9 
Restricted Data 83·9 86·6 90·0 81·8 83·8 86·0 
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 Supplemental Material E: Additional Figures 
 

 
Supplementary Figure 2. K-M curve of in-hospital mortality and mechanical ventilation 
CRWD cohorts. 
 

 

 
Supplementary Figure 3. AUROC across different time windows, using iMORT-Surv and 
mVent-Surv on the CRWD multi-hospital test set. 
 
 
 
 

Days In-hospital 
mortality 

Mechanical 
ventilation 

1 93.6% 95.5% 
2 93.0% 94.1% 
3 92.7% 93.3% 
5 91.6% 92.5% 
7 91.0% 92.1% 

14 89.9% 91.6% 
21 89.5% 91.5% 
30 89.2% 91.5% 
60 88.8% 91.4% 
90 88.8% 91.4% 
120 88.8% 91.4% 
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Supplementary Figure 4. Sample visit level explanation for a true positive pLOS case. 
This is an example patient for whom the CovRNN model correctly predicted, with over 63% 
probability, would stay more than seven days in the hospital. The bar length and direction represent 
the contribution score calculated by the integrated gradient that predicts the prolonged hospital 
stay; i.e., a positive number means a stronger contribution to predicting the prolonged stay. For 
example, acute lymphoblastic leukemia, in relapse (ICD10_C9102), Blasts in the blood 
(LOINC_8867-4$above high normal), low lymphocyte counts (LOINC_731-0$below low 
normal), intravenous nutritional products (MultumCat_121), and coagulation modifiers 
(MulttumCat_81) are positively correlated to the positive prediction of the prolonged hospital stay, 
specifically for this patient. Notably, the contribution score can vary at the patient visit level; for 
example, the ordering of neutrophils count (LOINC_751-8) contribution score at an earlier visit 
was 0.02, whereas at the index visit, it is -0.02, as the patient had results during the index visits 
showing below normal neutrophils (LOINC_751-8$below_low_normal) and lymphocytes counts 
(LOINC_731-0$below_low_normal), which had a greater contribution to the patient predicted 
score.  
 


