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Supplemental Information 

Section S1 

As an independent check of the assumptions required to fit the data in Figure 4 to a simplified two-step 
binding model, the mantADP binding data from Figures 3A and 4A, along with the [Gle1]-dependance of 
the kobs for irreversible mantADP dissociation in Figure 2B, were all globally fitted using a custom 
MATLAB program to numerically solve for unknown parameters in Scheme 1. The relevant rate and 
equilibrium constants in Scheme 1 were shared across all data sets. Rate and equilibrium constants were 
left unconstrained and randomly initialized between 0 and 500. This fit results in the following set of 
parameters: k45 = 1 ± 0.4 s-1, k54 = 13 ± 6 s-1, k56 = 8 ± 7 s-1, k65 = 2 ± 1 s-1, Kd41 < 0.1 µM, Kd52 < 0.1 µM, 
Kd63 < 1 µM, which are consistent with fits to the analytical solution in Figure 4B. The listed uncertainties 
represent the ninety-five percent confidence interval of the final converged values after many fitting 
iterations (n = 100).  

We note that occasionally, rate constants did not converge and yielded physically unrealistic values (e.g., 
association rate constants far exceeding the diffusion limit). However, upon plotting it is clear that these 
parameters cannot match the experimental data collectively and likely represent a local, but not global 
minimum in the total sum of squares. Rate constants for Gle1 binding apoDbp5 depend on parameter 
initialization, although the equilibrium constant (Kd41) never exceeded 0.1 µM regardless of parameter 
initialization (Figure S1 A, B), consistent with published data (1). The values of Kd52 and Kd63 never 
exceed ~ 1 µM, regardless of initialization (Figure S1 C-F). Together, these results validate the 
assumptions required for fits in Figure 4B.  

Section S2 

The reaction scheme for ATP and mantADP binding to Dbp5 in a kinetic competition can be described by 
the following general mechanism: 
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  Scheme 

where, the unlabeled ligand Lunl competes to bind the macro molecule M with two-step binding of labeled 
ligand Ll. The time course of the reaction should follow 3 exponentials and the different equations 
associated with Scheme 1 are 
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To obtain meaningful form for unlabeled ligand concentration dependence of rate constant, suitable 
assumptions have to be made. Thus, we consider following 3 cases: 

1. Unlabeled ligand dissociates much faster than labeled ligand binding, i.e., kunl,− >> kl[M][Ll]. In 
this case, unlabeled ligand reaches fast equilibrium with macromolecule before labeled ligand 
binds.  
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Given rapid equilibration of Lunl and M, 
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This yields a mass balance relationship of: 
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Therefore, the two differential equations describing the reaction scheme are: 
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The solution to Eq. 2.4 will take the following form ( ) c px t Y Y= +


, where Yc is the general solution and 
Yp is the special solution. Yc will have the following form: 
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Solving the roots of this equation, 
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Now we will solve for the eigen vectors, 1,2η


: 
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The eigenvector in this case is: 
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Now we will solve for Yp: 

 
, 1 0

0

[ ]
,  where [ ]

0

l utot l

unl

nl

unl

k K L
x Ax g g L K

M + 
 ′ − = = + 
 
 

      

Therefore, Yp will be a constant vector, B

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The general solution is: 
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To solve for the arbitrary constants, C1,2 , in Eq. 2.6 we use the initial conditions at t = 0. At equilibrium, 
prior to mixing (i.e., t = 0) [MLl]1 (0) and [MLl]2 (0) are described by the following reaction scheme: 
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From mass balance, [M]tot = [M]+[MLl]1+[MLl]2 and K1, K2, and Eq. 2.7: 
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Solving Eq. 2.8 for [MLl]1 + [MLl]2 yields, 
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Substituting Eq. 2.9 into K1 and K2 yields, 
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Substituting Eq. 2.10 into Eq. 2.6 at t = 0 yields, 
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Solving Eq. 2.11  for C1,2 yields, 

 

, 1 , 2 , 1 , 2 , 2 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2

, 2 , 2 , 1 , 2 ,

1

1 2 0

1 , 2 , 1 , 22 ,

0 0

21 0

( ) [ ] ([ ] (2 ) ( ) ( 2 [ ] ))
( )( )([ ] ( )

l l l l l l l l l unl l l l unl l l

l l l l l l u

tot l unl l

nl l l l ul nun

C
k k L L k k k k k k k K k k k K k k L

k k L k k k k K k k
M

k K
λ λ
λ λ

+ − − + − − − + − + + − − +

+ − − − − − + + −

=
+ + + + + +

−
+ − + + + , 1 , 2 , 1 , 2 , 2

, 1 , 2 1 , 1 ,

0 0

2

2 0 0 2 , 2 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2

, 2 ,

0

1 2 02 ,

[ ] )( ( [ ] ))

( ) [ ] ([ ] (2 ) ( ) ( 2 [ ] ))
( )( )([ ]

l l

tot l unl l

l l l l l l

l l l l l l l l l unl l l l unl l l

l l u l ln

L k k k k k L
C

k k L L k k k k k k k K k k k K k k L
k k

M
L k

λ λ
λ λ

− − + − +

+ − − + − − − + − + + − − +

+ − −

+ +

=
+ + + + + +

−
+ − 1 , 2 , 1 , 2 , 1 , 2 , 2 , 1 , 2 , 1 , 2 , 020( ) [ ] )( ( [ ] ))l l l unl l l l unl ll l ll l lk k k K k k k K L k k k k k L− − − + + − − − + − ++ + + + +

  

 

2. Unlabeled ligand binding is comparable to first binding step of labeled ligand, i.e., kunl,+ ~ kl,+1, 

and both dissociation of unlabeled ligand and the first step of labeled ligand is much faster than 
labeled ligand second step binding, i.e., kunl,−, kl,−1 >> [MLl] kl,+2. In this case, the macromolecule 
reaches equilibrium with [MLl]1 and [Munl] before [MLl]2 is significantly populated. Therefore, in 
the time region after the first step of labeled ligand binding and unlabeled ligand binding reach 
equilibrium, but before labeled ligand second step binding significantly starts, according to mass 
conservation, the total macromolecule is approximated to 

 1 2 1[ ] [ ] [ ] [ ] [ ] ~ [ ] [ ] [ ]tot unl l l unl lM M ML ML ML M ML ML= + + + + +   (2.12) 
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The equation to solve Eigen values of Eqs. 2.13 and 2.14 is 
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The solutions of the equation are the two observed rate constants of the period, 
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To further characterize the features of the two observed rate constants, further approximation is needed. 
The faster observed rate constant of the two can be re-written as 
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It means the value of λ1 is always between , 1 , 1 , 2 ,[ ] [ ]l l l l unl unlk L k k k L+ − + ++ + +  and 

, 1 , ,[ ] [ ]l l unl unl unlk L k L k+ + −+ +  for all titrating [Lunl] unlabeled ligand concentration, i.e., 

 
, 1 , 1 , 2 , 1 , 1 , , , 1 , 2 ,

, 1 , 1 , 2 , 1 , 1 , , , 1 , 2 ,

[ ] [ ] [ ] [ ] ,   if 
[ ] [ ] [ ] [ ] ,   if 

l l l l unl unl l l unl unl unl l l unl

l l l l unl unl l l unl unl unl l l unl

k L k k k L k L k L k k k k
k L k k k L k L k L k k k k

λ

λ
+ − + + + + − − + −

+ − + + + + − − + −

+ + + ≥ > + + + ≥

+ + + ≤ < + + + <
  

  (2.17) 

At [Lunl] = 0, it should 1 , 1 , 1 , 2[ ]l l l lk L k kλ + − += + + , therefore, we choose  
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to be approximated faster observed rate constant for any unlabeled ligand concentration for consistency 
with the case when [Lunl] = 0. It is a linear function of [Lunl] with y-incept of , 1 , 1 , 2[ ]l l l lk L k k+ − ++ +  and 
slope of kunl,+. With this approximation, the slower observed rate constant become 
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Therefore, λ2 is approximately a hyperbola with initial and final values of kunl,− and kl,−1+ki,+2 and it 
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In time region after unlabeled ligand binding and the fist step of the ligand binding reach equilibrium, 
Scheme 2 has only one differential equation left  

 2
, 2 1 , 2 2

[ ] [ ] [ ]l
l l l l

d ML k ML k ML
dt + −= −   (2.20) 
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According to equilibrium among ligand unbound macromolecule, those with unlabeled ligand bound and 
the first species of labeled ligand bound, we have 

 
1

,1

[ ][ ][ ]

[ ][ ][ ]

l
l

l

unl
unl

unl

M LML
K
M LML

K

=

=
  (2.21) 

and 

 

1 2

,1 1
1 2

,1
1 2

[ ] [ ] [ ] [ ] [ ]
[ ] [ ]1 [ ] [ ]
[ ]

[ ]1 1 [ ] [ ]
[ ]

tot l l unl

l l unl
l l

l unl

l unl
l l

l unl

M M ML ML ML
K ML L ML ML

L K

K L ML ML
L K

= + + +

 
= + + + 

 
  

= + + +     

  (2.22) 

Substitute Eq. 2.22 into Eq. 2.20 

 2 2
, 2 , 2 2

,1

[ ] [ ] [ ] [ ]
[ ]1 1

[ ]

l tot l
l l l

l unl

l unl

d ML M MLk k ML
Kdt L
L K

+ −
−

= −
 
+ + 

 

  

 , 2 , 2
, 2 2

,1 ,1

[ ]
[ ]

[ ] [ ]1 1 1 1
[ ] [ ]

l tot l
l l

l lunl unl

l unl l unl

k M k
k ML

K KL L
L K L K

+ +
−

 
 
 = − +    

+ + + +         

  (2.23) 

The above first order linear equation has following solution 

 

3

3

, 2

,1

2 3
, 2

, 2
,1

, 2
3

,1
, 2 , 2

[ ]
[ ]1 1

[ ]
[ ]

[ ]1 1
[ ]

[ ]

[ ]1 1
[ ]

l tot

l unl

t l unl
l

l
l

l unl

l unl

l tott

l unl
l l

l unl

k M
K L
L K

ML A e k
k

K L
L K

k M
A e

K Lk k
L K

λ

λ

+

−

+
−

+−

+ −

 
+ + 

 = +
+

 
+ + 

 

= +
  

+ + +     

  

with rate constant 
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( )

, 2
3 , 2

,1

, 2
,1

, 2

,1

, 2

,1,1
, 2

,1

, 2

[ ]1 1
[ ]

[ ]

[ ]1 [ ]

[ ] [ ]1 [ ] [ ]
[ ]

[ ]1 [ ]

[

l
l

l unl

l unl

unl l
l

l
l

l
unl unl

l

l l l
unl unl unl

ll l
l

l
unl unl

l

l

k
k

K L
L K
K L k

K
k

LK L
K

k L LK L L
KK L

k
LK L

K

k

λ +
−

+

−

+

−

+

= +
 
+ + 

 

= +
 
+ +  

 
  

+ + −    +   = +
 
+ +  

 

= ( )

, 2

,1
, 2

,1

,1

[ ]
[ ]

] [ ]
[ ] [ ]1 [ ]

l l
unl

l l l
l

l l l
unl unl

l

k L
L

L K L
k

K L LK L
K

+

−
+

+ −
 +
+ +  

 
  (2.24) 

The third observed rate constant is a downward hyperbola of [Lunl] with initial and final values of 

( )
, 2

, 2
,1

[ ]
[ ]

l l
l

l l

k L
k

K L
+

−+
+

 and , 2lk − , and it reaches a half of maximum when gaa  
,1

[ ][ ] 1 l
unl unl

l

LL K
K

 
= +  

 
. 

In short, in this case that unlabeled ligand binding is comparable to the first step of labeled ligand the 
binding, the time course follows 3 exponentials and the fastest observed rate constant scales with 
unlabeled ligand concentration, while the two slower observed phases are hyperbolic functions. 

Time courses in Figure 5A were fit to a sum of two or three exponential functions (continuous 
lines) and the observed rate constants were globally fit (Figure 5B, solid lines) to Eq (A) below (from 
Eqs. S2.18, S2.19 and S2.24):  

       (A) 

Where Ll is mantADP, Lunl is ATP, Kl,1 is the equilibrium constant for the first mantADP binding step, 
Kunl is the equilibrium constant for ATP binding, and kunl,-, kunl,+, kl,+1, kl,-1, kl,+2, kl,-2 correspond to k-ATP, 
k+ATP, k45, k54, k56, and k65 in Scheme 2. The best fit estimates for k+ATP and k-ATP from Eq.(A) are 0.6 ± 0.1 
µM-1 s-1 and 3.3 ± 1.1 s-1 (Table 1), respectively, consistent with MATLAB fittings. We note that 

1 , 1 , 1 , 2 ,

, 1 , 2 ,
2 ,

, 1 , 1 , 2

,

, 2
3 , 2

,1

~ [ ] [ ]

[ ]
[ ]

[ ]

[ ]
1 1

[ ]

  l l l l unl unl

l l unl
unl unl

l l l l
unl

unl

l
l

l unl

l unl

k L k k k L
k k k

k L
k L k k

L
k

k
k

K L
L K

λ

λ

λ

+ − + +

− + −
−

+ − +

+

+
−

+ + +

+ −
= +

+ +
+

= +
 
+ + 

 
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modeling the ATP kinetic competition data with Scheme 2 is valid as little hydrolysis occurs within the 
time scales of the mantADP binding time courses (see Results). 

3. Unlabeled ligand binding is comparable to the slow step of labeled ligand binding and both are 
much slower than the first step binding of labeled ligand, In this case, kunl,+[Lunl] ~ kl,+2 << kl,−1, 
the labeled ligand first binding step reaches equilibrium before labeled ligand second step binding 
and unlabeled ligand binding taking place. The equations for this case are 

 2
, 2 1 , 2 2

[ ] [ ] [ ]l
l l l l

d ML k ML k ML
dt + −= −   (2.25) 

 , ,
[ ] [ ][ ] [ ]unl

unl unl unl unl
d ML k M L k ML

dt + −= −   (2.26) 

 1
,1

[ ][ ][ ] l
l

l

M LML
K

=   (2.27) 

 

1 2

2
,1

,1
1 2

[ ] [ ] [ ] [ ] [ ]

[ ]1 [ ] [ ] [ ]

1 [ ] [ ] [ ]
[ ]

tot l l unl

l
l unl

l

l
l l unl

l

M M ML ML ML

L M ML ML
K

K
ML ML ML

L

= + + +

 
= + + +  
 
 

= + + + 
 

  (2.28) 

Equation 2.25 and 2.26 can be re-written as 

 2 2
, 2 , 2 2

,1

[ ] [ ] [ ] [ ] [ ]
1

[ ]

l tot l unl
l l l

l

l

d ML M ML MLk k MLKdt
L

+ −
− −

= −
+

  

 , 2 , 2
, 2 2 , 2

,1 ,1 ,1

[ ] [ ][ ]
1 1 1

[ ] [ ] [ ]

l tot l unl
l l l

l l l

l l l

k M k MLk ML kK K K
L L L

+ +
− +

 
 
 = − + −
 

+ + + 
 

  (2.29) 

 2
, ,

,1

[ ] [ ] [ ] [ ][ ] [ ][ ]1

unl tot l unl
unl unl unl unl

l

l

d ML M ML MLk L k MLLdt
K

+ −
− −

= −
+

  

 , , 2 ,
,

,1 ,1 ,1

[ ][ ] [ ][ ] [ ]
[ ][ ] [ ] [ ]1 1 1

unl unl tot unl unl l unl unl
unl unl

l l l

l l l

k L M k L ML k L
k MLL L L

K K K

+ + +
−

 
 
 = − − +
 + + + 
 

  (2.30) 
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In this case, the time course follows 2 exponentials and according to Eqs. 2.29 and 2.30, the 
equation for the Eigen values of differential equations Eqs. 2.29 and 2.30 is 

 

, 2 , 2
, 2

,1 ,1

, ,
,

,1 ,1

1 1
[ ] [ ]
[ ] [ ]
[ ] [ ]1 1

l l
l

l l

l l

unl unl unl unl
unl

l l

l l

k k
kK K

L L
k L k L

kL L
K K

λ

λ

+ +
−

+ +
−

− + +
+ +

− + +
+ +

  

 , 2 , , 2 ,
, 2 ,

,1 ,1

,1 ,1

[ ] [ ]
[ ] [ ]1 11 1

[ ] [ ]

l unl unl l unl unl
l unl

l l l l

l ll l

k k L k k L
k kK L K L

K KL L

λ λ+ + + +
− −

  
  
  = − + + − + + −
  + ++ +  
  

  

 , 2 , , , 22
, 2 , , 2 , 2 ,

,1 ,1

,1 ,1

[ ] [ ]
0[ ] [ ]1 11 1

[ ] [ ]

l unl unl unl unl l
l unl l l unl

l l l l

l ll l

k k L k L k
k k k k kK L L K

K KL L

λ λ+ + + +
− − − − −

   
   
   = − + + + + + + =
   + ++ +   
   

  

The solutions are 

 

, 2 ,
, 2 ,

,1

,1

2

, 2 , , , 2
, 2 , , 2 , 2 ,

,1 ,1

,1 ,1

[ ]1
[ ]2 11

[ ]

[ ] [ ]
4 4[ ] [ ]1 11 1

[ ] [ ]

l unl unl
l unl

l l

ll

l unl unl unl unl l
l unl l l unl

l l l l

l ll l

k k L
k kK L

KL

k k L k L k
k k k k kK L L K

K KL L

λ + +
± − −

+ + + +
− − − − −



= + + +
 ++


       
   ± + + + − − +
   + ++ +   
    






 

 (2.31) 

For further approximation, the fast rate constant in Eq. 2.31 can be re-written as 
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( )

, 2 ,
, 2 ,

,1

,1

2

, 2 , ,
, 2 , , , 2

,1

,1 ,1

[ ]1
[ ]2 11

[ ]

[ ] [ ]
4 4[ ] [ ]1 11

[ ]

l unl unl
l unl

l l

ll

l unl unl unl unl
l unl unl l

l l l

l ll

k k L
k kK L

KL

k k L k L
k k k kK L L

K KL

λ + +
+ − −

+ + +
− − − −



= + + +
 ++


     + + + − + −   + ++    

  (2.32) 

or 

 

( )

, 2 ,
, 2 ,

,1

,1

2

, 2 , , 2
, 2 , , 2 ,

,1 ,1

,1

[ ]1
[ ]2 11

[ ]

[ ]
4[ ]11 1

[ ] [ ]

l unl unl
l unl

l l

ll

l unl unl l
l unl l unl

l l l

ll l

k k L
k kK L

KL

k k L k
k k k kK L K

KL L

+ +
− −

+ + +
− − − −



= + + +
 ++


     + − + + + −   ++ +    

  (2.32’) 

Apparently, the fast observed rate constant in this case is between , 2 ,
, 2

,1

,1

[ ]
[ ]11

[ ]

l unl unl
l

l l

ll

k k L
kK L

KL

+ +
−+ +

++
 

and , 2 ,
,

,1

,1

[ ]
[ ]11

[ ]

l unl unl
unl

l l

ll

k k L
kK L

KL

+ +
−+ +

++
, i.e., 

 

, 2 , , 2 ,
, 2 , , 2 ,

,1 ,1

,1 ,1

, 2 , , 2 ,
, 2

,1 ,1

,1 ,1

[ ] [ ]
,    if  [ ] [ ]1 11 1

[ ] [ ]
[ ] [ ]
[ ] [ ]1 11 1

[ ] [ ]

l unl unl l unl unl
l unl l unl

l l l l

l ll l

l unl unl l unl unl
l

l l l l

l ll l

k k L k k L
k k k kK L K L

K KL L
k k L k k L

kK L K L
K KL L

λ

λ

+ + + +
− + − − −

+ + + +
− +

+ + ≥ > + + ≥
+ ++ +

+ + ≤ < + +
+ ++ +

, , 2 ,,    if  unl l unlk k k− − −<

  (2.33) 

To be consistent with  , 2
, 2

,1
,    when  [ ] 0

1
[ ]

l
l unl

l

l

k
k LK

L

λ +
+ −= + =

+
, we choose the approximated form of 

the fast rate constant to be 
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 , 2 ,
, 2

,1

,1

[ ]
~ [ ]11

[ ]

l unl unl
l

l l

ll

k k L
kK L

KL

λ + +
+ −+ +

++
  (2.34) 

at any unlabeled ligand concentration. It is a linear function of unlabeled ligand concentration with y-

intercept of , 2
, 2

,11
[ ]

l
l

l

l

k
kK

L

+
−+

+
 and slope of ,

,1

[ ]1

unl

l

l

k
L

K

+

+
.  Under this fast phase approximation, the slow phase 

is approximated to 

 

, , 2
, 2 , 2 ,

,1

,1

, 2 ,
, 2

,1

,1

[ ]
[ ]1 1

[ ]
~ [ ]

[ ]11
[ ]

unl unl l
l l unl

l l

l l

l unl unl
l
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k L k
k k kL K

K L
k k L

kK L
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λ
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− +
−
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−

 
 
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 =

+ +
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l
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+ +
−
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 + + ++ 
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+ +
++

  

 

, ,
, 2 ,

,1 ,1
,

, 2 ,
, 2

,1

,1

[ ] [ ]
[ ] [ ]1 1

[ ]
[ ]11

[ ]
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l l

l l
unl
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l

l l
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k L k L
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+ +
− −

−
+ +
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−
+ +

= +
+ +
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( ), 2 ,

,
,1 , 2

, 2
,1 , ,1

[ ]

[ ] [ ]
[ ]

[ ]

l unl unl
unl

l l l l
l unl

l unl l l

k k L
k

K L k L
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K k L K

− −
−

+
−

+

−
= +

 +
+ +  + 

  (2.35) 

The approximated slow phase is a hyperbola with initial and final values of kunl,− and kl,−2, and it reaches a 

half of maximum at ,1 , 2
, 2

,1 , ,1

[ ] [ ]
[ ]

[ ]
l l l l

unl l
l unl l l

K L k L
L k

K k L K
+

−
+

 +
= +  + 

. In summary, in the case both unlabeled 
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ligand binding and the second step of labeled ligand binding is much slower than the equilibrium of the 
labeled ligand first step binding, the time course follows 2 exponentials. The fast phase rate constant 
scales linearly with unlabeled ligand concentration, whereas the slow phase concentration is a hyperbola 
of unlabeled ligand concentration. 

Section S3 

The effects of Gle1 on ADP binding were measured through kinetic competition by incubating 1 µM 
Dbp5 with 10 µM Gle1 for at least 2 hours at room temperature and subsequently mixing with 20 µM 
mantADP with various concentrations of ADP. Time courses of mantADP binding in the presence of 
ADP are best fit by a sum of two exponential functions (Figure S3A), indicating that one of the three 
binding steps equilibrates much faster than the other two (Scheme 2). Given that the rate constants for 
mantADP binding are independently known, Gle1-Dbp5 binding ADP is likely a rapid equilibration. 
Under these conditions, the fast and slow phase observed rate constants should display an [ADP]-
dependent decrease (Supplemental Information, section S2-1). However, the noise associated with 
fitting the fast phase is significant. Therefore, we utilize only the [ADP]-dependance of the slow phase to 
estimate the ADP affinity (Figure S3B) with Eq. 2.5 above (see Supplemental Information section S2-
1), yielding an affinity (Kd94) of 240 ± 15 µM for Gle1-Dbp5 binding ADP. 

Section S4 

Inclusion of up to 10 mM free phosphate does not significantly alter steady-state ATP hydrolysis by Dbp5 
under saturating ATP and Gle1 conditions. This indicates that the apparent binding affinity of free 
phosphate for Gle1-Dbp5 complex during steady state ATP hydrolysis KPi, SS ≥ 10 mM, because the 
equilibrium binding affinity between Gle1-Dbp5 and free phosphate (KPi,eq) is always greater than KPi, SS 

(2), KPi,eq > KPi, SS ≥ 10 mM. Therefore, phosphate rebinding does not need to be considered as no more 
than 80 µM (<< 10 mM) free phosphate is present in solution during the time scale of the quench-flow 
experiment.  
 
Section S5 
 
The maximum solution ionic strength (I, calculated from molality, so is unitless) change in our study < 2-
fold over the [ATP] range examined, ranging from I = 0.14 (in assay buffer without other components 
added) to I = 0.21 with 15 mM Mg-ATP (50% change; Fig. 1) or I = 0.23 with 15 mM Mg-ATP and 10 
mM phosphate in the buffer solution (64.3% change; see below). At the high ATP used (~15 mM), this 
change has notable effect on the activity coefficient of ATP and reduces the effect ATP concentration < 
23%. For example, the effective concentration of 15 mM ATP in the assay buffer with 10 mM phosphate 
is 11.6 mM. Consequently, there is no effect on the observed steady-state ATPase behaviors, which is the 
only experiment such high [ATP] is used. This is supported by the fact that the ATPase activity in the 
presence of saturating [Gle1] is comparable in 0.1 mM Mg-ATP (~ kcat = 0.15, saturated; Fig. 7; I ~ 0.14 
assay buffer ionic strength; see below) and 15 mM Mg-ATP (~ kcat = 0.16; Fig. 1; I = 0.21; see below). In 
addition, the Dbp5 ATPase, both in the presence (this work) and absence (previous work from our group 
(2)) of Gle1 were not affected by inclusion of 10 mM phosphate. Nevertheless, we provide calculations of 
our solution ionic strength here to inform readers. 
 

1. Ionic strength of assay buffer: The ionic strength of the assay buffer is mainly from 1 of each K+ 
and Cl+ in KCl (100 mM), 1 Mg2+ and 2 Cl+ in MgCl2 (2 mM), and 1.5 charge from HEPES (30 mM). 
The ionic strength is I ~ 0.5([KCl]×(12+12)+[ MgCl2]×(22+2× 1)+[ HEPES] ×12 = 0.14 

2. Concentration of ions in our 100 mM ATP stock solution: To make ATP stock solution at pH 7.0, 
we dissolve disodium ATP powder (Sigma-Aldrich, cat# A7699) in ddH2O and immediately bring the pH 
up to 7.0 with KOH. In neutral pH solution, a ATP loses 3 protons and the affinity of the 4th proton is 
log(K) = 6.51 (3). Therefore, in pH 7.0, the ratio of ATP with the 4th proton off and on is 
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4

3

ATP
log 7 6.51 0.49

HATP
pH pKa

−

−

  
   = − = − =

  
  

  

i.e., 

 
4

0.49
3

ATP
10 3.09

HATP

−

−

 
  = =
 
 

. 

For 100 mM ATP stock solution in pH 7.0, 100/4.09 ~ 24.4 mM of it is HATP3− and 75.6 mM of it is 
ATP4−. Consequently, 3[HATP3−]+4[ATP4−] = 3×24.4+4×75.6 = 375.6 mM proton H+ is dissociated from 
disodium ATP into solution in pH 7.0 and it needs the same molar equivalent KOH to neutralize the 
released H+. In conclusion, in 100 mM ATP stock solution, there is 375.6 mM of K+ ion in the solution 
from KOH added apart from 2×100 = 200 mM Na2+ from disodium ATP complex. 

3. Ionic strength of 15 mM MgATP in the assay buffer: 15 mM MgATP solution was made by 
adding 15 mM ATP from 100 mM K+ATP pH 7 stock and 15 mM MgCl2. When adding 15 mM ATP 
from stock solution, 375.6×15/100 ~ 56 mM K+ and 200×15/100 = 30 mM Na+ are also carried into the 
solution from K+ATP stock. Then the ion concentration in 15 mM ATP buffer solution includes: 

 
K+: 100 + 56 =156 mM 

Na+: 30 mM 

Monovalent metal ion: 156+30 = 186 mM, adjusted to 176.4 mM free (see below) 

Cl−: 100 + 2×2 + 2×15 = 134 mM 

Mg2+: 2+15 = 17 mM, adjusted to 2 mM free (see below) 

HEPES1.5−: 30 mM 

MgATP2−: 15-9.6 = 5.4 mM (see below) 

KMgATP−: 9.6 mM (see below).   

However, not all the ions above are free. K+ and Na+ have the same charge and their affinities for ATP are 
similar ~ 100 mM (3). Therefore, we treat K+ and Na+ the same in their conjugating to ATP and in 
calculation of ionic strength, i.e., the total monovalent metal concentration is 156 of K+ + 30 of Na+ = 186 
mM in which 

[ ] [ ]( ) [ ] [ ]
21  4

2
K ATP ATP K ATP K ATP Ktot tot tot totK Ktot tot

K K+ +
+ + + 

     = + + − + + −       
 

  

9.6 mM is conjugated with ATP and 176.4 mM is free ([K+]tot is treated as total of both K+ and Na+). 

In the presence of ~100 mM KCl or NaCl, the affinity of Mg2+ for ATP is reduced to ~0.21 mM (3), but is 
still tight. Thus, in the presence of 17 mM Mg2+ and 15 mM ATP, almost all the ATP has a Mg2+ 
complexed. 
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In summary, in our experimental condition and buffer, 2 of 4 negative charges in ATP are neutralized by 
Mg2+ conjugation to become MgATP2−. 1 of 2 negative charges in the majority of MgATP2− (9.6 mM) is 
further neutralized by a K+ or Na+ binding, becoming KMgATP− and the rest of MgATP2− is most 
possibly staying as MgATP2− since pKa of MgATP2− is 4.55 (3). Finally, in all consideration,  

the ionic strength in 15 mM MgATP buffer is: 

 ( )2 2 2 2 2 21 0.1764 1 0.134 1 0.002 2 0.03 1.5 0.0096 1 0.0054 2 0.21
2

I = × + × + × + × + × + × = . 

15 mM MgATP adds additional 0.21-0.14 = 0.07 to the assay buffer strength and it is ~ 0.07/0.14=50% 
change in ionic strength from assay buffer alone. According to Debye-Hückel equation (4), the population 
weighted average activity coefficient for MgATP is: 

 
2log 0.509

0.509 0.21 2.08 0.48
MgATP MgATPI zγ = −

= − × × = −
  

where the population averaged charge square is: 

 

( ) ( )

( ) ( )

2 22
2

2

2 2

[ ] 1 [ ] 2
[ ] [ ]

9.6 1 5.4 2
2.08

15

MgATP
KMgATP MgATP

z
KMgATP MgATP

− −

− −

× − + × −
=

+

× − + × −
= =

  

Therefore, the MgATP activity coefficient in 15 mM MgATP buffer is  γMgATP = 0.33 and it is slight 

change compared to γMgATP = 0.40 if the MgATP is in buffer without ATP (I = 0.14; 2 2.08MgATPz = ). 

 

4. Ionic strength of 10 mM phosphate (PO4) in assay buffer: The highest phosphate (PO4) 
concentration used in this study is 10 mM, which was made by the assay buffer pH 7.5 supplemented 
with 10 mM phosphate taken from 1 M phosphate stock solution with H2O pH 7.5. The phosphate stock 
solution was made by dissolving different amounts of monobasic (KH2PO4, acid) and dibasic (K2HPO4, 
base) potassium phosphate powder, respectively, into H2O to final 1 M phosphate and pH 7.5. There are 3 
dissociable protons in a phosphate and their pKa values are 2.15, 6.82, and 12.38 (5). Therefore, in the 
final pH 7.5, the 1st proton should be all dissociated, the 2nd one partially dissociated and the 3rd one 
should stay bound with phosphate. In the 1 M phosphate stock solution pH 7.5, using the Henderson-
Hasselbalch (HH) equation: 

pH = pKa + log ([Base] / [Acid]) 

with pKa = 6.82, the ratio of base to acid is: 

[Base] / [Acid] = 107.5-6.82 = 4.79. 

Since 

   [Base] + [Acid] = 1 M 
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   [Acid] = 1/(1+4.79) = 0.17 M and [Base] = 1- 0.17 =0.83 M 

are the final base and acid concentration in the phosphate stock solution. Since the proton contribution 
from solution pH change (10−7 to 10−7.5) is negligible, the calculated final base and acid concentration is 
the concentration of dibasic and monobasic potassium phosphate dissolved (5). Consequently, K+ 
concentration in the phosphate stock from both mono- and dibasic potassium phosphate is: 

   [K+] = 0.83×2 + 0.17×1 = 1.83 M 

and 1830×0.01 =18.3 mM was carried over with 10 mM phosphate when using phosphate stock to make 
buffer. The ions in 10 mM phosphate assay buffer solution are: 

K+: 100 + 18.3=118.3 mM, adjusted to 118.3-2.8 = 115.5 mM (see below) 

Cl−: 100 + 4 = 104 mM 

Mg2+: 2 mM 

HEPES1.5−: 30 mM. 

HPO4
−: 1.7 mM 

PO4
2−: 8.3 mM, adjusted to 8.3−2.8 = 5.5 mM by K+ binding (see below) 

KPO4
−: 2.8 mM 

The affinity of K+ for PO4
2− is weak, logK = 0.64 or Kd ~ 230 mM (3). The concentration of K+ bound at 

the 2nd phosphate proton position of PO4
2− (8.3 mM) is: 

( )
( )

2
2 2 2

2

4 4 4 4
1   4  
2

1 8.3 118.3 230 8.3 118.3 230 4 8

KPO PO K

.3 118.3 ~ 2.8

PO K

m

K

M
2

PO

 

K Ktot tot tot tot tot tot
K K+ +

− − + − + − + 
             = + + − + + −               

 
 = + + − + + − × × 
 

 

Finally, the ionic strength is: 

  I = 0.5×(0.1155+0.102+0.002×22+0.03×1.52+0.0045+0.0055×22) ~ -0.16 

It is 0.02/0.14=4.3% change from assay buffer ionic strength. 

5. Ionic strength of 15 mM MgATP with 10 mM phosphate (PO4) in assay buffer: similar to the case 
above, 15 mM MgATP in buffer adds ~0.07 to the assay buffer ionic strength, 15 mM MgATP would add 
~0.07 to 10 mM phosphate buffer, such that the final ionic strength is I ~ 0.16+0.07 = 0.23 and it is 64.3% 
change compared to the ionic strength of buffer alone. The MgATP activity coefficient in 15 mM MgATP 
with 10 mM phosphate is γMgATP = 0.31 and reduced 0.09 (22.5%) from activity coefficient in assay buffer 
(0.40). At this activity coefficient vs. that in the assay buffer alone, the effect concentration of 15 mM 
MgATP reduce to: 

          [MgATP]eff = 0.31×15/0.4 = 11.6 mM. 
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Section S6 

 Below are the formulas used to calculate unmeasured values in Scheme 3 using detailed balance 
(Table 1). Uncertainties were calculated with conventional error propagation methods (6). 

 

74 41
107

101

5.5 0.8 1.5 0.8
3000

d d
d

d

K K
nM

K
K ×

= = = ±


 

 

87 107
118

1110

1.7 0.0015 0.6 0.2
0.004

d d
d

d

K
K

K
M

K
µ×

= = = ±  

 

94 41
129

121

240 0.8 0.5 0.2
360

d d
d

d

K K
M

K
K µ×

= = = ±  

Supplementary Figures 

 
 
Figure S1. Distribution of initial (A, C, E) and final (B, D, F) Kd41, Kd52, and Kd63 (Scheme 1) from global 
fits in Figure 2B, 3A, and 4A (dashed lines) using numerical integration techniques in a custom 
MATLAB program. InsP6 is included in all experiments at an equimolar concentration with Gle1. 
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Figure S2. Distribution of final (B, D) and initial (A, C) ATP association (k47) and dissociation (k74) rate 
constants (Scheme 2) from fits to a kinetic simulation of Scheme 2 in Figure 5 using numerical 
integration techniques in a custom MATLAB program. Rate constants for Gle1-Dbp5 binding mantADP 
were fixed to values determined from fits in Figure 4. InsP6 is included in all experiments at an equimolar 
concentration with Gle1. 
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Figure S3. ADP rapidly equilibrates with Gle1-Dbp5 complex. (A). Time courses of FRET signal 
changes in pre-equilibrated solution of 2 µM Dbp5 (1 µM after mixing) with 20 µM Gle1 (10 µM after 
mixing) upon rapid mixing with an equal volume of 40 µM mantADP (20 µM after mixing) with various 
concentrations of ADP (from 0 to 3 mM after mixing). Continuous lines through the data are the best fits 
to double or single exponential functions (solid lines). (B) [ADP]-dependence of the observed rate 
constants from exponential fits in A (solid lines) for mantADP binding pre-formed Gle1-Dbp5 complex. 
The continuous line through the data is the best fit to Eq. S2.5 (Supplemental Information, section 2-1). 
Uncertainty bars represent standard error in the fits and are contained within the data points. The best fit 
yields an affinity for Gle1-Dbp5 binding ADP (Kd94) of 240 ± 15 µM. InsP6 is included in all experiments 
at an equimolar concentration with Gle1. 
 



21 
 

 
Figure S4. Representative SDS-PAGE gel of purified Dbp5 and Gle1. (A). SDS-PAGE gel of purified 
Gle1-MBP fractions following final FPLC separation. (B). SDS-PAGE gel of purified Dbp5 fractions 
following final FPLC separation. InsP6 is included in all experiments at an equimolar concentration with 
Gle1. 
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