Supplementary Figure and Figure legends
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Supplementary Fig. 1 SNIP1 methylation identification, and it promotes cells
colony formation and invasion.



a, Immunobloting (I1B) analysis of SNIP1 immunoprecipitates (IP) products and whole
cell lysates (WCL) derived from MDA-MB-231 and BT-549 cells treated with/without
methyltransferase inhibitors DZNep (5 uM) 12 h before harvesting (n = 3).

b, Amino acid sequence alignment of SNIP1 among the indicated species showing
Lys301, which is highlighted in red.

c, IB analysis of WCL derived from sgSNIP1 MDA-MB-231 and BT-549 cells infected
with indicated SNIP1"" or SNIP1*®*'® and selected with hygromycin (200 pg/ml) for
72 h before collection. A rabbit anti-SNIP1-K301mel antibody was generated against
a specific methyl-peptide containing me-K301 (n = 3).

d, IB analysis of K301mel and SNIP1 in wild type and SNIP1 knockout MDA-MB-231
and BT549 cells, as indicated (n = 3).

e and f, IB (e) and dot blot analysis (f) of SNIP1 K301 mono-methylation antibody with
using K301 unmodified (K301-free) and K301 monomethylated (K301-mel) peptides.
e, Top panel, IB analysis; lower panel, Coomassie brilliant blue staining. f, Dot blot
analysis of K301mel, mono-methyllysine and pan-Kmel for the peptide containing
methylated K301 (n = 3).

g, IP and WB for SNIP1 methylation in MDA-MB-231 cells. Before IP, agarose beads
were pre-incubated with a control peptide or the specific methyl-peptide containing
me-K301 (n = 3).

h, Immunohistochemistry (IHC) assays of a clinical breast cancer tissue with the
specific anti-SNIP1-K301mel antibody in the presence of a control peptide or the
specific methyl-peptide containing me-K301. IHC was performed twice on the breast
cancer sample with the blocking peptide with similar results. Scale bar, 50um (n = 3).
i and j, Cells derived from MDA-MB-231/sgSNIP1 cells re-expressed with indicated
SNIP1-WT or SNIP1-K301R and selected with hygromycin (200 ug/ml) for 72 h before
collection were subjected to colony-formation assay (i). Representative images are
shown in i, and relative colony numbers are plotted in j. Scale bars, 250 ym (n = 3).

k and I, Cells generated in i were subjected to transwell assays (k) (n = 3).
Representative images are shown in k, and relative invasion numbers are calculated
in |. Scale bars, 50 um.

Data information: In (j, |), data are expressed as the mean = SD. **P <0.001, by
two-tailed t-test. Panels (a, c-1) show 1 representative of 3 independent experiments
with similar results.
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Supplementary Fig. 2 KMT5A interacts with SNIP1 directly.

a, Upper, schematics of SNIP1 full length (FL, 1-396aa), N1 (N-terminal, 1-344aa,
contain FHA domain) mutant, N2 (N-terminal, 1-280aa) mutant, and C (C-terminal,
281-396aa, contain FHA domain) mutant plasmids; bottom, IB detection of SNIP1
methylation was immunoprecipitated with anti-HA magnetic beads in HEK-293T cells
transfected with the Flag-KMT5A and HA-SNIP1 constructs (n = 3).

b, Upper, schematics of KMT5A full length (FL, 1-352aa), N (N-terminal, 1-202aa)
mutant, and C (C-terminal, 216-343aa, contain SET domain) mutant plasmids; bottom,
IB detection of SNIP1 methylation was immunoprecipitated with anti-Flag M2 beads in
HEK-293T cells transfected with the HA-SNIP1 and Flag-KMT5A constructs (n = 3).
Data information: Panels (a) and (b) show 1 representative of 3 independent
experiments with similar results.
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Supplementary Fig. 3 KMT5A is associated with triple negative breast cancer
metastasis.

a, Representative IHC staining of KMT5A in primary TNBC and matched metastatic
lymph nodes. Scale bars: 50 ym.

b, Quantitative analysis of KMT5A IHC scores in (a) (n=100 paired samples). All Box
and whisker plots represent the median (central line), 25th-75th percentile (bounds of
the box) and 5th-95th percentile (whiskers).

¢, High expression of KMT5A protein in primary TNBC tumor tissues associated with
poor distance metastasis free survival (DMFS) in our cohort (n= 100).

d, IB analysis of KMT5A in the normal breast epithelium cell line and breast cancer
cell lines with different metastatic ability (n = 3).

Data information: In (b), data are presented as mean = SEM, **P<0.001, by
two-tailed t-test. In (c), statistical analysis was performed by log-rank test, P < 0.001.
Panel (d) shows 1 representative of 3 independent experiments with similar results.
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Supplementary Fig. 4 KMT5A mediated-SNIP1 methylation to activate
Hippo/YAP signaling, cell proliferation and invasion through regulating MARKA4.
a, IB analysis of ectopic expression of KMT5A combined with MARK4 knockdown on
Hippo signaling activation in MDA-MB-231 and BT549 cells (n = 3).

b, Cells generated in a were subjected to colony-formation assay and relative colony
numbers are plotted (n = 3).

c, Cells generated in a were subjected to mouse xenograft assays by orthotopic
injection in athymic nude mice, and tumor sizes were monitored and analyzed (n = 6
mice per group).

d, Cells generated in a were subjected to transwell assays and relative invasion
numbers are calculated (n = 3).

e-f, Effects of ectopic expression of MARK4 combined with KMT5A knockdown on cell
lung metastasis (e), and mouse lifespan (f), which these cells generated in a were
implanted into the lateral tail vein of athymic nude mice (n=6 mice per group).

Data information: In (b-f), statistical analysis was performed by two-tailed t-test. In (f),
by log-rank test. Error bars £+ S.E.M. **P <0.01, ***P <0.001. Panels (a, b, d) show 1
representative of 3 independent experiments with similar results. Panels (c, e, f) show
1 representative of 2 independent experiments with similar results.


javascript:;

N N 9 c mmm shC
$0 $0 &C’@:\ 'g mm  shc-MYC-1
E &L G mmm  shc-MYC-2
2 o o 9 o < KkDa S 5.
o — _— - @ - Jekde
C-MYC — e 60 <
— - a=a -83 1.0 = 0
MARK4 s —_— *
<
GAPDH e csessess-emsem -37 é 0.5
MDA-MB-231  BT549 =
< 0.0-
(14 MDA-MB-231 BT549
c MARK promoter d
ﬁb@ MDA-MB-231
(c-MYC ] —
—_ P
| | | mm Anti-c-MYC
-2000 | | +1 200 B 037
WT -1500 CCCCACCTGCAG -1489 = 2 —
MUT1 -1500 CCCAGTACACAG -1489 3502
c a
D, TSS 5T 0.1 ns
% |$ o\c % | |
ite 2 = 0.
| I I = AADD ,“,\06 200
2000 +1 200 A5 O 00l
WT 97 GGCCCCGTGCAG 108
MUT2 97 GGCTTTACACAG 108
e f MARK4
BT549 promoter
mm |gG = EV
_mm Anti-c-MYC > wm cMyc EK293T
© 025 e = 67 &
< £020 ® A
Q
22018 2 =
53 0.10 8o s
RZ 005 s
= 0.00 5 0
AAR9 ap00 4 WT  MUT1 MUT1+2

A0®
&0 el 50

Supplementary Fig. 5 c-MYC regulates MARK4 transcription.

a, c-MYC knockdown impaired MARK4 expression in MDA-MB-231 and BT549 cells
(n=3).

b, gRT-PCR analysis of the effect of c-MYC knockdown on MARK4 expression in
MDA-MB-231 and BT549 cells (n = 3).

¢, Schematic diagram of putative c-MYC-binding sites in MARK4 promoter.

d and e, ChIP-gPCR analysis of the binding of c-MYC with MARK4 promoter in
MDA-MB-231 (d) and BT549 (e) cells. An anti-IgG or anti-c-MYC antibody was used
(n=3).

f, Luciferase activity in HEK-293T cells co-transfected with c-MYC and luciferase
reporters containing MARK4 promoter WT, mutants, or empty vector (EV) (n = 3).
Data information: In (b-f), data are expressed as the mean + SD. *P<0.01, ***P
<0.001, by two-tailed t-test. Panels (a, b, d-f) show 1 representative of 3 independent
experiments with similar results.
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Supplementary Fig. 6 KMT5A-mediated SNIP1 methylation interacts with KAT2A
to activate MARK4 transcription.

a, Immunoprecipitation and western blotting for KAT2A knockdown on SNIP1 binding
with c-MYC protein, MARK4 expression and YAP signaling activation (n = 3).

b, MARK4 mRNA expression in KAT2A knockdown cells. Nontargeting shRNA (shC).
KAT2A knockdown (shKAT2A-1 and shKAT2A-2) (n = 3).

c, Luciferase activity of MARK4 promoter in KAT2A knockdown cells in b (n = 3).

d and e, ChIP-gPCR results showing decreased KAT2A, H3K79succ and H3K9ac
levels at the MARK4 promoter after KAT2A silencing in MDA-MB-231 (d) and BT549
(e) cells (n = 3).

f and g, Sequential ChIP-gPCR for analyzing the co-occupancy of SNIP1 and KAT2A
on the promoter of MARK4 and VEGF in MDA-MB-231 (f) and BT549 (g) cells. Data
represent yields of secondary immunoprecipitation (n = 3).

h, Luciferase (luc) reporter assay. The HEK-293T cells were co-transfected with the
reporter plasmid containing MARK4 (pGL3.0-MARK4) promoter and different
expression vectors as indicated (n = 3).

Data information: In (b-h), data are expressed as the mean + SD. *P<0.01, ***P
<0.001, by two-tailed t-test. Panels (a-h) show 1 representative of 3 independent
experiments with similar results.
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Supplementary Fig. 7 KMT5A catalytic activity depletion combined with YAP
signaling inhibition impedes triple-negative breast cancer progression.
a and b, Scatter blot showing lung metastatic nodules for MDA-MB-231 (a) and 4T1
(b) xenografts modified to express shRNA KMT5A or shRNA control and
re-expressing shRNA resistant KMTSAY" or catalytically deficient KMTSAR**C in mice
(n =5 mice for each group). Nontargeting shRNA (shC). Empty vector (EV).



¢, Invasion analysis of MDA-MB-231 and 4T1 cell lines depleted for KMT5A or control.
Cells were treated with verteporfin (10 uM) or placebo (vehicle) as indicated (n = 3).
d, Treatment schedules for the administration of verteporfin (50 mg/kg, intraperitoneal
injection once daily) to mice grafted with MDA-MB-231 cells (upper) or 4T1 cells
(lower). Control mice received placebo (vehicle). Intravenous injection (i.v.).
Orthotopic mammary fat pad injection (i.m.f.p.). Intraperitoneal injection (i.p.). (n =5
mice per group).

e, Representative bioluminescence images in d on day 21.

f and g, Quantification of the bioluminescence activity of MDA-MB-231 (f) and 4T1 (Q)
tumor xenografts from verteporfin treated and control mice in (e). (n = 5 mice per
group).

h and i, Kaplan-Meier survival analysis of mice with MDA-MB-231 (h) and 4T1 (i)
tumor xenografts (n = 5 mice per group).

Data information: In (a and b), statistical analysis was performed by two-tailed t-test.
In (c, f and g), by two-tailed Student’s t-test or one-way ANOVA. In (h and i), by
log-rank test. ***P <0.001, **P <0.01. Data are represented as mean + S.E.M. Panels
(a-c, e-i) show 1 representative of 3 independent experiments with similar results.



Supplementary Table 1 Primers for gRT-PCR assays and ChIP-gPCR assays.

Primer pairs

Sequence

gRT-PCR, GAPDH

5’-GGAGCGAGATCCCTCCAAAAT-3' and
5-GGCTGTTGTCATACTTCTCATGG-3

gRT-PCR, DAB2

5’-GTAGAAACAAGTGCAACCAATGG-3' and
5’-GCCTTTGAACCTTGCTAAGAGA-3

gRT-PCR, CDC20

5’-GCACAGTTCGCGTTCGAGA-3’ and
5-CTGGATTTGCCAGGAGTTCGG-3’

gRT-PCR, HMMR

5’-ATGATGGCTAAGCAAGAAGGC-3’ and
5-TTTCCCTTGAGACTCTTCGAGA-3

gRT-PCR, TK1

5’-GGGCAGATCCAGGTGATTCTC-3 and
5-TGTAGCGAGTGTCTTTGGCATA-3’

gRT-PCR, ECT2

5’-ACTACTGGGAGGACTAGCTTG-3 and
5-CACTCTTGTTTCAATCTGAGGCA-3’

gRT-PCR, SH2D4A

5’-CTGGAGCAAGGATCGAGGC-3’ and
5-CAGCTCTTACAAATCTGCTTCGT-3’

gRT-PCR, TSPAN3

5-GAGTGTCCCTCTTAGCTGCTG-3’ and
5-AGCTTCTTCACTACTAGAGCCTC-3

gRT-PCR, CRIM1

5’-CCCTGTGACGAGTCCAAGTG-3 and
5’-GGTTCCGTAAATCCCGAAGGT-3’

gRT-PCR, DCL1

5’-TGGAGCGGACATGATAAGCAT-3’ and
5’-AGCACAGGTGTCAACTAAATCC-3

gRT-PCR, AXL

5’-GTGGGCAACCCAGGGAATATC-3  and
5’-GTACTGTCCCGTGTCGGAAAG-3

gRT-PCR, SLIT2

5’-GCGAAGCTATACAGGCTTGAT-3’ and
5’-TGCAGTCGAAAAGTCCTAAGTTT-3’

qRT-PCR, LHFP

5’-CTCCTGCGTGGGGTTCTTTAT-3’ and
5’-CCGGTCACTATGGTGCAGAT-3

gRT-PCR, CENPF

5’-CTCTCCCGTCAACAGCGTTC-3’ and
5-GTTGTGCATATTCTTGGCTTGC-3’

gRT-PCR, FLNA

5-CTTATCGCGCTGTTGGAGGT-3 and
5’-GCCACCGACACGTTCTCAA-3

gRT-PCR, NDRG1

5-CTCCTGCAAGAGTTTGATGTCC-3 and
5-TCATGCCGATGTCATGGTAGG-3’

gRT-PCR, YAP

5’-TAGCCCTGCGTAGCCAGTTA-3 and
5-TCATGCTTAGTCCACTGTCTGT-3’

gRT-PCR, CTGF

5’-CAGCATGGACGTTCGTCTG-3 and
5-AACCACGGTTTGGTCCTTGG-3’

gRT-PCR, CYR61

5-CTCGCCTTAGTCGTCACCC-3’ and
5-CGCCGAAGTTGCATTCCAG-3

gRT-PCR, HIF-1a

5-GAACGTCGAAAAGAAAAGTCTCG-3 and
5-CCTTATCAAGATGCGAACTCACA-3’

gRT-PCR, VEGF

5’-AGGGCAGAATCATCACGAAGT-3’ and
5’-AGGGTCTCGATTGGATGGCA-3’




gRT-PCR, JAK-1

5’-CTTTGCCCTGTATGACGAGAAC-3’ and
5’-ACCTCATCCGGTAGTGGAGC-3’

gRT-PCR, JAK-2

5’-TCTGGGGAGTATGTTGCAGAA-3’ and
5’-AGACATGGTTGGGTGGATACC-3’

gRT-PCR, JAK-3

5’-TTCGGGCTACGCAAGGATTTG-3’ and
5’-AGGCTGAGACACTCACCCT-3

gRT-PCR, STAT3

5-CAGCAGCTTGACACACGGTA-3’ and
5’-AAACACCAAAGTGGCATGTGA-3

gRT-PCR, PIK3CA

5’-CCACGACCATCATCAGGTGAA-3 and
5-CCTCACGGAGGCATTCTAAAGT-3'

gRT-PCR, AKT

5-AGCGACGTGGCTATTGTGAAG-3 and
5’-GCCATCATTCTTGAGGAGGAAGT-3

gRT-PCR, SNIP1

5’-TGAAGCAGGAGCGTCTCAG-3’ and
5-TCGGTTTCTCTTACTGCGAGG-3

gRT-PCR, MARK4

5-AGGTTGCCATCAAGATTATCGAC-3’ and
5’-GATGCGGACTTCTCGGAACAG-3’

ChIP-gPCR, 5-TTCGTGTCTCTCTATCTCTA-3’ and
MARK4 promoter 5’-AAAAGCTGGGCGCCGAGAA-3’

-50 to 150

ChIP-gPCR, 5’-GCAGTGAGACCCTGTCTCAA-3 and

MARK4 promoter
-1550 to -1350

5-TCTGTGATCTTGAGGTTACC-3’




