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Peer Review File
Integrated profiling of human pancreatic cancer organoids 
reveals chromatin accessibility features associated with drug 
sensitivity



REVIEWER COMMENTS 
 
Reviewer #1, expert in organoids (Remarks to the Author): 
 
Shi X et al. established a PDAC organoid biobank with comprehensive molecular analysis and drug 
screening. This paper is well written and highly informative for cancer researchers. In addition, 
they found enhancer mutations and epigenetic lesions associated with drug susceptibility. 
Altogether, I would like to recommend its publication. Some concerns need to be addressed. I also 
suggested several points that could improve the quality of papers, as follows. 
 
1. In figure2, they showed driver gene mutations of PDAC organoids in WGS data. However, some 
important genes were lacking in the list, such as KDM6A, BRCA1/2, RB1 (for NEC), and MEN1 (for 
NET). In addition, the only list of non-coding gene mutations was shown in supplementary tables. 
 
2. Gene mutation signatures for PDAC organoids should be shown. 
 
3. Identification of Glycomet subtype is interesting. Was this subtype associated with genetic 
mutations and chromosomal instability? 
 
4. In Fig3g, the prognosis data is discrepant with the previous report. The authors should confirm 
if the previous subtype classifications (Basal vs. Classical, Bailey’s classification) can detect the 
previous papers' differences. 
 
5. NENs and ACC organoids had a distinct transcriptome profile in Fig. 3a. It would be great if the 
authors could show representative gene expressions of these organoids, such as acinar cell 
markers and neuroendocrine markers. 
 
6. The authors showed the association between chromatin accessibility peak and drug sensitivity. 
This data is interesting, but it is uncertain if these associations are specific or a random effect. 
Which gene was associated with each peak shown in Fig5h, i? 
NCOR gene regulates histone deacetylation other than JAK/STAT pathway. The authors should 
check if the Go6976 sensitive PDAC organoids have phosphor STAT3 upregulation. Similarly, they 
need to check the deacetylation status of MSH2 in Panobinostat sensitive PDAC organoids. 
 
7. How accurately the high throughput analysis was carried out. Z’ factor? 
Is there any known gene-drug correlation, such as TP53 mutation vs Nutlin-3. 
AUC value/drug/line (Extended Data Fig5 is hardly visible) 
should be shown in supplementary table. 
In Fig6g, they showed the consistent drug responses in xenografts. CAS-DAC-36 showed slow 
tumor growth, and it is difficult to judge if they were resistant to chemotherapy or did not grow in 
the mice. Perhaps, the authors needed to observe for a longer duration when tumors grow slowly. 
 
 
 
Reviewer #2, expert in ATAC-seq analysis (Remarks to the Author): 
 
In the manuscript, “Integrated profiling of human pancreatic cancer organoids reveals chromatin 
accessibility to drug sensitivity networks” Shi and colleagues generated 84 pancreatic cancer 
organoid lines, termed patient-derived pancreatic cancer organoids (PDPCO), from pancreatic 
cancer patients primary tumor, 80 from exocrine pancreatic tumors and 4 from neuroendocrine 
tumors. The authors have also generated 6 normal pancreatic ductal organoids as a control. The 
authors then assayed the genomic, chromatin accessibility landscape and transcriptome in those 
organoids by performing WGS, ATAC-seq and RNA-seq. The authors used the WGS to call known 
and unknown mutations from the PDPCO and compare the PDPCO mutations to matching 
pancreatic tissue whole exome sequencing to show the similarities between tissues and organoid. 
Using RNA-seq transcriptome data and ATAC-seq they define 4 different subtypes of pancreatic 
cancer consisting of 2 well known subtypes (basal-lie and classical) and 2 new subtypes that are 
defined by the authors as classical-progenitor and glycomet. Next the authors use ATAC-seq and 
RNA-seq data together to better define regulatory landscape, by relying on SCENIC regulon 



analysis they define RNA to ATAC connectivity and using ATAC/RNA they show TF enrichment in 
the different subclasses of pancreatic cancer and define pancreatic cancer gene-to-peak matrix. 
The author then goes into the combination of all data types they generate in order to get links 
between genomic mutations ATAC-seq peaks and RNA expression in pancreatic cancer. 
 
We find the paper “Integrated profiling of human pancreatic cancer organoids reveals chromatin 
accessibility to drug sensitivity networks” could be an important contribution to the field both as a 
great resource for the pancreatic cancer community and as an source of information for new 
transcription factor importance and mutations and their importance to different ATAC-seq peaks 
and their linkage to genes. 
 
In the abstract the authors list the following claims: 
 
Identified distinct transcription factors that distinguish molecular subtypes of pancreatic cancer 
 
predicted numerous chromatin accessibility peaks associated with gene regulatory networks 
 
discovered novel regulatory noncoding mutations with potential as cancer drivers 
revealed the chromatin accessibility signatures associated with drug sensitivity 
 
Major Issues : 
HOMER motif score and motif enrichments. Figure 4 B/C shows motif enrichments calculated using 
rank TF lists as described in the methods. We wonder why not display HOMER enrichment from 
each cluster while using a background list of all peaks detected. This way we will have strong TF 
enrichments in each cluster over the genome and not a list of TFs that are enriched between 
clusters. 
 
We find the text description of Figure4 B/C confusing, while the data seen in Fig4 B/C seems to 
come from HOMER TF enrichment (Si,j in the methods) it is not described in the text and we find it 
confusing with the RNA/ATAC score (SSi,j) in methods. 
 
In their drug screen analysis, the authors use an approach that correlates cell drug sensitivity and 
ATAC-seq peaks. This approach limits the author resolution in ATAC-seq space and leads them to 
two classes drug sensitive/non-sensitive (as seen in Figure5G). This results worries us that most of 
the changes seen in the results is due to cell death/apoptosis and cell stress in response to the 
drug. We think there is a place here for a more cluster based analysis of only the ATAC-seq peaks, 
this analysis will give more emphasis to changes in ATAC-seq and will allow TF enrichment 
analysis, following this the authors can test which drugs are more correlated with the peaks 
change in each cluster. 
 
Minor Issues : 
WGS comparison between organoids and tissue: The authors choose to show the similarities in 
genomic scale but both class specification and gene level analysis (Extended figure 2B and 2C) 
show differences between the organoids to the tissue. It will be useful to have a more accurate 
analysis showing the similarities and changes between the tissues to organoids. 
 
The authors claim 527,272 new non coding mutations and supply a detailed table where one can 
generate all the info but some information about the mutations and how many of them are only 
found in one sample and how many are shared is missing. 
 
The authors define 4 sub class of pancreatic cancer claiming that 2 of the subtypes are new, the 
authors fail to compare their new subtypes to many of the proposed subtype definitions that are 
found in the literature, for a nice summary of the different classifications (30419209) 
 
Extended Data Fig. 4 panel b and c are in reverse order in the legend 
Page 7 Line 21, Sends reader to Fig4a while meant 4b 
 
 
 



Reviewer #3, expert in multi-omics and drug response (Remarks to the Author): 
 
Shi et al. provided an overview of the chromatin accessibility profiles of 84 patient-derived 
pancreatic cancer organoid lines (PDCPOs); and integrated it with paired whole-genome, 
transcriptome and drug screening for 283 epigenetic-related chemicals and 5 chemotherapy 
agents. The authors reported that the histological and morphological patterns, as well as the 
exome landscape (specifically, cancer specific copy-number and mutational alterations) of the 
primary pancreatic tumors were conserved in the established PDCPOs. Unsupervised clustering of 
the transcriptomic profiles revealed a novel glycometabolic subtype within pancreatic ductal 
adenocarcinomas (PDAC), however this subtype did not yield distinct prognostic stratification 
compared to known subtypes (classical-like and basal-like). Next, the authors performed a 
descriptive analysis where they integrated the chromatin accessibility with the transcriptome data 
to identify subtype specific transcription factor regulons in PDAC; and putative in-cis ‘chromatin-
accessibility-peak to gene-expression’ links. By linking the genomic profiles at these identified 
chromatin-accessibility peaks, the authors also proposed regulatory noncoding mutations with 
potential cancer-related functional consequences. Next, correlating the drug sensitivity data with 
the chromatin accessibility peaks yielded potential biomarkers for predicting therapy resistance or 
sensitivity for epigenetic-related chemicals and chemotherapy agents such as 5-fluorouracil and 
paclitaxel. Finally, the authors reported that patients with paired organoids demonstrating 
sensitivity to chemotherapy agents survived significantly longer post-surgery and adjuvant 
therapy. Post-treatment imaging and cancer-antigen marker data available for the patients, as 
well as drug screening data in paired organoid-derived xenografts (generated by the authors) 
further corroborated the PDCPO drug response thus showcasing its utility in personalized medicine. 
 
Synopsis: 
The authors establish patient-derived pancreatic cancer organoid lines and performed an 
integrative analysis of paired chromatin accessibility, transcriptomic, genomic profiles and high-
throughput drug screening. Overall, the study provides a useful organoid with some novel findings 
that demonstrate the utility of organoids in predicting therapeutic outcomes in pancreatic cancer. 
However, the rational for some of the approaches is not clear and impacts the ability to assess the 
significance of the relationships highlighted and conclusions drawn from them. 
 
Additional investigations are suggested as follows. 
 
1. Tissue microenvironment can contribute to a large confounding effect in cancer epigenomic 
studies due to different cell types have distinct epigenetic signatures. The authors have indicated 
that analyzing ATAC-seq profiles in primary pancreatic tumor tissue can be challenging due to 
presence of excessive stroma. The authors should report on the (microenvironment) composition 
of the patient-derived organoid lines generated compared to the primary tumors, and state what 
measures were taken place to account for any confounding effects (if present). 
 
2. The authors should clarify how many tests were performed to identify subtype-specific TF 
regulons (for p_(i,j)^1 and for p_(i,j)^2). For a large number of tests, the authors should use FDR 
(or similar) adjusted p-values. 
 
3. The authors calculate correlations over all possible interactions between ATAC-seq peak 
accessibility and gene expression within 500 kb of the peaks (after filtering for low variance) to 
identify putative links. The authors should state the total number of interactions tested and use 
FDR (or similar) adjusted p-values. 
 
4. The authors calculate correlations over possible interactions between ATAC-seq peak 
accessibility and drug sensitivity to identify putative links. The authors should state the total 
number of interactions tested and use FDR (or similar) adjusted p-values. 
 
5. In Figure 5j, 10 representative samples were chosen to showcase differential accessibility at a 
putative enhancer locus. Could the authors clarify how these samples were chosen? Were these 
the samples that had the most extreme differences? 
The authors should repeat the boxplots Figure 5k,l,m over all samples (if necessary stratify the 
ATAC-peak into tertiles – high, medium, low). 



Could the authors also clarify/ repeat this for Extended Data Figures 5g-q. 
 
6. The authors have proposed specific examples of putative chromatin accessibility peaks as 
predictive biomarkers of drug response in the PDCPOs. Can the authors comment on whether 
these epi(genomic) alterations presented intrinsic resistance/ sensitivity or could they be inducing 
resistance to the therapy. And specifically discuss their application in novel treatment strategies? 
 
7. The authors have compiled and performed drug screening on a large library of chemicals 
targeting epigenetic-related signaling pathways, with a decent number (59) showing inhibition in 1 
or more PDCPOs. The authors should provide a figure for the resistance/ sensitivity for these 
agents in the PDCPOs similar to Figure 6a. 
 
8. Do the authors have any data on the consequence of any epigenetic-related therapies on the 
epigenome of the PDCPOs? For instance, ATAC-seq of the PDCPOs before and after treatment for 
epigenetic-therapies demonstrating strong inhibition. 
 
9. Were post treatment imaging results available for more than 3 patients: CAS-DAC-24/22/20? If 
so, the authors should provide a graphical summary of the correlation between the imaging results 
and organoid sensitivity for all patients with available paired data treated with the same (or similar 
mode-of-action) chemotherapy agents as they have done for these 3 examples. 
 
 
 
Could the authors improve the clarity for the approaches used and conclusions drawn for the 
following? 
 
1. What was the rationale to use log2(copy number)/2>0.1 as a threshold for gains/ amplifications 
in the Extended Data Figure 2. Would log2(copy number/2)>0.1 be a better threshold? 
 
2. The authors indicate that the somatic mutational profiles of the PDCPOs were similar to that 
observed in the TCGA pancreatic adenocarcinoma (PAAD) dataset. Could the authors include 
evidence for this conclusion? 
 
3. Line 1-2 on page 6 is unclear. Can the authors consider rephrasing? 
 
4. Extended Data Figure 3a details multiple solutions for determining the number of clusters for 
NMF of the transcriptomic profiles for the exocrine group. The authors should clarify why k=4 was 
chosen over the other solutions? Also check the legend for k=3,4 in the figure. 
 
5. In Figure 3b/ Extended Data Figure 3b, the heatmap columns are indicated by samples, 
however, the legend states otherwise. 
 
6. Figure 4b is not mentioned in the text. 
 
7. In line 27, page 8 the authors state that “95% of genes were regulated by multiple peaks (≤ 6) 
in the distal ATAC-seq peak to-gene links”. However, this conclusion is incorrect since most of 
these genes were regulated by only 1 peak. 
 
8. The authors should clarify what is the evidence to back the claim “ATAC-seq peak at 
chr6:139728666-139729424 predicted sensitivity to oxaliplatin” in line 23, page 6. 
 
9. Figure 6a legend is misleading in how PDCPOs were divided into 3 categories for chemo 
sensitivity/ resistance. The figure suggests this is done by tertiles, while the text/ figure annotation 
suggests that is done by AUC value thresholds of 33%,67%. Consider rephrasing. 
 
10. The authors demonstrate CAS-DAC-14, as an example with significant inter-agent variability 
within a single organoid. The authors should include a figure demonstrating this graphically for all 
organoids, and link each patient with the 3 groups defined for Figure 6c to ease the understanding 
of the group definitions. For instance, it is not immediately clear what patients were included in the 



resistance group – did these patients demonstrate resistance in the paired organoids for ALL 
chemotherapy agents? 
 
11. The authors generated organoid derived xenografts (ODX) for 3 patients: CAS-DAC-18/20/36. 
The authors should clarify whether ODXs were attempted/ generated for other patients and why 
these 3 were chosen to be described in the manuscript (others had also shown similar resistance/ 
sensitivity to chemotherapy agents such as CAS-DAC 22/24). 
 
12. What timepoint was used for measuring reduction in tumor growth in the ODXs post 
treatment. ODX-36 response looks similar at day 20 for all 3 agents shown, but the authors 
indicate a notable difference. Could the authors clarify this? 
 
 
 



Please see below for the detailed responses to each Reviewer’s comments 

Reviewer #1                                                                                   

Shi X et al. established a PDAC organoid biobank with comprehensive molecular analysis and drug 

screening. This paper is well written and highly informative for cancer researchers. In addition, they found 

enhancer mutations and epigenetic lesions associated with drug susceptibility. Altogether, I would like to 

recommend its publication. Some concerns need to be addressed. I also suggested several points that 

could improve the quality of papers, as follows. 

Point 1: In figure2, they showed driver gene mutations of PDAC organoids in WGS data. However, some 

important genes were lacking in the list, such as KDM6A, BRCA1/2, RB1 (for NEC), and MEN1 (for NET). 

In addition, the only list of non-coding gene mutations was shown in supplementary tables. 

We thank Reviewer #1 for this valuable advice. We summarized the somatic mutation profiles of our 

PDPCOs, in which top mutated genes of pancreatic ductal adenocarcinoma (PDAC), acinar cell 

carcinoma (ACC) and intraductal papillary mucinous neoplasms (IPMN) were listed at left panel and 

those of pancreatic neuroendocrine neoplasms (NEN) were at right (Fig. 2). As suggested, we carefully 

checked the specific genes (KDM6A, BRAC1/2, RB1 and MEN1) in the four neuroendocrine 

tumor-derived organoid lines and showed that they were not mutated. However, among our NEN 

organoid lines, we have identified many other typical gene alterations. Firstly, KRAS mutation and TP53 

mutation, which are common in malignant NENs, were found in CAS-NEN-1 and CAS-NEN-4. Secondly, 

the G1 phase NET organoid line CAS-NEN-4 with few mutations exhibited significant deep deletion in 

CNV of DAXX, which is closely correlated with pancreatic neuroendocrine tumorigenesis. Another 

aggressive G2 phase NET organoid line CAS-NEN-2 carried both deep deletion of DAXX and TP53 

mutation, which mirrored its clinical metastasis. These results provided further biological identification of 

these neuroendocrine neoplasm-derived organoids besides for histological examination. Following the 

advice, we have supplied the detailed information of coding gene mutations in the Supplementary Table 2 

in the revised manuscript. 

 

Point 2: Gene mutation signatures for PDAC organoids should be shown. 

We agree with Reviewer #1’s constructive suggestion and perform gene mutational signature analysis in 

the revised manuscript. Three mutational signatures (A, B and C) were identified by the NMF method in 

the 70 exocrine organoids, which were highly similar to the Cosmic signatures: Cosmic signature 5, 17 

and 1, respectively (Extended Data Fig. 2b). Cosmic signature 1 and 5 were reported to exist in all cancer 

types, and Cosmic signature 17 was also found in many gastrointestinal cancers. The aetiology of Cosmic 

signature 5 and 17 remained unknown, while Cosmic signature 1 was thought to be the result of an 

endogenous mutational process initiated by spontaneous deamination of 5-methylcytosine. Based on 

signature exposure, the 70 exocrine organoids were divided into three clusters, among which the cluster 

enriched for signature C accounted for the majority of exocrine organoids (47/70) and signature B 

exhibited notable advantages in only two organoid lines (2/70) (Extended Data Fig. 2c). These results 

revealed the commonly enriched gene mutational signatures in exocrine organoids and Cosmic signature 

1 as well as Cosmic signature 5 achieved the major compositions. The above contents have been 

supplied in the revised manuscript. 

 



Point 3: Identification of Glycomet subtype is interesting. Was this subtype associated with genetic 

mutations and chromosomal instability? 



We are grateful that Reviewer #1 had such shrewd observation. Actually, we do have carefully 

investigated the association between RNA subtypes and genetic mutations as well as chromosomal 

instability, and we would like to share with Reviewer #1 for some of our new data, which are still regarded 

under the confidential level for both our collaborators and us because we have intended to prepare 

another publication independently. Chromosomal instability was summarized with a weighted sum 

approach (Vasaikar et al., Cell, 2019, PMID: 31031003), in which the absolute log2 copy ratios of all 

segments within the given chromosome were weighted by the length of each segment and summed up to 

derive the CIN score. Firstly, the comparison of chromosomal instability showed that there was no 

significant difference between RNA subtypes (Referee Fig. 1a). Secondly, we explored the correlation of 

total mutation number, which also exhibited similar results between RNA subtypes (Referee Fig. 1b). 

Finally, we focused on the specially enriched genetic mutation and CNV in each RNA subtypes. Among all 

genes, a total of 7 genetic mutations and 26 CNVs were found enriched in one of the RNA subtypes 

(Referee Fig. 1c). Further sheltered by cancer-related genes, we showed that glycomet subtype was 

significantly enriched for SMAD4 mutation (Referee Fig. 1c). Previous studies have demonstrated that 

SMAD4 deficiency was responsible for increased aerobic glycolysis in both colon cancer and pancreatic 



cancer (Papageorgis et al., Cancer Res, 2011, PMID: 21245094; Liang et al, Gut, 2020, PMID: 31611300), 

which highly consisted with the biological feature of glycomet subtype. In this study, we mainly focused on 

identifying the general transcriptomic classification of our PDPCOs rather than an intensive investigation 

into specific classes. 

 

Point 4: In Fig3g, the prognosis data is discrepant with the previous report. The authors should confirm if 

the previous subtype classifications (Basal vs. Classical, Bailey’s classification) can detect the previous 

papers' differences. 

We thank Reviewer #1 for pointing out this important concern. In order to examine if the previous subtype 

classification (Basal vs. Classical, Bailey’s classification) can detect the difference on prognosis in 

previous paper, we generated previous classification on the TCGA PAAD cohort, which was used for 

survival analysis in our study. According to the signature genes of Bailey’s classification (Squamous for 

Basal and Progenitor for Classical, Referee table 1), we divided the TCGA PAAD cohort clearly into two 

classes: squamous and progenitor (Referee Fig. 2a). In further survival analysis, better outcomes could 

Referee Fig. 1 | Comparison of genetic mutations and chromosomal instability between RNA 

subtypes in the 69 exocrine PDPCOs. a, Comparison of chromosomal instability between each two 

RNA subtypes and differences were calculated by Dunn's multiple comparisons test. b, Comparison of 

total mutation number between each two RNA subtypes and differences were calculated by Dunn's 

multiple comparisons test. c, The specifically enriched genetic mutations and CNVs in one of the RNA 

subtypes among cancer-related genes (top panel) and all genes (bottom panel). Gene names in red 

indicated the specifically enriched genetic mutations and CNVs of glycomet subtype. The -log10 

(P-value) was showed at right. 



be observed in pancreatic cancer patients classified as progenitor subtype compared with squamous 

subtype with a borderline p-value of 0.049, which consisted with the prognosis prediction in previous 

paper (Referee Fig. 2b). In this study, we identified 4 classes to improve the prognostic value of 

transcriptomic subtype: classical-like, basal-like, classical-progenitor and glycomet, among which 

traditional classical subtype was subdivided into classical-like class and classical-progenitor class. As 

expected, tradational classical subtype (classical-like and classical-progenitor) exhibited a trend of better 

survival in the survival analysis performed with validation in TCGA PAAD dataset, in which no statistical 

significance might be due to the existence of another glycomet class (Extended Data Fig. 3). More 

importantly, we revealed that only the classical-progenitor class had a favorable prognosis, while 

classical-like class showed similar poor outcomes to the other two classes. These results indicated that 

such transcriptomic subtype not only recapitulated the prognostic value of previous basal and classical 

classification, but also further unveiled potential survival heterogeneity in conventional classical subtype. 

 

Point 5: NENs and ACC organoids had a distinct transcriptome profile in Fig. 3a. It would be great if the 

authors could show representative gene expressions of these organoids, such as acinar cell markers and 

neuroendocrine markers. 

We thank Reviewer #1 for the constructive suggestion to help improve our study. According to the 

previous studies, we identified several representative genes of acinar cell, neuroendocrine cell and PDAC, 

which were used for comparison. In the ACC organoid line, we found markedly higher expression of 

acinar cell lineage marker such as AMY2B (Park et al., Cancer Res, 2015, PMID: 26122842), BHLHA15 

(also known as MIST1) (Direnzo et al., Gastroenterology, 2012, PMID: 22510200), SLC38A3 (Rooman et 

al., Pancreatology, 2013, PMID: 24075511) (Extended Data Fig. 3a). For the 4 neuroendocrine organoid 

lines, significant enrichment of well-known neuroendocrine marker genes like NKX6-1 (Tseng et al., Am J 

Surg Pathol, 2015, PMID: 25871618), NEUROD1 (Bailey et al., Nature, 2016, PMID: 26909576), NKX2-5 

(Kawasaki et al., Cell, 2020, PMID: 33159857) and ASCL1 (Augustyn et al., Proc Natl Acad Sci U S A, 

Referee Fig. 2 | The subtype classifications (Basal vs. Classical, Bailey’s classification) of the 

TCGA PAAD cohort and survival analysis. a, Heatmap of the previous subtype classifications 

(Squamous for Basal vs. Progenitor for Classical, Bailey’s classification) in the TCGA PAAD cohort. 

Samples are listed in rows, and signature genes are listed in columns. b, Kaplan-Meier survival 

analysis showing the overall survival characteristics of patients with the previous subtype 

l ifi ti



2014, PMID: 25267614) was observed, which highly supported their neuroendocrine origins (Extended 

Data Fig. 3a). Additionally, we showed relative low expression of the above marker genes in the PDAC 

organoid lines, while higher expression of many PDAC marker genes was confirmed. These results 

strongly helped to provide a credible identification of distinct transcriptome profiles among ACC, NEN and 

PDAC organoid lines and has been added to the Extended Data Fig. 3a in the revised manuscript. 

 

Point 6: The authors showed the association between chromatin accessibility peak and drug sensitivity. 

This data is interesting, but it is uncertain if these associations are specific or a random effect. Which 

gene was associated with each peak shown in Fig5h, i? 

NCOR gene regulates histone deacetylation other than JAK/STAT pathway. The authors should check if 

the Go6976 sensitive PDAC organoids have phosphor STAT3 upregulation. Similarly, they need to check 

the deacetylation status of MSH2 in Panobinostat sensitive PDAC organoids. 

We thank Reviewer #1 for pointing out these valuable questions and helping us to improve our study. To 

address Reviewer’s concern, we have carefully performed analysis on our data and validated the 

association between chromatin accessibility peak and drug sensitivity. 

1) As suggested by the Reviewer #1, we tried to further investigate the cases in Fig. 5h, I, while we 

found that both the peak at chr1:179797737-179798364 and the peak at chr14:91694414-91695079 

were not included in the peak-gene linkages of our PDPCOs, which might be due to the strict dual 

requirement on correlation and p-value for identifying significant peak-gene links. We then explored 

the regulatory function of these two peaks with public database. Among the four commonly used 

dataset about enhancer-gene links generated from normal tissues and tumor cell lines, five and six 

genes were showed associated with the peak at chr1:179797737-179798364 and the peak at 

chr14:91694414-91695079, respectively (Supplementary table 2), while only the correlation between 

RPS6KA5 gene and the peak at chr14:91694414-91695079 exhibited a p-value of 0.04199 in our 

PDPCOs with a low correlation of 0.3191065. Previous study has suggested that RPS6KA5 gene 

might have interactions with HDAC activity (Botia et al., PLoS One, 2012, PMID: 23110077) possibly 

supporting the relationship we observed between the peak at chr14:91694414-91695079 and the 

sensitivity of Domatinostat, a HDAC inhibitor. The above results indicated that the present 

understanding of enhancer-peak linkage was limited to study of conventional tumor cell line and 

normal tissues. Since huge difference existed between normal tissues/cell lines and tumor samples, 

further investigation into tumor samples, especially pancreatic cancer was urgently needed, where 

our PDPCOs has provided valuable resource. 

2) Following the advice, we have carefully checked the phosphorylation of STAT3 among the 10 

organoid lines in Extended Fig. 5g. To our surprise, notably higher phosphorylation of STAT3 was 

observed in the peak low group compared with peak high group (Referee Fig. 3a), which was different 

from our previous thoughts. However, a most recently published study revealed that the common 

function of NCOR2 was repressing gene expression and could work as a negative regulator of 

JAK/STAT3 signal pathway in estrogen receptor positive breast cancer (Tsoi et al., Cancers (Basel), 

2021, PMID: 33806019). According to the above results, we inferred that the organoid lines in the 

peak low group might be free from the negative regulation of NCOR2 on JAK/STAT3 signal pathway, 

which resulted in higher phosphorylation of STAT3 and consequently resistant to the upstream 

inhibition (JAK inhibitor Go6976). In the peak high group, the JAK/STAT3 signal pathway in these 

organoid lines was suppressed by the high expression of NCOR2 leading to relatively low 



phosphorylation of STAT3, which indicated that the oncogenic JAK/STAT3 signal pathway could 

function at activation and made them sensitive to Go6976. Therefore, we have rephrased relevant 

results from “which is involved in constitutive activation of the oncogenic JAK/STAT3 pathway in 

anaplastic large cell lymphomas” to “which is involved in regulation of the oncogenic JAK/STAT3 

pathway in anaplastic large cell lymphomas and estrogen receptor positive breast cancer” and added 

the new reference in the revised manuscript. We also tried to carefully check the acetylation status of 

MSH2 in the 10 organoid lines involved in Extended Data Fig. 5j. Firstly, we performed western 

blotting of MSH2, in which PDPCOs in peak high group exhibited markedly higher level compared 

with those in peak low group (Referee Fig. 3b). Then we further tried to test their acetylation status. 

However, after multiple repeated attempts with acetylated-lysine antibody (CST, catalog: #9441), we 

found it was indeed hard to achieve reliable data. To some extent, a higher level of MSH2 protein in 

peak high group helped to provide us with further validation of the specific correlation between the 

chromatin accessibility peak at chr2:47355361-47355625 and MSH2 gene.  

In summary, we have performed analyses on our ATAC-Seq data in this study, which demonstrated that 

the potential association between chromatin accessibility peak and drug sensitivity was more likely to be 

specific rather than a random effect. 

 

Point 7: How accurately the high throughput analysis was carried out. Z’ factor? 

Is there any known gene-drug correlation, such as TP53 mutation vs Nutlin-3. 

AUC value/drug/line (Extended Data Fig5 is hardly visible) should be shown in supplementary table. 

In Fig6g, they showed the consistent drug responses in xenografts. CAS-DAC-36 showed slow tumor 

growth, and it is difficult to judge if they were resistant to chemotherapy or did not grow in the mice. 

Perhaps, the authors needed to observe for a longer duration when tumors grow slowly. 

We thank Reviewer #1 for raising these important comments. To address Reviewer’s concern, we have 

carefully performed analysis on our data and validated the gene-drug correlation both in vitro and in vivo. 

1) The high throughput analysis was mainly conducted in the establishment of peak-to-gene links and 

peak-to-drug links where Z score method was routinely used. The z-score was defined as: ݖ = 
௫ି௫̅ௌ , 

where ̅ݔ was the mean of sample, ܵ was the standard deviation of sample. For ATAC-seq peak, we 

calculated the z-score with openness across samples, while in gene expression, we used FPKM. 

Moreover, the drug AUC also was normalized as z-score. 

2) In the drug screening of our PDPCOs, we indeed have tested many promising target inhibitors 

Referee Fig. 3 | The association investigation of the selected peak-gene links with western blot. 

a, Western blotting of phosphor STAT3 between peak high group and peak low group of PDPCOs 

involved in Extended Data Fig. 5g. b, Western blotting of MSH2 between peak high group and peak 

low group of PDPCOs involved in Extended Data Fig. 5j. 



including Nutlin-3 for another research. Although comparison of AUC between TP53 wild type and 

TP53 mutation organoid lines was not significant, which might be due to the limited size of TP53 wild 

type cohort or some influence from other signaling pathway, a notable trend that TP53 wild type 

organoid lines exhibited higher sensitivity to Nutlin-3 could be observed as expected (Referee Fig. 4a, 

b). Another well-known gene-drug correlation lied in KRAS G12C mutation VS AMG510 (Moore et al., 

Cancer Cell, 2021, PMID: 34375610). According to genomic analysis, we found that CAS-NEN-4 

carried KRAS G12C mutation. Addition of such special organoid line into the screening of AMG510 

(target therapy of KRAS G12C mutation recently approved by FDA (Blair et al., Drugs, 2021, PMID: 

34357500)) revealed that organoid lines with KRAS G12C mutation showed extremely high sensitivity 

to AMG510 compared with those without KRAS G12C mutation (Referee Fig. 4c). According to the 

above results, we provided positive cases for known gene-drug correlation, which helpfully indicated 

that our PDPCOs could work as a credible high throughput drug screening platform. In this study, we 

mainly focused on the analysis of the selected epigenetic chemicals and chemotherapy, while detailed 

study of those promising target inhibitors were considering for another manuscript. 

3) As suggested, we have supplied a detailed table (Supplementary Table 8) for the normalized AUC of 

drug screening in 39 exocrine PDPCOs with 59 chemical and 5 chemotherapeutic drugs in the 

revised manuscript. 

4) To address the concerns about slow tumor growth in xenografts of CAS-DAC-36, we followed the 

Reviewer #1’s suggestion to observe for a longer duration using ODX-36 generated with the same 

method in the manuscript. After prolonged 4 weeks of chemotherapy treatment, the vehicle group 

showed a notable increase in tumor volume for about 2.5 folds (Fig. 6g). Moreover, further analysis 

indicated that ODX-36 exhibited significant resistant to all of PTX, GEM and 5-FU with no statistical 

difference in tumor volume compared to Vehicle group (Fig. 6g and Extended Data Fig. 7f). These 

results provided solid evidence that ODX-36 was resistant to chemotherapy of PTX, GEM and 5-FU, 

which mirrored organoid sensitivity and patient clinical response, and we have supplied the new 

results to replace the original ones in the Fig. 6g and Extended Data Fig. 7f of revised manuscript. 

In summary, we have shared some new data from in vitro and in vivo experiments to validate the 

gene-drug correlation and confirm the accuracy of our organoid sensitivity. 

Reviewer #2                                                                                  

 
Referee Fig. 4 | Drug screening of Nutlin-3 and AMG510 in the PDPCOs. a, Dose-response curves 

for Nutlin-3 in TP53 wild type (n=3) and TP53 mutation organoid lines (n=36). b, Box plot showing 

comparison of the AUC of Nutlin-3 in TP53 wild type (n=3) and TP53 mutation organoid lines (n=36). 

c, Dose-response curves for AMG510 in KRAS G12C mutation (n=1) and KRAS no-G12C mutation 

organoid lines (n=39). 



We find the paper “Integrated profiling of human pancreatic cancer organoids reveals chromatin 

accessibility to drug sensitivity networks” could be an important contribution to the field both as a great 

resource for the pancreatic cancer community and as an source of information for new transcription factor 

importance and mutations and their importance to different ATAC-seq peaks and their linkage to genes. 

 

Major 1: HOMER motif score and motif enrichments. Figure 4 B/C shows motif enrichments calculated 

using rank TF lists as described in the methods. We wonder why not display HOMER enrichment from 

each cluster while using a background list of all peaks detected. This way we will have strong TF 

enrichments in each cluster over the genome and not a list of TFs that are enriched between clusters. 

We thank Reviewer #2 for pointing out this important concern. In this study, we tried to unveil the specific 

enriched transcription factor (TF) regulons in each cluster, in which RNA-seq data (generating TF regulon 

sets) and ATAC-seq data (generating enriched TF) were integrated as shown in Fig. 4a-c to help ensure a 

credible result. To generate enriched TF with ATAC-seq data, we firstly performed HOMER motif 

enrichment, in which we originally used random chromatin regions as the background. Following 

suggestions of the Reviewer #2, we repeated motif enrichment results with all peaks detected as the 

background, and comparison of motif enrichment p-value between these two settings showed that 

significantly high similarity could be observed among the four PDAC subtypes (Referee Fig. 5a and 

Referee table 3). For the part of exocrine and neuroendocrine organoid lines, we also found great 

similarity in the neuroendocrine group, while extremely low correlation was observed in exocrine group 

(Referee Fig. 5b and Referee table 3), which might be due to the overwhelming majority of specifically 

enriched peaks in exocrine group. We proposed that when using all peaks detected as background, 

significantly higher number of specifically enriched peaks in one group would absolutely impair its 

analysis of motif enrichment. Therefore, we preferred to using random chromatin regions as the 

Referee Fig. 5 | Comparison of motif enrichment p-value between using random chromatin 

regions and using all peaks detected as backgroud. a, Correlation heatmap of motif enrichment 

p-value between using random chromatin regions (Original) and using all peaks detected (New) as 

backgroud among the four PDAC subtypes. b, Correlation heatmap of motif enrichment p-value 

between using random chromatin regions (Original) and using all peaks detected (New) as backgroud 

in the exocrine and neuroendocrine groups. 



background. Secondly, we identified cluster specific enriched TF by the motif enrichment p-value. In 

addition to conventional threshold of p-value <0.05, we tried to employ a rank method (Kawasaki et al., 

Cell, 2020, PMID: 33159857) in this study to better elucidate the heterogeneity between clusters. As 

described in the method part, based on motif enrichment p-value, the rank method compared the 

enrichment p-value of one motif between clusters in detail and would allow the enrollment of relatively 

enriched TF whose p-value might be ≥0.05. After identification of subtype-specific enriched TFs, TF 

regulon sets generated by RNA-seq data were further incorporated to finally reveal specific enriched TF 

regulons in each cluster. The whole analysis protocol strongly ensured the reliability of our study results, 

and a particular combination on inclusion criteria of enriched TF by ATAC-seq could widely help to 

facilitate more comprehensive understanding of heterogeneity in pancreatic cancer. 

 

Major 2: We find the text description of Figure4 B/C confusing, while the data seen in Fig4 B/C seems to 

come from HOMER TF enrichment (Si,j in the methods) it is not described in the text and we find it 

confusing with the RNA/ATAC score (SSi,j) in methods. 

We Thank Reviewer #2 for the valuable comments and we are sorry for the confusing ܵ and ܵ ܵ, 
methods. For ATAC-seq data, we used ܵ to identify specific motif ݅ enriched in given subtype	݆. Based 

on ܵ,  ܵ ܵ, was further calculated to reveal enriched TF regulon in specific subtype with both ATAC-seq 

data (generating ܵ) and RNA-seq data (generating TF regulon sets). The combination of epigenomics 

and transcriptomics could significantly ensure the reliability of results we presented. In Fig. 4b, c, the 

enriched TF regulons of exocrine and neuroendocrine PDPCOs was shown in b, and the enriched TF 

regulons among the four PDAC transcriptome subtypes was shown in c. 

 

Major 3: In their drug screen analysis, the authors use an approach that correlates cell drug sensitivity 

and ATAC-seq peaks. This approach limits the author resolution in ATAC-seq space and leads them to 

two classes drug sensitive/non-sensitive (as seen in Figure5G). This results worries us that most of the 

changes seen in the results is due to cell death/apoptosis and cell stress in response to the drug. We 

think there is a place here for a more cluster based analysis of only the ATAC-seq peaks, this analysis will 

give more emphasis to changes in ATAC-seq and will allow TF enrichment analysis, following this the 

authors can test which drugs are more correlated with the peaks change in each cluster. 

We extremely appreciate Reviewer #2 for providing these important concerns. Actually, we do have tried 

to perform clustering with only ATAC-seq peak and we would like to share some results with Reviewer #2. 

The NMF clustering for the ATAC-seq peak suggested that k=2, k=8 and k=4 were the top three 

classifications (Referee Fig. 6a). Considering that k=2 provided limited insights on revealing pancreatic 

cancer heterogeneity and k=8 divided the samples too dispersedly, we have chosen k=4 as the 

classification for the ATAC-seq peak (Referee Fig. 6b). Combined with motif enrichment from 

subtype-specific peak and corresponding TF expression, the 10 most enriched TFs were showed in the 

four classes, in which we surprisingly found that a large amount of the enriched TFs overlapped among 

the different classes (Referee Fig. 6c). Since all of the used organoid lines were generated from the same 

pathological type-pancreatic cancer, high similarity of enriched TFs between clusters such as FOS (Baron 

et al., Cell Syst, 2020, PMID: 32910905), KLF5 (He et al., Gastroenterology, 2018, PMID: 29248441) and 

EHF (Liu et al., J Exp Med, 2019, PMID: 30733283), which might play critical roles in pancreatic lineage 



and tumorigenesis, could be possible. Moreover, according to the difference between clusters, we still 

found some specific correlations between TFs and drugs. In the class4, we identified the enrichment of 

MYC, which has been reported to regulate downstream effectors by promoting expression of HDAC5 

(Xue et al., Br J Cancer, 2019, PMID: 31690832). As expected, comparison of drug sensitivity to AR-42, a 

novel class of HDAC inhibitor revealed significantly higher sensitivity in class4 rather than the other three 

classes. Another case lied in the correlation between AP-1 complex (FOS/FOSL1/JUN) and PKC, which 

was previously studied that PKC was crucial for the activation of AP-1complex (Sokolova et al., Gut, 2013, 

PMID: 22442164). In the drug screening of Go6976, a PKC inhibitor, we showed that the AP-1 complex 

 
Referee Fig. 6 | ATAC-seq peak based classification of the PDPCOs and motif enrichment. a, 

Detailed data from unsupervised NMF clustering in the 40 exocrine PDPCOs (39 CAS-DACs and 1 

CAS-IPMN). Solutions were shown for classes k=2, k=4 and k=8. b, Heatmap showing class-specific 

peaks when choosing k=4 as the classification for ATAC-seq peak. c, Scatter plot showing the motif 

enrichment and expression of corresponding TF in differenct classes when choosing k=4 as the 

classification for ATAC-seq peak. d, Comparison of the AUC of AR-42 between class1+class2+class3 

and class4 in the 39 exocrine PDPCOs (38 CAS-DACs and 1 CAS-IPMN) with drug test data. e, 

Comparison of the AUC of Go6976 between class1+class2 and class3+class4 in the 39 exocrine 

PDPCOs (38 CAS-DACs and 1 CAS-IPMN) with drug test data. 



enriched class1 and class2 were more sensitive compared with class3 and class4. The above association 

between ATAC-seq cluster and drug sensitivity provided some further evidence for the credibility of our 

high throughput drug screening. However, considering the relative high overlap of enriched TFs between 

clusters and a few target inhibitors for the lineage and tumorigenesis associated TFs, we preferred to 

choosing a novel resolution in our manuscript. Since regulatory elements were well known to function in 

cellular physiological processes and many of them could even act as a live-or-die checkpoint, we have 

tried to focus on investigation of specific correlation between recurrent ATAC-seq peak and drug 

sensitivity. The identified peak-drug relationship could not only help to shed light on potential mechanisms 

of underlying gene regulatory networks, but also provide a new direction for developing target therapy 

with ATAC-seq peak as the special biomarker. In this study, the feasibility of such resolution has been 

proven by several well demonstrated cases of peak-gene links including both chemotherapy and 

chemicals, and further investigation was needed to help elucidate more practical networks.  

 

Minor 1: WGS comparison between organoids and tissue: The authors choose to show the similarities in 

genomic scale but both class specification and gene level analysis (Extended figure 2B and 2C) show 

differences between the organoids to the tissue. It will be useful to have a more accurate analysis 

showing the similarities and changes between the tissues to organoids. 

We are grateful to Reviewer #2 for this helpful advice to improve our study. To more accurately assess the 

similarity between our PDPCOs and paired tumor tissues, we examined the purity of PDPCOs (WGS) and 

tissues (WES), and further compared their concordance in mutations among exon regions. As expected, 

the estimated cellularity of theses tissues was relatively high at around 40%, since we have selected 

samples with enough tumor cells based on histological examination (Extended Data Fig. 2d). Besides, 

extremely high purity was observed in our PDPCOs, which has been reported one of advantages for 

organoid model (Extended Data Fig. 2d). Comparison of detailed mutations among exon regions between 

organoids and matched tissues showed that majority of the 10 pairs achieved favorable concordance of 

50.00%-60.00%, and the organoid line derived from ACC which was characterized by abundant tumor cell 

exhibited the highest concordance of 74.60% (Extended Data Fig. 2d). Moreover, we found that most of 

mutations in exon regions of tumor tissues could be similarly detected in their corresponding organoid 

lines, in which 6 pairs reached to more than 70% (Extended Data Fig. 2d, e). The above results, which 

has been added to Extended Data Fig. 2 of the revised manuscript, provided a more accurate analysis of 

similarities and changes between the tissues and organoids, and helped to demonstrate that our 

PDPCOs could maintain the genomic features of original tumors. 

 

Minor 2: The authors claim 527,272 new non coding mutations and supply a detailed table where one can 

generate all the info but some information about the mutations and how many of them are only found in 

one sample and how many are shared is missing. 

We thank Reviewer #2 for the constructive suggestion. We have supplied the detailed information about 

shared noncoding mutation in Supplementary table 2. In detail, we identified 527,272 noncoding 

mutations in total, among which 5,262 noncoding mutations were found in at least two organoid lines and 

the remaining 522,010 noncoding mutations were only found in one sample. 

 

Minor 3: The authors define 4 sub class of pancreatic cancer claiming that 2 of the subtypes are new, the 



authors fail to compare their new subtypes to many of the proposed subtype definitions that are found in 

the literature, for a nice summary of the different classifications (30419209) 

We thank Reviewer #2 for pointing out this valuable concern. To clarify the association between our 

transcriptomic subtypes and the reported classifications, we clustered our PDPCO based on signature 

genes from previous studies (Referee table 1). Since organoid model was characterized by high cell purity, 

we specially used “Squamous subtype” and “Progenitor subtype” in Bailey et al. classification (Bailey et 

al., Nature, 2016, PMID: 26909576), in which “ADEX subtype” and “immunogenic subtype” likely 

represented gene expression from non-neoplastic cells (Aguirre et al., Gastroenterology, 2018, PMID: 

30419209), as well as “Classical subtype” and “Basal-like subtype” in Puleo et al. higher cellularity tumor 

classification (Puleo et al., Gastroenterology, 2018, PMID: 30165049). Another two classifications from 

Moffitt et al. (Moffitt et al, Nat Genet, 2015, PMID: 26343385) and Collisson et al. (Collisson et al., Nat 

Med, 2011, PMID: 21460848) were also examined with our samples. According to the results (Referee Fig. 

7), we learned that the “Classical-like subtype” and “Classical-Progenitor subtype” in our study were 

highly consistent with previous “Classical/Progenitor subtype”, and “Basal-like subtype” were closely 

related to the reported “Basal-like subtype”. For the newly defined “Glycomet subtype”, it was more 

inclined to previous “Basal-like subtype” in the classifications of Bailey et al., Moffitt et al. and Puleo et al., 

while it showed multiple expression signatures in Collisson et al. classification. The above results strongly 

indicated a close relationship between our RNA subtypes and previous classification, and highly 

supported the potential existence of a hybrid subtype identified by our study, which was characterized by 

activated glycometabolic pathway. 

 

Minor 4: Extended Data Fig. 4 panel b and c are in reverse order in the legend 

Page 7 Line 21, Sends reader to Fig4a while meant 4b 

We have corrected it in the revised manuscript. 

 

 

Reviewer #3                                                                                  

Referee Fig. 7 | Transcriptomic subtypes of the PDPCOs in the discovery cohort. Comparison of 

our four transcriptomic subtypes to previous classification schemes by Bailey et al., Moffitt et al., Puleo 

et al. and Collisson et al.. 



The authors establish patient-derived pancreatic cancer organoid lines and performed an integrative 

analysis of paired chromatin accessibility, transcriptomic, genomic profiles and high-throughput drug 

screening. Overall, the study provides a useful organoid with some novel findings that demonstrate the 

utility of organoids in predicting therapeutic outcomes in pancreatic cancer. However, the rational for 

some of the approaches is not clear and impacts the ability to assess the significance of the relationships 

highlighted and conclusions drawn from them. 

 

Major 1: Tissue microenvironment can contribute to a large confounding effect in cancer epigenomic 

studies due to different cell types have distinct epigenetic signatures. The authors have indicated that 

analyzing ATAC-seq profiles in primary pancreatic tumor tissue can be challenging due to presence of 

excessive stroma. The authors should report on the (microenvironment) composition of the 

patient-derived organoid lines generated compared to the primary tumors, and state what measures were 

taken place to account for any confounding effects (if present). 

We are grateful to Reviewer #3 for raising this important concern. As mentioned by Reviewer #3, low 

cellularity of tumor samples could exert large confounding effects on the investigation of cancer 

epigenomics due to the existence of many other cell types, which might be the reason for the lack of study 

on pancreatic cancer epigenomics. To solve this problem, we used organoid model generated from 

primary pancreatic cancer samples. It has been reported that organoid model could significantly enrich 

epithelial cells and achieve high purity of tumor cell. With flow cytometry analysis of the live single cells, 

we showed that tumor tissue was a complicated mixture of epithelial cell (Epcam+), while blood cell 

(CD45+) and other cell types such as stromal cell, while the organoid generated from tumor tissue 

exhibited a significant enrichment of epithelial cell to 96.4% (Referee Fig. 8a). Furthermore, according to 

the genomic analysis of 10 PDPCOs and matched tissues, we demonstrated that our PDPCOs could 

reach to a purity of almost 100%, which were independent of the cellularity of tumor tissues (Referee Fig. 

8b). The above results suggested that our PDPCOs harbored extremely high purity of tumor cell 

 

Referee Fig. 8 | Comparison of composition between tumor tissues and organoids. a, 

Representative flow cytometry analysis (gated on live single cells) showing epithelial cancer marker 

(Epcam) and white blood cell marker (CD45) in one paried sample of tissue and organoid. b, Purity of 

10 PDPCOs and matched tissues using WGS of the PDPCOs and WES of matched tumor tissues. 



compared to primary tumors. With histological examination and genomic analysis demonstrating great 

similarity between tissues and matched organoids, ATAC-seq profiles of our PDPCOs would hopefully 

promote more comprehensive understanding of pancreatic cancer epigenomics, and we are also looking 

forward to further investigation into it with co-culture model of organoids and other components. 

 

Major 2: The authors should clarify how many tests were performed to identify subtype-specific TF 

regulons (for p_(i,j)^1 and for p_(i,j)^2). For a large number of tests, the authors should use FDR (or 

similar) adjusted p-values. 

We appreciate Reviewer #3 for this helpful suggestion to improve our study. In this study, we inferred 377 

TF regulons from gene expression profiles, 283 of which were available for motif enrichment analysis with 

HOMER and statistical analysis to identify subtype-specific TF regulons. Following Reviewer’s suggestion, 

we used Benjamini-Hochberg procedure (FDR) to adjust the original p-value results (Referee table 4) and 

indeed found some differences in comparison of enriched TF regulons between original results and 

adjusted results. In the adjusted results, several TF regulons were showed with a q-value ≥0.05, while 

most of them were demonstrated to have limited influence on further understanding subtype-specific 

characteristics in our original analysis. It should be noted that, for classical-like subtype, the former YY-1 

TF regulon were removed due to q-value ≥0.05, while HNF4A and HNF4G TF regulons were still highly 

enriched, which provided credible attribution of this subtype-conventional classical classification (Puleo et 

al., Gastroenterology, 2018, PMID: 30165049). Importantly, for the glycomet subtype, the originally 

identified TF regulons were found with borderline significance in the adjusted analysis and we therefore 

made further exploration to unveil its potential biological characteristics. After careful investigation, many 

TFs that were reported correlated with tumor invasion and metastasis of other solid cancers were 

significantly identified in the glycomet subtype, which strongly help to interpret its poor prognosis. The 

above results proposed that adjusted p-value should be used instead of p-value for a large number of 

tests, and we have rephrased the results of Supplementary table 4 in the revised manuscript. 

 

Major 3: The authors calculate correlations over all possible interactions between ATAC-seq peak 

accessibility and gene expression within 500 kb of the peaks (after filtering for low variance) to identify 

putative links. The authors should state the total number of interactions tested and use FDR (or similar) 

adjusted p-values. 

We thank Reviewer #3 for this constructive advice. We have applied Benjamini-Hochberg procedure 

(FDR) (Corces et al., Science, 2018, PMID: 30361341) to adjust the p-values of putative links between 

ATAC-seq peak accessibility and gene expression within 500 kb of the peaks, in which 2,257 interactions 

were tested consistent with original analysis. Although there were slight differences compared with former 

statistical results, their adjusted p-value all remained less than 0.05 (Referee table 4), which was likely 

caused by the former analysis procedure that we firstly filtered the peak-to-gene linkage by > 0.5 or < -0.5 

Pearson correlation coefficient, and then calculated the p-value of the selected linkages for further 

analysis. According to the above results, we strongly agree with Reviewer #3 that it is more reasonable to 

use adjusted p-valve for a large number of tests and have replaced the p-value with FDR adjusted p-value 

in Supplementary table 4 in the revised manuscript, while in this study an additional constrain on Pearson 

correlation coefficient helped in keeping the final results of peak-to-gene linkage unchanged. 

 



Major 4: The authors calculate correlations over possible interactions between ATAC-seq peak 

accessibility and drug sensitivity to identify putative links. The authors should state the total number of 

interactions tested and use FDR (or similar) adjusted p-values. 

We thank Reviewer #3 for this constructive suggestion. Following this advice, we have calculated the 

adjusted p-values of interactions between ATAC-seq peak accessibility and drug sensitivity by 

Benjamini-Hochberg procedure (FDR) (Corces et al., Science, 2018, PMID: 30361341). Consistent with 

former analysis, a total of 15,397 peak-to-drug links were tested. Although slight variations could be 

observed, the adjusted p-value all remained less than 0.05 (Referee table 4), which was similar to 

situation in Major 3. We proposed the similar reasons for this case that we screened the peak-to-drug 

links by > 0.5 or < -0.5 Pearson correlation coefficient, and then calculated the p-value of the selected 

linkages. Based on these results, we believe that adjusted p-valve should be routinely used for large 

amounts of tests and therefore have corrected p-value used in Supplementary table 4 in the revised 

manuscript, while the detailed threshold on Pearson correlation coefficient similarly helped in stabilizing 

the results of peak-to-drug links.  

 

Major 5: In Figure 5j, 10 representative samples were chosen to show case differential accessibility at a 

putative enhancer locus. Could the authors clarify how these samples were chosen? Were these the 

samples that had the most extreme differences? The authors should repeat the boxplots Figure 5k,l,m 

over all samples (if necessary stratify the ATAC-peak into tertiles – high, medium, low). Could the authors 

also clarify/ repeat this for Extended Data Figures 5g-q. 

We are grateful to Reviewer #3 for raising these important questions. To present notable visual 

discrepancy between the peak high group and the peak low group, we chose to show the samples with 

the most extreme differences, while vast majority of these cases also exhibited significant differences 

over all samples. As suggested by Reviewer #3, we divided all samples into three groups based on the 

ATAC-seq peak openness to compare their corresponding gene expression and drug sensitivity. For the 

peak at chr10:121441617-121442244, we observed various gene expression of BAG3 gene between 

peak high group and peak low group with borderline significance among all samples (Referee Fig. 9a), 

while the corresponding drug 5-FU and PTX exhibited extreme difference (Referee Fig. 9b). Besides, we 

also checked the results of the other three cases over all samples. The significant difference on NCOR2 

gene expression was observed between the high group and the low group of the peak at 

chr12:125033345-125034019 (Referee Fig. 9c), and their drug sensitivity to Go6976 highly varied 

(Referee Fig. 9d). Moreover, we found similar results in the analysis of peak at 

chr6:139728666-139729424, CITED2 gene expression and OXA sensitivity were found markedly different 

between the peak high group and the peak low group among all samples (Referee Fig. 9e, f). For the 

peak at chr2:47355361-47355625, higher expression of MSH2 gene was confirmed in the peak high 

group (Referee Fig. 9g), and significant difference on Panobinostat, Abexinostat and Quisinostat between 

the peak high group and the peak low group could be observed (Referee Fig. 9h). According to the above 

results, we proposed that the significant difference on gene expression and drug sensitivity among 10 

representative samples could be repeated over all samples. 

 

 

 



 
Major 6: The authors have proposed specific examples of putative chromatin accessibility peaks as 

predictive biomarkers of drug response in the PDCPOs. Can the authors comment on whether these 

epi(genomic) alterations presented intrinsic resistance/ sensitivity or could they be inducing resistance to 

the therapy. And specifically discuss their application in novel treatment strategies? 

We thank Reviewer #3 for pointing out these questions. We have specifically discuss the potential 

application of putative chromatin accessibility peaks in guiding treatment strategies in the revised 

manuscript. In this study, all of the generated organoids involved in chemicals screening were cultivated 

Referee Fig. 9 | Comparison of gene expression and drug sensitivity based on tertiles of 

ATAC-seq peak openness over all samples. Stratifying the openness of ATAC-peak at 

chr10:121441617-121442244 into tertiles over all samles (low, medium and high) to compare the 

expression of BAG3 gene in a and the drug sensitivity of 5-FU and PTX in b. Stratifying the openness 

of ATAC-peak at chr12:125033345-125034019 into tertiles over all samles (low, medium and high) to 

compare the expression of NCOR2 gene in c, the drug sensitivity of Go6976 in d. Stratifying the 

openness of ATAC-peak at chr6:139728666-139729424 into tertiles over all samles (low, medium and 

high) to compare the expression of CITED2 gene in e, the drug sensitivity of OXA in f. Stratifying the 

openness of ATAC-peak at chr2:47355361-47355625 into tertiles over all samles (low, medium and 

high) to compare the expression of MSH2 gene in g, the drug sensitivity of Panobinostat, Abexinostat 

and Quisinostat in h. 



 
Referee Fig. 10 | Sensitivity of the 59 chemicals in the 

PDPCOs. Heatmap showing the sensitivity of the 59 chemicals in 

the PDPCOs based on stratification of drug AUC into tertiles 

(Resistant, Intermediate and Sensitive).

under the same condition without special pre-treatment, which strongly proposed that the difference on 

chromatin openness between organoid lines presented intrinsic epigenomic heterogeneity. However, 

since epigenomic alterations were known potential targets that could be pharmacologically reversible, it 

was also possible to induce sensitivity or resistance of some drugs by manipulating corresponding 

chromatin accessibility. Compared with traditional genomics and transcriptomics, which have been widely 

investigated to identify biomarkers for effective treatment, such chromatin accessibility has brought us a 

completely novel approach for developing cancer treatment. Based on comprehensive understanding of 

gene regulatory network in pancreatic cancer, we would be able to uncover specific regulatory elements 

responsible for treatment sensitivity or resistance, which promisingly help to provide a greater chance for 

exploring more therapeutic targets and promoting research on effective chemicals. 

 

Major 7: The authors have compiled and performed drug screening on a large library of chemicals 

targeting epigenetic-related signaling pathways, with a decent number (59) showing inhibition in 1 or 

more PDCPOs. The authors should provide a figure for the resistance/ sensitivity for these agents in the 

PDCPOs similar to Figure 6a.  

Since the chemical library we used has not been systematically investigated in human tumor organoids, 

especially in pancreatic cancer organoids. We determined to category the sensitivity of our PDPCOs to 

these chemicals referring to the method for chemotherapy. According to drug AUC, we equally stratified 

our PDPCOs in each chemical 

into three sensitivity groups 

(high as resistant, medium as 

intermediate, low as sensitive). 

The chemical sensitivity 

heatmap notably showed that 

different chemicals had various 

effects on organoid lines, and 

each PDPCOs exhibited diverse 

sensitivity to different chemicals 

(Referee Fig. 10). Although such 

division of sensitivity was rather 

a relative result, it helped to 

provide an overview for the 

sensitivity of the 59 chemicals in 

our PDPCOs and would 

promote further investigation 

into the potential heterogeneity 

in pancreatic cancer. 

  

Major 8: Do the authors have any data on the consequence of any epigenetic-related therapies on the 

epigenome of the PDCPOs? For instance, ATAC-seq of the PDCPOs before and after treatment for 

epigenetic-therapies demonstrating strong inhibition. 

We appreciate Reviewer #3 for providing this constructive suggestion. To further investigate the 

correlation between drugs and corresponding peaks, we collected some ATAC-seq data from PDPCOs 



 

 
Referee Fig. 11 | Comparison of peak openness 

between treatment naive and post treatment in the 

PDPCOs. Box plot for comparison of openness at peak 

chr10: 121441617-121442244 between treatment naive 

and post treatment in the peak high and peak low groups 

among the 10 organoid lines involved in Fig 5j. 

after drug treatment. We mainly focused on the association between chr10: 121441617-121442244 and 

5-FU. After treatment of 5-FU (10uM) for 

3 days, we performed ATAC-seq on the 

10 samples involved in Fig. 5j. By 

comparison of the corresponding peak 

openness, we found that, in both peak 

high and peak low groups, significant 

higher openness could be observed in 

the groups receiving drug treatment 

(Referee Fig. 11), which supported their 

specific correlation generated from high 

throughput drug screening in the 

manuscript that the peak at chr10: 

121441617-121442244 could negatively 

predict the sensitivity of 5-FU. Moreover, 

in the treatment naïve samples, we 

proposed that BAG3 gene worked as a 

connector for the correlation between 

peak and drug. Although the strong 

association between peak and drug could 

also be observed after drug treatment, 

the detailed mechanism of BAG3 gene in 

the post-treatment correlation need to be further verified. 

 

Major 9: Were post treatment imaging results available for more than 3 patients: CAS-DAC-24/22/20? If 

so, the authors should provide a graphical summary of the correlation between the imaging results and 

organoid sensitivity for all patients with available paired data treated with the same (or similar 

mode-of-action) chemotherapy agents as they have done for these 3 examples. 

We are grateful to Reviewer #3 for pointing out this important question and help us to improve our study. 

The department of Hepatobiliary Pancreatic Surgery of Changhai Hospital is one of the most popular 

centers for pancreatectomy in China, in which patients were from all over the country. Since majority of 

patients lived far from Shanghai, they would like to receive routine laboratory and image examinations in 

local hospital and were followed up by telephone for convenience. After carefully checking our 

prospective database for image examinations, we found another three patients (CAS-DAC-5, 

CAS-DAC-21, CAS-DAC-31) with available paired data. CAS-DAC-31 was assigned to sensitive group 

due to the use of organoid sensitive S1 in paired patient. CAS-DAC-5 was in intermediate group, the S1 

patient used exhibited moderately sensitive in matched organoid. For CAS-DAC-21, the corresponding 

patient used GEM and S1 for adjuvant chemotherapy, while both of them showed limited effect on 

organoid growth. According to the six patients (CAS-DAC-5, CAS-DAC-20, CAS-DAC-21, CAS-DAC-22, 

CAS-DAC-24 and CAS-DAC-31) with available paired data, we analyzed the correlation between imaging 

results and organoid sensitivity within the same chemotherapy agent. S1 was used in CAS-DAC-5 

(intermediate), CAS-DAC-20 (intermediate), CAS-DAC-21 (resistant), CAS-DAC-22 (resistant) and 

CAS-DAC-31 (sensitive), while GEM in CAS-DAC-24 (sensitive) and CAS-DAC-21 (resistant). 

Comparison of image examinations significantly demonstrated a strong consistency between organoid 



 

Referee Fig. 12 | Similarity of somatic profiles 

between TCGA PAAD dataset and our 

PDPCOs. Comparison of the detailed mutation 

frequency of common pancreatic cancer-related 

genes between TCGA PAAD dataset and our 

PDPCOs. 

sensitivity and recurrence status under the same chemotherapy agent, in which “sensitive” showed less 

recurrence than “intermediate”, while “resistant” exhibited the most progression (Extended Data Fig. 6d, 

e). The above results further supported that the high consistency in chemosensitivity between the 

organoids and paired patients. 

 

Minor 1: What was the rationale to use log2(copy number)/2>0.1 as a threshold for gains/ amplifications 

in the Extended Data Figure 2. Would log2(copy number/2)>0.1 be a better threshold?. 

Reviewer #3 is correct. We have rewritten this point in the revised manuscript. 

 

Minor 2: The authors indicate that the somatic mutational profiles of the PDCPOs were similar to that 

observed in the TCGA pancreatic adenocarcinoma (PAAD) dataset. Could the authors include evidence 

for this conclusion? 

We thank Reviewer #3 for this important comment. 

To better elucidate the similarity of somatic 

mutational profiles between our PDPCOs and the 

TCGA PAAD dataset, we provided a detailed 

comparison in Referee Fig. 12. Among the four 

driver genes of pancreatic cancer (KRAS, TP53, 

SMAD4 and CDKN2A), our PDPCOs exhibited the 

exact same mutated tendency to TCGA PAAD 

dataset, in which slightly higher mutation 

frequencies could be observed in our PDPCOs 

likely due to the increased cellularity (Tiriac et al., 

Cancer Discov, 2018, PMID: 29853643; 

Chan-Seng-Yue et al., Nat Genet, 2020, PMID: 

31932696). For the other top mutated genes, our 

PDPCOs showed similar results compared with 

TCGA PAAD dataset (Referee Fig. 12). According 

to the above results, we proposed that the somatic 

mutational profiles of our PDCPOs were similar to 

that observed in the TCGA PAAD dataset. 

 

Minor 3: Line 1-2 on page 6 is unclear. Can the authors consider rephrasing? 

We thank Reviewer #3 for raising this helpful comment. We are sorry for the confusing expression and 

have corrected it in the revised manuscript. 

 

Minor 4: Extended Data Figure 3a details multiple solutions for determining the number of clusters for 

NMF of the transcriptomic profiles for the exocrine group. The authors should clarify why k=4 was chosen 

over the other solutions? Also check the legend for k=3,4 in the figure. 

We are grateful to Reviewer #3 for pointing out these concerns. 

1) As shown in Extended Data Fig. 3, k=2 and k=4 were the best two classifications for the 



transcriptomic profiles for the exocrine group. We firstly investigated the characteristics of the k=2 

classification (Referee Fig. 13a). As expected, the two clusters were found closely related to the 

previously reported classical subtype and basal-like subtype, respectively (Referee Fig. 13b), which 

indicated high consistency between our PDPCOs and primary pancreatic cancer. However, we 

learned from recent studies that more detailed classifications in pancreatic cancer including 

subdivision of conventional classical and basal-like subtypes have been suggested to promote better 

understanding of tumor heterogeneity and provide more accurate prognostic prediction 

(Chan-Seng-Yue et al., Nat Genet, 2020, PMID: 31932696). Since organoid could well recapitulate 

the primary tumor and feature the high cellularity, we tried to further explore the transcriptomic 

classification of pancreatic cancer with our PDPCOs and then chose k=4 for the classification of 

exocrine group. According to comparison with previous subtypes and signal pathway enrichment 

analysis, we also proposed a subdivision of classical subtype into classical-progenitor and 

classical-like, and successfully identified a novel transcriptomic subtype-glycomet subtype. Moreover, 

further survival analysis revealed that only the classical-progenitor subtype achieved the most 

favorable outcomes, while basal-like subtype, glycomet subtype and the other classical subtype 

named classical-like subtype had similar poor prognosis.  

2) We are sorry for the mistake about the legend for k=3, 4 in the Extended Data Fig. 3 and have 

corrected it in the revised manuscript. 

 

Minor 5: In Figure 3b/ Extended Data Figure 3b, the heatmap columns are indicated by samples, 

however, the legend states otherwise. 

 

Referee Fig. 13 | Transcriptome analysis of PDPCOs in the discovery cohort. a, Heatmap of the 

two transcriptomic subtypes in the discovery cohort of 40 exocrine PDPCOs (39 CAS-DACs and 1 

CAS-IPMN), as revealed by unsupervised NMF clustering. Samples are listed in columns, and 

signature genes are listed in rows as z-scores. b, Identification of biological characteristics in each 

subtype by previously reported signatures. A P-value <0.01 was used to determine positive or 

negative enrichment of published signatures in a subtype (top). Detailed GSEA results are shown at 



We apologize to Reviewer #3 for this error and have corrected it in the revised manuscript. 

 

Minor 6: Figure 4b is not mentioned in the text. 

We thank Reviewer #3 for the kind reminding and have added it in the revised manuscript. 

 

Minor 7: In line 27, page 8 the authors state that “95% of genes were regulated by multiple peaks (≤ 6) 

in the distal ATAC-seq peak to-gene links”. However, this conclusion is incorrect since most of these 

genes were regulated by only 1 peak. 

Reviewer #3 is correct. We have rewritten this point by “95% of genes were regulated by no more than 6 

different peaks in the distal ATAC-seq peak-to-gene links” in the revised manuscript. 

 

Minor 8: The authors should clarify what is the evidence to back the claim “ATAC-seq peak at 

chr6:139728666-139729424 predicted sensitivity to oxaliplatin” in line 23, page 6. 

We thank Reviewer #3 for pointing out this important concern. In the linkage analysis of ATAC-seq and 

RNA-seq, we found that the ATAC-seq peak at chr6:139728666-139729424 had a direct positive 

correlation with the expression of the CITED2 gene. Moreover, Previous study had demonstrated that 

CITED2 was overexpressed oxaliplatin (a third-generation platinum drug) resistant cancer cell lines 

compared to oxaliplatin sensitive cancer cell lines, while knock down of CITED2 could enhance the 

cytotoxicity of platinum (Yanagie et al., Biomed Pharmacothe, 2009, PMID: 18571892). According to 

above results, we proposed that ATAC-seq peak at chr6:139728666-139729424 would have potential 

utility in predicting sensitivity to platinum. 

 

Minor 9: Figure 6a legend is misleading in how PDCPOs were divided into 3 categories for chemo 

sensitivity/ resistance. The figure suggests this is done by tertiles, while the text/ figure annotation 

suggests that is done by AUC value thresholds of 33%,67%. Consider rephrasing. 

We have rephrased the category threshold from “33%, 67%” to “AUC lowest 1th-13th, 14th-26th, 

27th-39th” in the revised manuscript. 

 

Minor 10: The authors demonstrate CAS-DAC-14, as an example with significant inter-agent variability 

within a single organoid. The authors should include a figure demonstrating this graphically for all 

organoids, and link each patient with the 3 groups defined for Figure 6c to ease the understanding of the 

group definitions. For instance, it is not immediately clear what patients were included in the resistance 

group – did these patients demonstrate resistance in the paired organoids for ALL chemotherapy agents? 

We have organized a graphical summary for better understanding of group definition and chemotherapy 

administration in 31patients who underwent upfront radical surgery with subsequent adjuvant therapy. 

Significant inter-agent variability within a single organoid could be observed for most organoids, while 

several organoids exhibited same sensitivity to all five chemotherapy agents. For instance, CAS-DAC-15 

and CAS-DAC-18 were sensitive to all five chemotherapy agents, whereas CAS-DAC-2, CAS-DAC-13 

and CAS-DAC-35 showed resistant to all five chemotherapy agents. The graphical summary has been 

added to Extended Data Fig. 6a in the revised manuscript. 



 

Minor 11: The authors generated organoid derived xenografts (ODX) for 3 patients: CAS-DAC-18/20/36. 

The authors should clarify whether ODXs were attempted/ generated for other patients and why these 3 

were chosen to be described in the manuscript (others had also shown similar resistance/sensitivity to 

chemotherapy agents such as CAS-DAC 22/24). 

We appreciate Reviewer #3 for raising these important questions to help improve our study. Actually, we 

have tested the generation success rate with the first 37 cases of PDAC organoids as well as one case of 

ASC and one case of IPMN organoids by subcutaneously injection into SCID mice, in which almost all of 

the PDPCOs developed xenografts within 4-16 weeks (97.4%, 38 of 39), except for one case 

(CAS-DAC-5, PDAC). Considering the favorable success rate and high cost of in vivo experiment, we 

performed the in vivo validation of organoid sensitivity with randomly chosen cases among the three 

sensitivity groups. As suggested by Reviewer, we further validated the organoid sensitivity of 

CAS-DAC-22 and CAS-DAC-24 with their corresponding xenograft, in which CAS-DAC-22 was resistant 

to 5-FU, while CAS-DAC-24 was sensitive to CAS-DAC-24. As expected, ODX-22 showed notably 

resistant to 5-FU with a reduction in tumor growth of only 17.04%. For the ODX-24, significant inhibition 

on tumor growth could be observed by GEM with the reduction as high as 75.58%. These results provided 

further evidence to confirm the accuracy of our PDPCO chemotherapy sensitivity and has been added to 

Extended Data Fig. 7 in the revised manuscript. 

 

Minor 12: What timepoint was used for measuring reduction in tumor growth in the ODXs post treatment. 

ODX-36 response looks similar at day 20 for all 3 agents shown, but the authors indicate a notable 

difference. Could the authors clarify this? 

We thank Reviewer #3 for pointing out this valuable concern. For all of the three ODXs, we have 

performed comparison of the reduction in tumor growth at the last measure time. Although the response 

to the three chemotherapy agents of ODX-36 looked similar at day 20, according to the statistical analysis, 

we found that GEM slightly reduced tumor growth in ODX-36 (32.60% reductions in tumor growth, 

P=0.031), while ODX-36 displayed significant resistance to the other two drugs (5-FU and PTX, P=0.226 

and P=0.132), as demonstrated by 20.09% and 27.47% reductions in tumor growth (NOTE: we 

appreciated Reviewer #3 for the comments, since we realized that the original 8.66% and 20.15% were 

results of another timepoint during statistical analysis). To ease the understanding of comparison, the 

results of statistical analysis for all of the three ODXs have been added into the Fig. 6 in the revised 

manuscript, in which Fig.6g of ODX-36 has been updated with results from longer observation to minimize 

the effect of slow tumor growth showing 7.79% reductions in tumor growth for GEM (P=0.566), 24.51% for 

5-FU (P=0.183) and 25.17% for PTX (P=0.077). 



REVIEWER COMMENTS 
 
Reviewer #1, expert in organoids (Remarks to the Author): 
 
The authors addressed all points that I raised in the previous review. 
 
 
Reviewer #2, expert in ATAC-seq analysis (Remarks to the Author): 
 
The authors have addressed my concerns 
 
 
Reviewer #3, expert in multi-omics and drug response (Remarks to the Author): 
 
The authors have provided a revised manuscript describing the establishment of patient-derived 
pancreatic cancer organoid lines; and integrative analysis of paired chromatin accessibility, 
transcriptomic, genomic profiles and high-throughput drug screening. The authors responded to 
each of the specific comments raised by the reviewers and revised the manuscript accordingly. 
Further comments included below. 
 
1. In response to the reviewer’s comment for Major 3, the authors have indicated that they first 
filtered putative peak-expression links based on pearson correlation coefficient, and then 
calculated p-values on the remaining linkages and performed FDR adjustment. Could the authors 
clarify whether the p-values were also based on pearson correlation test for the remaining 
linkages? If this is the case, filtering using estimates from the statistical test prior to p-value 
calculation from the same statistical test is not standard practice, and defeats the purpose of 
multiple testing. The authors could consider a more stringent filtering on variance on the peaks 
and expression values separately. 
 
2. Same concern is noted for Major 4 as for Major 3 (see above). 
 
3. The authors have responded adequately to Major 5. The authors should clarify in the manuscript 
that the 10 representative examples used were picked to show the most extreme differences. 
Referee Fig 9 is very encouraging; the authors could consider including this in Supplementary. 
 
4. The authors have indicated in the manuscript that the somatic mutational profiles of the 
PDCPOs were similar to that observed in the TCGA pancreatic adenocarcinoma (PAAD) dataset. To 
back this claim, the authors should add Referee Fig 12 to Supplementary. 
 
My overall impression remains that the manuscript is a matter of interest since they provide a 
useful organoid resource with some novel findings that demonstrate the utility of organoids in 
predicting therapeutic outcomes in pancreatic cancer. 
 
 



Point-by-point response to Reviewers’ comments                                                 

Nov 6th, 2021 

RE: NCOMMS-21-10013A 

Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility to drug 

sensitivity networks 

Summary statement. We are grateful to the Editor and Reviewers for their thoughtful comments which 

pointed to two key issues: 1) improvement of our filtering and statistical testing; 2) supplement of research 

data involved in referee figures. Based on these issues, we have worked diligently to address these issues. 

Briefly, we have supplied additional data in our manuscript and made the following changes: 

• Improved our filtering and statistical testing procedure for identifying gene-peak linkage and peak-drug 

linkage. 

• Supplied additional research data from referee figures about correlation between ATAC-seq peak and 

drug as well as comparison of somatic mutational profiles between PDPCOs and TCGA PAAD dataset. 

Please see below for the detailed responses to Reviewer #3’s comments 

 

Reviewer #3                                                                                   

The authors have provided a revised manuscript describing the establishment of patient-derived 

pancreatic cancer organoid lines; and integrative analysis of paired chromatin accessibility, transcriptomic, 

genomic profiles and high-throughput drug screening. The authors responded to each of the specific 

comments raised by the reviewers and revised the manuscript accordingly. Further comments included 

below. 

 

Point 1: In response to the reviewer’s comment for Major 3, the authors have indicated that they first 

filtered putative peak-expression links based on pearson correlation coefficient, and then calculated p-

values on the remaining linkages and performed FDR adjustment. Could the authors clarify whether the 

p-values were also based on pearson correlation test for the remaining linkages? If this is the case, filtering 

using estimates from the statistical test prior to p-value calculation from the same statistical test is not 

standard practice, and defeats the purpose of multiple testing. The authors could consider a more stringent 

filtering on variance on the peaks and expression values separately. 

We are grateful to Reviewer #3 for the shrewd observation on this multiple testing problem and suggestions 

for solving it in a more rigorous way. We clarify that our adjusted p-values were based on Pearson 

correlation test for the remaining linkages. We agree that filtering using estimates from the statistical test 

prior to p-value calculation from the same statistical test is not standard practice. The estimates used for 

filtering should provide information on the statistical properties of hypothesis tests and should be 

independent of the p-value under the null hypothesis (Bourgon et al., Proc Natl Acad Sci U S A, 2010, 



PMID: 20460310). 

Following Reviewer #3’s suggestions, we apply more stringent filtering and statistical tests to improve our 

research. In this study, there are 15,609 genes and 156,721 peaks used for gene-peak correlation analysis. 

We first filter all 2,446,258,089 gene-peak pairs by genome distance, which is a widely used strategy in 

ATAC-seq, eQTL and GWAS studies (Corces et al., Science, 2018, PMID: 30361341; Korthauer et al., 

Genome Biol, 2019, PMID: 31164141; Ignatiadis et al., Nat Methods, 2016, PMID: 27240256). As a result, 

1,019,530 pairs that peak is within 500 kbp of the gene’s TSS remain and are used to calculate Pearson 

correlation, p-values and FDR. To increase detection power, we then try to filter the gene-peak pairs by 

variance on the peaks and expression values by removing the bottom 10%, 15%, 20%, 25%, 30%, 35%, 

40%, 45%, 50%, 55%, and 60% of genes and peaks with low variance. In the following table (Referee 

table 1), the number of identified gene-peak linkages and their overlap with the identified 2,257 linkages 

based on different cut-offs of FDR and absolute PCC>0.5 are showed, which suggest that stringent filtering 

on variance could also help to reduce the testing gene-peak pairs. Finally, to achieve a good balance 

between coverage and accuracy for identifying putative gene-peak links, we choose to remove the 25% 

genes and peaks with lowest variance (Corces et al., Science, 2018, PMID: 30361341) and modify FDR 

cut-off to 0.25 (Cao et al., Cell, 2021, PMID: 34534465) as previous studies suggested, which result in the 

same 2,257 gene-peak linkage set. 

In summary, we follow reviewer’s suggestions and clarify a more rigorous procedure for filtering and 

statistical tests in the method part of the revised manuscript. We now filter the gene-peak pairs by two 

independent co-variants (genome distance and variance on the peaks and expression values) and then 

perform p-value adjustment to improve our study. 

 

 

Point 2: Same concern is noted for Major 4 as for Major 3 (see above). 

We thank Reviewer #3 for raising this important concern. For the peak-drug linkage, we also follow the 

Reviewer #3’s suggestions and revise our procedure. In this study, there are 64 drugs used for drug-peak 

correlation analysis and the total number of drug-peak pairs is 10,030,144. Since acknowledged 

biologically informative co-variants such as genomic distance is not available for drug-peak correlation 

Referee table 1. The number of identified gene-peak linkages and their overlap with the 

identified 2,257 linkages based on different cut-offs of FDR and absolute PCC>0.5 under 

removing the bottom 10%-60% of genes and peaks with low variance. 

 



analysis. To increase the detection power, we try to filter the drug-peak pairs by removing the bottom 10% 

to 60% of peaks with low variance of accessibility but keep all drugs due to its relatively small cohort. The 

results summarized in the following table (Referee table 2) indicate that this filtering could only slightly 

reduce the testing drug-peak pairs from 10 million to 4 million and have limited impact on controlling the 

false discoveries. Furthermore, we tried different ways to transform the raw input data to improve the 

analysis. As shown in the following table (Referee table 3), this exponential transformation generates more 

drug-gene linkages when using the same FDR cut-off such as 0.6 and 0.7 with absolute PCC>0.5. For 

example, there is 1 pair with FDR<0.6 and absolute PCC>0.5 under removal of the bottom 30% of peaks 

with low variance, and this number increased to 2,181 pairs after exponential transformation. However, 

vast majority of their FDR is still >0.5. Therefore, in the revised manuscript, we finally choose to use 

absolute PCC>0.5 and raw p-value<0.01 to identify the drug-peak linkages, which focus more on single 

test and is also a common strategy to identify linkages in high-throughput experiment (Shen et al., Nature, 

2012, PMID: 22763441).  

 

 

 

Comparing to above gene-peak pairs, we realize that the FDR adjustment for drug-peak pairs is far more 

Referee table 2. The number of identified peak-drug linkages and their overlap with the identified 

15,397 linkages based on different cut-offs of FDR and absolute PCC>0.5 under removing the 

bottom 10%-60% of peaks with low variance. 

 

Referee table 3. The number of identified peak-drug linkages and their overlap with the identified 

15,397 linkages based on different cut-offs of FDR and absolute PCC>0.5 under removing the 

bottom 10%-60% of peaks with low variance after exponential transformation. 

 



challenging. We summarize the reason as follows. First, the total number of the tests is large and we are 

lack of informative co-variant to efficiently reduce the number tests as genome distance does in gene-peak 

case. Thus, finding biologically informative co-variants such as genomic distance is in pressing need to 

efficiently narrow down the total number of drug-peak linkages. Second, due to relatively small cohort of 

drug, stringent variance filtering is only performed on peaks with low variance of accessibility value, which 

is not powerful enough to control the false discoveries. We have cautiously interpreted the 15,397 drug-

peak linkages in the revised manuscript, and more validations are needed to support those candidate pairs 

in the future. We thank the Reviewer #3 again to clear our thoughts regarding to this limitation. 

 

Point 3: The authors have responded adequately to Major 5. The authors should clarify in the manuscript 

that the 10 representative examples used were picked to show the most extreme differences. Referee Fig 

9 is very encouraging; the authors could consider including this in Supplementary. 

We thank Reviewer #3 for the valuable advice and have clarified that 10 representative examples were 

selected to show the most extreme differences in Fig. 5k-m and Extended Data Fig. 5g-q in the revised 

manuscript. Moreover, we agree with Reviewer #3 that Referee Fig 9 provided very encouraging results 

and have added it into the revised manuscript as Extended Data Fig. 6. 

 

Point 4: The authors have indicated in the manuscript that the somatic mutational profiles of the PDCPOs 

were similar to that observed in the TCGA pancreatic adenocarcinoma (PAAD) dataset. To back this claim, 

the authors should add Referee Fig 12 to Supplementary. 

We thank Reviewer #3 for the constructive suggestion to help improve our study. Following this advice, we 

have added Referee Fig 12 into the revised manuscript as Extended Data Fig. 2b to support the results 

about that the somatic mutational profiles of the PDCPOs were similar to that observed in the TCGA 

pancreatic adenocarcinoma (PAAD) dataset. 



REVIEWERS' COMMENTS 
 
Reviewer #3 (Remarks to the Author): 
 
The authors addressed all points that I raised in the previous review. 



Point-by-point response to Reviewers’ comments                                                 

Dec 16th, 2021 

RE: NCOMMS-21-10013B 

Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility to drug 

sensitivity networks 

Summary statement. We are very grateful to the Editor for handling our manuscript. We also appreciate 

very much for Reviewers for their constructive suggestions and positive comments on our manuscript.  

Reviewer #1                                                                                  

The authors addressed all points that I raised in the previous review. 

We thank Reviewer #1 for raising positive comments and providing valuable suggestions. 

Reviewer #2                                                                                  

The authors have addressed my concerns. 

We thank Reviewer #2 for the positive comments and raising helpful advice. 

Reviewer #3                                                                                  

The authors addressed all points that I raised in the previous review. 

We are grateful to Reviewer #3 for the positive comments and help in improving our manuscript. 
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