Stem Cell Reports, Volume 17

Supplemental Information

GP2-enriched pancreatic progenitors give rise to functional beta cells

in vivo and eliminate the risk of teratoma formation

Yasaman Aghazadeh, Farida Sarangi, Frankie Poon, Blessing Nkennor, Emily C. McGaugh, Sara S. Nunes, and M. Cristina Nostro

Supplemental Information

GP2-enriched pancreatic progenitors give rise to functional beta cells *in vivo* and eliminate

the risk of teratoma formation

Yasaman Aghazadeh, Farida Sarangi, Frankie Poon, Blessing Nkennor, Emily C. McGaugh,

Sara S. Nunes, M. Cristina Nostro.

Supplementary Figure 1

Supplementary Figure 1. <u>Related to Figure 1</u>. (A-B) Frequency of GP2 negative (GP2-) cells in NS, FT and GP2⁺ cell populations after MACS in H1 (A) and H9 (B)- derived cells. (A, n=6 independent experiments; B, n=3 independent experiments; One-way ANOVA analysis with Tukey's multiple comparisons; ** P < 0.01, *** P < 0.0001, error bars represent S.E.M.).

Supplementary Figure 2

Supplemental Figure 2. <u>Related to Figure 2</u>. (A) Flow cytometry plot quantifying GP2 expression in RFP-H1-derived PPs at stage 4. (B) Live imaging of mice without transplantation (No Tx), or transplantation of an empty collagen hydrogel (sham) at week 1 post-transplantation.

Supplemental Figure 3. <u>Related to Figure 2</u>. (A-F) Representative images of FT-derived outgrowths stained with H&E (A), toluidine blue (B), and immunostained using SOX2 (C), FOXA2 (D), CDX2 (E), and NKX2-1 (F) antibodies at week 15 post-transplantation. DAPI marks cell nuclei. (A, scale bar is 100µm; C & F, scale bar is 200µm; B, D, E, scale bar is 400µm).

Supplementary Figure 4. <u>Related to Figure 3</u>. (A-C) RT-PCR quantification of *ZIC3* (neurectoderm marker), *PDGFRA* (mesoderm marker) and *POU5F1* (pluripotency marker) levels in NS, FT and GP2⁺ cell fractions after MACS normalized to *RPL19* housekeeping gene. HESC-derived NE (neuroectoderm), MD (mesoderm), and undifferentiated hESCs are used as a positive control (NE, NS, FT, GP2⁺, hESC, n=3 independent experiments; MD, n=2 independent experiments; One-way ANOVA analysis with Tukey's multiple comparisons; * P< 0.05, *** P<0.001). (D, E) Representative flow cytometry plot and quantification of CXCR4 and KIT expression in hESC-derived endodermal cells, indicating robust differentiation efficacy (~ 100%). (F) RT-PCR quantification of *GP2* levels normalized to *RPL19* housekeeping gene in NS, FT, and GP2⁺ fractions after MACS confirming enrichment of GP2+ cells (n=3 independent experiments; One-way ANOVA analysis with Tukey's multiple comparisons; * P<0.01).

Supplementary Figure 5

Supplementary Figure 5. <u>Related to Figure 3</u>. (A-D) RT-PCR quantification of *CELA3A* (acinar marker), *HNFB1* (ductal marker), *NEUROG3* and *NEUROD1* (endocrine markers) normalized to *RPL19* housekeeping gene in NS, FT and GP2⁺ fractions after MACS. (E) Schematic of hESC differentiation to PP (Stage 4, Days 8-13), which can be transplanted *in vivo* to generate endocrine pancreas, acinar and ductal cells or differentiated in vitro to endocrine pancreatic cells (Stage 5, Days 13-16), and Beta-like cells (Stage 6, Days 16-24). (F) Representative flow cytometry plots of NEUROD1 and Chromogranin (CHGA) expression, which indicates commitment to the endocrine pancreas. (G) Quantification of the frequency of endocrine-committed cells at various differentiation stages. (n=3 independent experiments; One-way ANOVA with Tukey's multiple comparisons; * P<0.05, ** P<0.01, *** <0.001, ****

Supplementary Tables:

Supplementary Table 1. List of antibodies used for immunostaining (I) and/or flow cytometry

(F). Related to Figures 1-5.

Antigen	Species	Vendor	Dilution
CDX2	Rabbit	Abcam	1:300 (I), 1:2000 (F)
Chromogranin A (CHGA)	Rabbit	Abcam	1:100 (I), 1:1000 (F)
CD117 (KIT)-PE conjugated	Mouse	Invitrogen	1:100 (F)
CD184 (CXCR4)-APC conjugated	Mouse	BD Biosciences	1:200 (F)
Cytokeratin 19 (KRT19)	Rabbit	Abcam	1:800 (I)
C-peptide	Rat	Developmental Studies Hybridoma Bank	1:1000 (I)
FOXA2	Rabbit	Abcam	1:500 (I)
Glucagon (GCG)	Mouse	Sigma-Aldrich	1:500 (I)
GP2	Human	MBL	1:800 (F)
KI67	Rabbit	Abcam	1:1000 (I, F)
KU80	Rabbit	Cell Signaling	1:450 (I)
NKX2-1	Rabbit	Abcam	1: 250 (I)
NKX6-1	Mouse	Developmental Studies Hybridoma Bank	1:1000 (F)
NEUROD1-AF657 conjugated	Mouse	BD Bioscience	1:3 (F)
PDX1	Goat	Abcam	1:10000 (I)
PDX1	Goat	R&D Systems	1:100 (F)
SLC18A1	Rabbit	Sigma	1:1000 (I)
Somatostatin (SST)	Rabbit	Abcam	1:500 (I)
SOX2	Rabbit	Cell signaling	1:400 (I, F)
Trypsin (PRSS1)	Sheep	R&D Systems	1:300 (I)
IgG-AF488	Goat	Jackson Immuno Research Labs	1:400 (F)
IgG-AF488	Mouse	Jackson Immuno Research Labs	1:800 (I)
IgG-AF488	Rabbit	Jackson Immuno Research Labs	1:800 (F)

IgG-Cy5	Mouse	Jackson Immuno Research Labs	1:800 (I)
IgG-Cy5	Rabbit	Jackson Immuno Research Labs	1:800 (I)
IgG-Cy5	Rat	Jackson Immuno Research Labs	1:800 (I)
IgG-AF647	Mouse	Jackson Immuno Research Labs	1:400 (F), 1:800 (I)
IgG-AF549	Mouse	Jackson Immuno Research Labs	1:800 (I)
IgG-AF549	Rabbit	Jackson Immuno Research Labs	1:800 (I)
IgG-R-Phycoerythrin- conjugated	Mouse	Jackson Immuno Research Labs	1:800 (F)

Supplementary Table 2. List of QPCR primers. Related to Figures 3 and 4.

Gene	Forward primer (5' to 3')	Reverse primer (3' to 5')
CDX2	AGC CAA CCT GGA CTT CCT GTC ATT	ACA CAG ACC AAC AAC CCA AAC AGC
CELA3A	ATG ACA TGC CCC TCA TCA AGC TCT	ATG TAG CAG GGT GTC TTG TTG GGA
GP2	AAC CCT TCC GAA GCA CAG AG	GGA CAC AGG TCT CCG ACA TC
HNF1B	AGA GTA ACA TGC CAG CTT CCT CCT GTG	TAT CAA ACA GCC AGT TTC CCT CCT GCC
<i>MKI67</i>	AAT TTG CTT CTG GCC TTC CC	GAC CCC GCT CCT TTT GAT AGT
NEUROD1	TCC CAT GTC TTC CAC GTT AAG CCT	CAT CAA AGG AAG GGC TGG TGC AAT
NEUROG3	GCG CAA TCG AAT GCA CAA CCT CAA	TTC GAG TCA GCG CCA AGA TGT AGT T
NKX2-1	GCC AAA CTG CTG GAC GTC TTT CTT	CCT TGA GAT TGG ATG CGC TTG GTT
POU5F1	ATG CAT TCA AAC TGA GGT GCC TGC	CCA CCC TTT GTG TTC CCA ATT CCT
PDGFRA	GGCAGTACCCCATGTCTGAAG	CGTCACAAAAAGGCCGCTG
RPL19	CTCGATGCCGGAAAAACACC	TTCTCTGGCATTCGGGCATT
SOX2	GGA TAA GTA CAC GCT GCC CG	ATG TGC GCG TAA CTG TCC AT
TOP2A	GCT GCC CCA AAA GGA ACT AA	GGC GAT TCT TGG TTT TGG CA
ZIC3	TAT CAG TCT CGC GCT CAC	TGT CTT TTG CGG TTT ATC TTC CTG