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THE BIGGER PICTURE In recent years, a phenotype-based drug discovery approach using chemical-
induced gene expressions has shown to be effective in drug discovery and precision medicine. However,
it is not feasible to experimentally determine chemical-induced gene expressions for all available chem-
icals of interest, thereby hindering the application of gene expression-based compound screening on a
large scale. Thus, it is crucial to design a computational approach that can generate gene expression in-
formation for any chemicals. We proposed a new, deep-learning framework named chemical-induced
gene expression ranking (CIGER) to predict a landmark gene expression profile (i.e., gene ranking)
induced by de novo chemicals based on their chemical structures. Leveraging CIGER, we predicted
and experimentally validated that several existing drugs can increase the therapeutic response on
drug-resistant pancreatic cancer. Our results demonstrated the effectiveness of CIGER for precision
drug discovery in practice.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Chemical-induced gene expression profiles provide critical information of chemicals in a biological sys-
tem, thus offering new opportunities for drug discovery. Despite their success, large-scale analysis
leveraging gene expressions is limited by time and cost. Although several methods for predicting gene
expressions were proposed, they only focused on imputation and classification settings, which have
limited applications to real-world scenarios of drug discovery. Therefore, a chemical-induced gene
expression ranking (CIGER) framework is proposed to target a more realistic but more challenging setting
in which overall rankings in gene expression profiles induced by de novo chemicals are predicted. The
experimental results show that CIGER significantly outperforms existing methods in both ranking and
classification metrics. Furthermore, a drug screening pipeline based on CIGER is proposed to identify po-
tential treatments of drug-resistant pancreatic cancer. Our predictions have been validated by experi-
ments, thereby showing the effectiveness of CIGER for phenotypic compound screening of precision
medicine.
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INTRODUCTION

Phenotypic screening has been shown to be more effective than

target-based screening for first-in-class drug discovery, but this

approach also has some limitations due to the low throughput of

phenotypic assays.1 Recently, several high-throughput pheno-

typic datasets that cover the wide ranges of chemical

compounds and cell lines have been developed to alleviate

this problem. A gene expression profiling method based on

these datasets has been shown to be a very effective and power-

ful tool for phenotypic drug discovery and system pharma-

cology. Computational techniques that leverage genome-wide

gene expression, especially chemical-induced differential gene

expression, has demonstrated a great potential in drug repur-

posing,2–5 elucidation of drug mechanisms,6 lead identification,7

and predicting side effect of drug compounds.8

Pioneered by Connectivity Map,9 a database that consists of

�1,300 chemical-induced gene expression profiles of five human

cancer cell lines,many studies have been proposed to identify ex-

isting drugs for the treatment of new diseases by selecting drugs

that reverse the disease gene expressions.10,11 However, the

lowcoverageacrosscell types inConnectivityMap limited theper-

formance of thosemethods, especially in large-scale analysis set-

tings. To alleviate this limitation, a novel and affordable gene

expression profiling method has been proposed. In particular,

the Library of Integrated Network-based Cell-Signature (LINCS)

program introduced the L1000 platform, which measured the

expression of the most informative genes (i.e., �1,000 landmark

genes) instead of whole-genome data, thus reducing the cost for

measuring each gene expression profile to �$5.12 This profiling

technique resulted in a gene expression dataset, called LINCS

L1000, which consists of �1,400,000 gene expression profiles

covering the responses of �20,000 compounds at different con-

centrations across�80 human cell lines. Despite the significantly

increasing coverage of compounds and cell lines in the L1000,

large-scale analysis based on this dataset is still limited due to

several problems. First, despite the wide coverage across cell

lines, compounds, and concentrations, there are many missing

expression values in the vast and high-dimensional combinatorial

space of chemicals, concentrations, and cell lines. Moreover,

there are hundreds of millions of drug-like chemicals, so it is not

feasible to measure gene expression profiles across a large num-

ber of cell lines for all of these chemicals. Second, the LINCS

L1000 and other gene expression datasets are highly noisy due

to experimental limitations.13,14 As a result, many experiment

measurements are not reliable in these datasets. These problems

seriously affect the performance of large-scale genome analysis

using the LINCS L1000 and motivate the development of compu-

tational methods to predict missing gene expression values in this

high-dimensional combinatorial space.

Several studies havebeenproposed topredict gene expression

values for chemical-induced gene expression data in general,15–22

and for theLINCSL1000 inparticular,13,23,24butmostof themhave

focused on the imputation and classification settings only. In

particular, they predict either expression values or classes of

certain genes in the gene expression profiles or whole gene

expression profiles of certain existing chemicals. The imputation

setting is not practical or useful in the real-world application of

drug discovery, in which the assessment of novel chemicals (i.e.,
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chemicals not in the gene expression dataset) cannot be made

due to theunavailabilityof thecorrespondinggeneexpressionpro-

files. Moreover, formulating this problem as a classification prob-

lem has limited scope for practical applications, because this

setting focuses only on a small subset of genes, whereas down-

stream analysis based on gene expression profiles often benefits

most with use of the information of all the profile (i.e., ranking of

genes).25 There have also been some studies proposed in the

recommender system context for predicting the ranking of items

in data.26,27 However, these methods are designed for matrix

data only; hence, they cannot be adapted to work with the LINCS

L1000 dataset, which is formulated as high-dimensional data.

In this work, we propose a new framework, named chemical-

induced gene expression ranking (CIGER), that can predict gene

ranking in L1000 gene expression profiles induced by de novo

chemicals. In particular, CIGER is a neural-network-based archi-

tecture that leverages the representations of biological objects

including chemicals, cell lines, and genes to predict the gene

ranking in thecorrespondinggeneexpressionprofiles.This frame-

work consists of several components, as follows. First, due to the

importance of ranking information with respect to gene expres-

sions,25 we focus on prediction in the whole gene expression

profile by using some ranking loss functions28–33 instead of

considering prediction on each gene separately by some regres-

sion or classification loss functions in the optimization process.

Second, we learn the contextualized representations for genes

before making predictions by using an attention mechanism

named multi-head attention34 to capture the dependencies

among genes, chemicals, and cell lines. We also utilize a graph

convolutional network35 to extract useful information from the

graph structure of chemicals. Finally, the multi-layer feedforward

neural network is used to predict gene ranking from the contextu-

alized representations. Figure 1 presents the overall architecture

of CIGER, and the details of this model are shown in the Experi-

mental procedures section. We evaluate the effectiveness of

CIGER for predicting gene expression ranking and classification

tasks on the LINCS L1000 dataset under a 5-fold cross-validation

setting. The results show that CIGER significantly outperforms

other models across all ranking and classification metrics.

Furthermore, we design a new in silico drug screening pipeline

for finding potential treatments from all drugs in the DrugBank

database for pancreatic cancer based on their chemical-induced

gene expression profiles (i.e., gene rankings) generated by

CIGER. This pipeline demonstrates that CIGER can facilitate

phenotypic compound screening for precision drug discovery in

practice. In summary, the contributions of thiswork are as follows:

d We propose a deep-learning framework (CIGER) that le-

verages chemical, cell, and gene representations to pre-

dict gene ranking in chemical-induced gene expression

profiles for de novo chemicals, which is a more practical

but more challenging problem.

d Leveraging CIGER, we design a new phenotypic (i.e., gene

expression) drug-repurposing pipeline and use pancreatic

cancer as a showcase, although it can be easily applied for

finding treatments for other diseases.

d The source code and the generated gene signatures of all

drugs in DrugBank are made available for research pur-

poses at https://github.com/pth1993/CIGER.

https://github.com/pth1993/CIGER


Figure 1. Overview architecture of chemical-induced gene expression ranking (CIGER)

This model consists of the four main components: feature-mapping, attention, prediction, and learning-to-rank objective function. It takes input as a tuple of

chemical structure, cell line, and L1000 genes and then predicts the ranking of genes in the corresponding gene expression profile. Note that the multi-head

attention zoom-in is detailed architecture of the multi-head attention layer in CIGER and is separated from the main figure.
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RESULTS AND DISCUSSION

Chemical-induced gene expression data analysis
Several genome-wide chemical-induced gene expression data-

sets have been published and applied in drug discovery and sys-

tem pharmacology, and the LINCS L1000 dataset12 is the largest

and latest dataset among them. This dataset includes the gene

expression profiles generated from a platform called L1000. Spe-

cifically, this platform measures the expression of 978 landmark

genes, which captures most of the information from the entire

transcriptome. Since the first release of the LINCS L1000 dataset,

which includes more than 1.3 million gene expression profiles

from�20,000 small-molecule compounds over 77 cell lines, there

have been many studies focusing on improving the quality of this

dataset.36–38 In our study, we experiment with an L1000 dataset

using Bayesian analysis for calculating peak deconvolution.39

This dataset has been shown to generate more robust z-score

profiles from L1000 assay data compared with the original

L1000 dataset using k-means clustering for calculating peak de-

convolution,12 and therefore gives better representation for chem-

icals. Initially, we investigated the sparse and noisy problems of

this gene expressiondataset by calculating the averagePearson’s

correlation (APC) scores among bio-replicate gene expression

profiles (level 4 data) of experiments and then visualizing these

scores in the chemical-cell line space. From Figure 2, we can

observe that only 5.36% of experiments are available in this

combinatorial space (i.e., 21,229 chemicals 3 83 cell lines), and

among existing experiments, only 8.47% of them have the corre-

sponding APC scores > 0.6. These obstacles certainly hinder the
utility of this dataset to its down-stream applications in drug dis-

covery. Figure 2 also shows the statistics of this dataset with

respect to cell lines, exposure times, and chemical concentra-

tions. We can see that the top 10 most popular cell lines account

for 77.14% of the number of experiments, and the most popular

time exposure and chemical concentration are 24 h (67.56%)

and 10 mM (44.82%), respectively.

In our study, to reduce the noise of this dataset, we selected

only the gene expression profiles (level 5 data) of the 10 most

popular cell lines (i.e., A375, A549, HA1E, HCC515, HELA,

HT29, MCF7, PC3, VCAP, YAPC) in both phase I (GSE92742)

and phase II (GSE70138) of this dataset that satisfy two condi-

tions: (1) the APC scores among their bio-replicates (level 4

data) be larger than 0.6, and (2) the concentration and exposure

time of chemicals be the largest (i.e., 10 mM and 24 h, respec-

tively). The resulting dataset includes some duplicate experi-

ments (i.e., experiments with the same chemical and cell line),

so we calculated the ranking of each L1000 gene across dupli-

cate experiments and then selected the experiment that had

the most genes close to the median. Ranking loss functions

focused on optimizing the top-ranked objects only, whereas in

gene expression analysis, both the most up-regulated (positive

z-score) and the down-regulated (negative z-score) genes are

important so we multiplied the z-scores in the gene expression

profiles with�1 when training the model to rank down-regulated

genes. After processing, the data consisted of 3,294 gene

expression profiles. The number of chemicals and the statistics

of gene expression values corresponding to each cell line are

shown in Table 1.
Patterns 3, 100441, April 8, 2022 3



Figure 2. LINCS L1000 data statistical anal-

ysis (cell lines, dosages, and time exposures

are shown in random order)

(A) Gene expression profiles in chemical-cell line

space (i.e., yellow denotes missing profiles for

chemical-cell line pairs, and red and blue denote

that the pairs with the corresponding correlation

scores are smaller (unstable) and larger (stable)

than 0.6, respectively).

(B) Proportion of profiles by cell lines.

(C) Proportion of profiles by time exposures.

(D) Proportion of profiles by chemical concen-

trations
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Gene expression ranking for de novo chemicals
To validate the effectiveness of CIGER for predicting gene

expression ranking for novel chemicals, we conducted experi-

ments on the LINCS L1000 dataset39 to compare its prediction

performances with existing methods, including DeepCOP24

and Tensor-Train Weight Optimization (TT-WOPT).40 The

detailed architectures of these models are presented in

experimental procedures. Because our study focuses on pre-

dicting gene expression ranking for novel chemicals, we per-

formed experiments under 5-fold cross-validation (i.e., train:

dev:test = 60:20:20) divided by chemicals to ensure the chemi-

cals in the development, and testing sets are not seen in the

training set. Normalized Discounted Cumulative Gain (NDCG)

and Precision@K (see experimental procedures) are used for

comparing gene rankings between predicted and ground-truth

gene expression profiles.

Previous work24 formulateed the gene expression prediction

as a classification problem by classifying significantly regulated

genes. Although such work showed promising results, the clas-

sification setting was actually not very effective or practical in the

down-stream applications, because it could not represent the

whole gene expression profile. Subsequent analysis using

chemical-induced gene expression profiles will benefit most
Table 1. Number of chemicals and gene expression statistics

across cell lines for gene expression dataset after processing

#Gene expression Gene expression value

Profile (3,294) Max Mean Min

A375 430 7.8573 �0.0161 �7.6315

A549 232 6.5863 0.0059 �6.4124

HA1E 394 6.6578 �0.0100 �6.6511

HCC515 262 6.6362 �0.0027 �6.1765

HELA 191 5.2012 �0.0138 �5.1913

HT29 334 5.8744 0.0179 �5.7641

MCF7 561 8.8711 0.0067 �8.7236

PC3 481 8.6328 �0.0181 �8.5835

VCAP 256 6.6322 �0.0158 �6.3357

YAPC 153 5.1836 �0.0504 �5.1830
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from the information of all the profiles.

Thus, we target a more realistic but

more challenging scenario, in which the

model predicts the ranking of genes in

the gene expression profile. In particular,
we evaluate CIGER, DeepCOP, and a random permutation

(Note S1) for the ranking task by measuring the ranking of up-

regulated genes (genes that have z-scores > 0) and down-regu-

lated genes (genes that have z-scores < 0). DeepCOP was not

originally developed for predicting gene ranking, so we use its

predicted probability scores to generate ranked lists. As shown

in Table 2, CIGER significantly outperforms DeepCOP and

randompermutation by a largemargin across all rankingmetrics.

Specifically, CIGER achieves NDGC scores of 0.8275 and

0.8460, which reduces the error rates of DeepCOP by 9.1 and

6.8% for up-regulated and down-regulated gene ranking,

respectively. CIGER also achieves significantly better Preci-

sion@K compared with DeepCOP, showing the effectiveness

of CIGER for predicting the ranking of genes in all gene expres-

sion profiles of novel chemicals. To further validate the perfor-

mances of CIGER, we conducted the significant testing (i.e.,

paired-sample t test) with respect to NDCG scores between

CIGER and the best baseline method (i.e., DeepCOP). The p

values of the paired-sample t test for up-regulated and down-

regulated gene ranking tasks are 1.93 3 10�30 and 4.18 3

10�41, respectively, thereby showing the superiority of CIGER

for gene expression ranking compared with the existing

methods. We also evaluated the performances of CIGER and

baseline methods for ranking tasks with respect to each cell

line. The cell-specific evaluations (i.e., NDCG and Precision@K)

for these methods are shown in Tables S1 and S2.

Gene expression classification for de novo chemicals
Besides the ranking setting, we also compared CIGER with

baseline methods, including TT-WOPT, DeepCOP, and logistic

regression (LR) in the classification setting, in which the models

predict whether genes are up-regulated or down-regulated due

to molecular intervention. As shown in Table 3, CIGER outper-

forms TT-WOPT, LR, and DeepCOP by a large margin, which

demonstrates its effectiveness for gene expression classification

tasks. In particular, CIGER achieves AUC scores of 0.7202 and

0.7558 for up-regulated and down-regulated gene classification

tasks, respectively. For baseline methods, DeepCOP achieves

better performances than LR, indicating that the linear model is

not capable of capturing the relationship between input features



Table 2. Average performance (NDCG and Precision@K) of CIGER, DeepCOP, and the random ranking for ranking up-regulated and

down-regulated genes under the 5-fold cross-validation setting

Model NDCG P@10 P@50 P@100 P@200

Up-regulated gene ranking

Random 0.7309 ± 0.0025 0.2045 ± 0.1270 0.2045 ± 0.0556 0.2045 ± 0.0382 0.2045 ± 0.0254

TT-WOPT 0.7384 ± 0.0010 0.2606 ± 0.0143 0.2395 ± 0.0093 0.2284 ± 0.0077 0.2181 ± 0.0060

DeepCOP 0.8083 ± 0.0022 0.5430 ± 0.0131 0.4656 ± 0.0111 0.4161 ± 0.0104 0.3559 ± 0.0068

CIGER 0.8275 ± 0.0041 0.5973 ± 0.0170 0.5276 ± 0.0126 0.4735 ± 0.0101 0.4027 ± 0.0077

Down-regulated gene ranking

Random 0.7418 ± 0.0013 0.2045 ± 0.1270 0.2045 ± 0.0556 0.2045 ± 0.0382 0.2045 ± 0.0254

TT-WOPT 0.7534 ± 0.0007 0.2876 ± 0.0076 0.2618 ± 0.0050 0.2471 ± 0.0052 0.2297 ± 0.0040

DeepCOP 0.8346 ± 0.0030 0.6084 ± 0.0190 0.5304 ± 0.0180 0.4779 ± 0.0143 0.4077 ± 0.0090

CIGER 0.8460 ± 0.0023 0.6342 ± 0.0120 0.5753 ± 0.0041 0.5250 ± 0.0034 0.4465 ± 0.0035

ll
OPEN ACCESSArticle
and gene regulation effects. The performances of TT-WOPT for

the two classification tasks, as we expected, are 0.4981 and

0.5096, which are equivalent to a coin toss. TT-WOPT, designed

for imputation setting, does not leverage any feature information

except for the gene expression values in the training set when

predictions are made, so this method is not suitable for de

novo chemical setting.We also evaluate the classification perfor-

mances of these models by AU-PRC and F1 scores. Table S3

shows the results measured by these classification metrics.

Drug repurposing for pancreatic cancer
Drug candidate prediction for pancreatic cancer

To further investigate the effectiveness of CIGER, we designed

the drug-screening pipeline using this model to find potential

treatments for pancreatic cancer from existing drugs. Previous

drug repurposing research has identified useful targets and

drug candidates for killing pancreatic cancer cells or inhibiting

tumor growths with e thlimited numbers of drugs obtained

from compound library or by target.42,43 Here, we performed

drug repurposing with all existing drugs from DrugBank. Further-

more, we aimed to discover drugs that can induce the drug

sensitivity of pancreatic cancer sub-types that are resistant to

existing anti-cancer therapies rather than screen compounds

that can kill cancer cells directly. A recent study has shown

that the combination of metformin and vitamin C can restore
Table 3. Average performances (AUC) of CIGER and baseline mode

under 5-fold cross-validation setting

Methods Objective function

TT-WOPT N/A

Logistic regression Binary cross entropy

DeepCOP Binary cross entropy

CIGER-NA ListMLE

CIGER-NA ListNet

CIGER-NA RankCosine

CIGER-NA RankNet

CIGER-A RankCosine

CIGER RankCosine

TT-WOPT, CIGER, and its variants (i.e., CIGER-A and CIGER-NA) are trained

with binary labels indicating gene regulation stages.
TET2 and GATA6 activities in an aggressive squamous-like

pancreatic ductal adenocarcinoma sub-type, which are the

biomarkers of classical-pancreatic tumor, thereby improving

therapeutic responses and survival of aggressive pancreatic

sub-types.44 The main step of this screening pipeline is to

compare the chemical-induced gene expression profiles gener-

ated by CIGER with a gene expression profile computed from

pancreatic cancer cell lines treated by metformin and vitamin

C. For drug gene expression profiles, we send queries to the

DrugBank database to retrieve the list of all existing drugs (i.e.,

11,179 drugs) with their corresponding SMILES representations

and then use CIGER trained on the LINCS L1000 dataset to

generate profiles for these drugs from their SMILES representa-

tions. For gene expression profile of pancreatic cancer treated

by metformin and vitamin C, we performed differential expres-

sion analysis with DESeq241 between metformin- and vitamin

C-treated samples andmock-treated samples.44 Then, we com-

puteed the similarity with respect to ranking information between

the gene expression profiles of treatment and drugs across 10

cell lines by gene set enrichment analysis (GSEA) and Preci-

sion@200 scores to find potential treatments for this disease.

Note that we derived the treatment profile as the differential

expression of treated disease samples versus untreated disease

samples, which is different from the differential expression of

disease samples versus normal samples used in deriving the
ls for up-regulated and down-regulated gene classification tasks

Classification tasks

Up-regulated Down-regulated

0.4981 ± 0.0097 0.5096 ± 0.0097

0.6270 ± 0.0209 0.6480 ± 0.0182

0.6764 ± 0.0176 0.6925 ± 0.0217

0.6741 ± 0.0071 0.7166 ± 0.0102

0.6723 ± 0.0122 0.7254 ± 0.0081

0.6992 ± 0.0106 0.7289 ± 0.0123

0.6810 ± 0.0052 0.7192 ± 0.0108

0.7086 ± 0.0106 0.7448 ± 0.0040

0.7202±0.0057 0.7558 ± 0.0061

with z-score values whereas logistic regression and DeepCOP are trained

Patterns 3, 100441, April 8, 2022 5



Figure 3. Drug screening pipeline using CIGER

This model is trained with the LINCS L1000 dataset to learn the relation between gene expression profiles and molecular structures (i.e., SMILES). Then, mo-

lecular structures retrieved from the DrugBank database are put into CIGER to generate the corresponding gene expression profiles. Finally, these profiles are

compared with treatment profiles calculated from treated and untreated samples to find the most potential treatments for that disease
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disease profile mentioned in previous studies. Thus, the drug

candidates from our pipeline would induce similar gene expres-

sion profiles as a treatment (i.e., metformin/vitamin C) profile

instead of having inverse correlation with the disease profile as

in previous studies. The details of the method used to generate

drug and treatment gene expression profiles and the screening

process are shown in experimental procedures. Figure 3 shows

the proposed drug screening pipeline using CIGER.

Top drugs selected by Precision@200 and GSEA scores are

listed in Tables 4 and 5, respectively. The two-dimensional mo-

lecular structures of these drugs are visualized in Figures S3

(Precision@200) and S4 (GSEA). Sucrosofate and inositol hex-

asulphate in this list are known to bind human fibroblast growth

factor 1, which is related to tumor growth and invasion.45 For

drugs selected by GSEA score, six of them are confirmed to

affect phosphatidylinositol 3-kinase (PI3K) or mammalian

target of rapamycin (mTOR) pathway. As PI3K/Akt/mTOR

signaling is one of the most important intracellular pathways

that regulate the cell cycle, it can be targeted by drugs to regu-

late the metabolism in cancer cells, resulting in phenotype

shift, increased cell death, and decreased cell prolifera-

tion.46,47 Biguanide and its medication drug (i.e., metformin)

have been shown to be effective for pancreatic cancer tumor

growth inhibition.44,48,49 Note that the drugs selected by

CIGER are not available in the training set of the LINCS

L1000 dataset, thereby showing its real potential application

in drug discovery that enables high-throughput phenotypic
6 Patterns 3, 100441, April 8, 2022
drug screening by utilizing the molecular structure’s informa-

tion only. Also, cell-specific prediction may also provide

improvement for predictions. The cell-specific ranks and simi-

larity scores (i.e., Precision@200 and GSEA) of these drug can-

didates are shown in Tables S5 and S6.

Experimental validation for pancreatic cancer drug

candidates

To evaluate our candidates generated from our predictions,

several drugs, including dipyridamole, AZD-8055, linagliptin,

and preladenant, are tested in vitro together with the combina-

tion of metformin and vitamin C as a positive control. We used

the above-mentioned drugs to treat pancreatic cancer cell lines

and performed western blot to show the level of GATA6 and

TET2, thus evaluating the effect of the predicted candidate

drugs. The methods for experimental validation are described

in Note S4.

As shown in Figures 4A and 4B, western blot following quan-

tification showed that the combination of metformin and vitamin

C increased TET2 and GAT6 levels in PANC-1 cells at 24 h. Di-

pyridamole can also significantly increase TET2 levels after

24 h treatments in PANC-1 cells, and linagliptin increased both

TET2 and GATA6 levels significantly, suggesting that they can

induce similar responses to metformin and vitamin C.

To investigate whether the increase in TET2 and GATA6 would

have an effect on 5hmc, dot blots of all drugs were performed

and quantified. As shown in Figure 4C, metformin/vitamin C

and linagliptin significantly increased 5hmc levels in PANC-1



Table 4. Drug candidates selected by Precision@200

DrugBank ID Name Formula Information

DB00364 Sucralfate C12H35Al9O55S8 Treat and prevent the return of duodenal

ulcers

DB01666 Inositol Hexasulphate C6H12O24S6 Binding to human acidic fibroblast growth

factor

DB14815 Ginsenoside B2 C48H82O18 Extract from Panax notoginseng (Japanese

ginseng), decreases the b-amyloid protein

DB15532 Madecassoside C48H78O20 Found in Centella asiatica (Gotu kola), anti-

inflammatory, wound healing, and anti-

oxidant activities

DB06749 Ginsenoside Rb1 C54H92O23 Abundant in Panax quinquefolius (American

ginseng), protected against amyloid

b-induced neurotoxicity

DB14528 Chromium gluconate C18H33CrO21 Supplement to intravenous solutions given

for total parenteral nutrition

DB09517 Sodium ferric gluconate complex C66H121Fe2NaO65 Treats iron deficiency anemia

DB03995 Betadex C42H70O35 Pharmacologically inactive substance,

useful for stabilizing, solubilizing, or

delivering intermediate size molecules.

DB01901 Sucrosofate C12H22O35S8 Drug retention and drug encapsulation

stability
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genomic DNA after 24-h treatment. Representative bands of

western blot are shown in Figure S3. To study the effect of treat-

ments on the growth of PANC-1 cells, clonogenic survival of cells

with metformin/vitamin C or linagliptin treatment was analyzed.

As showed in Figure 4D, metformin and vitamin C treatment

demonstrated a significantly lower percentage of survival

compared with negative control, and linagliptin treatment

caused a significantly lower survival rate compared with both

the negative control and the combination of metformin and

vitamin C. To understand the way linagliptin improved treatment

sensitivity, we analyzed the predicted drug signature of linaglip-

tin with paslincs50 to find the affected pathways. We found the

antifolate resistance pathway at the top of the list, which is

related to drug resistance in cancer treatment. The compounds
Table 5. Drug candidates selected by GSEA

DrugBank ID Name Formula

DB00975 Dipyridamole C24H40N

DB11896 Gedatolisib C32H41N

DB12774 AZD-8055 C25H31N

DB08882 Linagliptin C25H28N

DB12904 ZSTK-474 C19H21F2

DB13100 Biguanide C25H28N

DB13051 CH-5132799 C15H30N

DB11925 Vistusertib C25H30N

DB11864 Preladenant C25H29N
we identified can be further studied in vivo, or use tools like

Code-AE51 to predict their patient-specific clinical response to

predict their performance in the real application.

Ablation study for CIGER
An ablation study was conducted to further investigate how

CIGER surpasses the limitations of existing methods for chemi-

cal-induced gene expression prediction. In particular, we

removed components from CIGER (i.e., CIGER-NA and CIGER-A)

and observed the changes in its prediction performances. We

also explored the impact of noisy data on prediction performance.

Learning-to-rank objective function

In this experiment, we investigated the effectiveness of

learning-to-rank objective functions (i.e., ListMLE,32 ListNet,31
Information

8O4 Prevents the degradation of cAMP, an

inhibitor of platelet function

9O4 Targets PI3K/mTOR, in development of

solid tumors and acute myeloid

leukemia (AML)

5O4 ATP-competitive mammalian target of

rapamycin (mTOR) kinase inhibitor, with

in vitro and in vivo antitumor activity

8O2 Dipeptidyl peptidase-4 (DPP-4) inhibitors

with hypoglycemic activity

N7O2 PI3K inhibitor

8O3 mTOR inhibitor, type II diabetes mellitus

treatment

6O2 PI3K inhibitor

6O3 Inhibitor of mTOR

9O3 Selective antagonist at the adenosine A2A

receptor
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Figure 4. In vitro experiments of dipyrida-

mole, AZD-8055, linagliptin, and preladen-

ant with the combination of metformin and

vitamin C as a positive control

(A) Quantification of TET2 levels in drug treat-

ments. Dipyridamole and linagliptin can signifi-

cantly increase TET2 level after 24-h treatments.

(B) Quantifications of GATA6 expressions in drugs

treatment. Linagliptin increased GATA6 expres-

sions in PANC-1 after 24-h treatment. Data are

presented as means ± SD (n = 3).

(C) Linagliptin and metformin vitamin C increased

5hmc levels in PANC-1 cells after 24-h treatment.

Quantifications of 5 hmc dot blots (n = 3), data are

represented as means ± SD. *p < 0.05, **p < 0.01,

***p < 0.001 (unpaired two-tailed t test and one-

way ANOVA).

(D) The effect of drug treatments on clonogenic

survival as a measure of growth rate. All data are

presented as means ± SD (n = 3). **p < 0.005,

****p < 0.0001 (analyzed using one-way ANOVA)
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RankCosine,33 and RankNet28) to learn the dependencies

among genes. In order to do that, we compared CIGER-NA

with DeepCOP (binary cross entropy) for gene expression

classification tasks. CIGER-NA is a variant of CIGER in which

the attention component is removed, and the extended

connectivity fingerprint (ECFP) is used instead of neural finger-

print (learned by graph convolutional network) to represent a

chemical, so the main difference between CIGER-NA and

DeepCOP is at the objective functions they optimize. As

shown in Table 3, the overall performance of CIGER-NA was

better than DeepCOP for both classification tasks. Among

these objective functions, using CIGER-NA with RankCosine

achieved the best improvement compared with DeepCOP. In

particular, it achieved AUC scores of 0.6992 and 0.7289,

which was significantly better than the AUC scores of

0.6764 and 0.6925 of DeepCOP for up-regulated and down-

regulated gene classification tasks, respectively. Therefore,

we used RankCosine as the ranking objective function for

CIGER and its variant.

Data-driven representations for chemicals

To validate the improvement of data-driven features over pre-

defined features for chemicals, we compared the performance

of using ECFP (i.e., CIGER-NA) and neural fingerprint gener-

ated by graph convolutional network (i.e., CIGER-A). As shown

in Table 3, using neural fingerprint achieved better perfor-

mance than ECFP. In particular, CIGER-A achieved AUC

scores of 0.7086 and 0.7448, which were better than 0.6992

and 0.7289 of CIGER-NA, indicating the effectiveness of the

approach that automatically learns representations for chem-

icals from data.
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Multi-head attention mechanism

We compared CIGER with its variants in

this experiment to evaluate the effective-

ness of the multi-head attention compo-

nent for prediction performance. As

shown in Table 3, by leveraging the atten-

tion mechanism to learn the depen-

dencies among genes and chemicals,
CIGER achieved the best performance compared with its vari-

ants. In particular, it outperformed CIGER-A by achieving AUC

scores of 0.7202 and 0.7558 compared with 0.7086 and

0.7448 of CIGER-A for up-regulated and down-regulated gene

classification tasks, respectively. CIGER-NA, without both graph

convolutional network and multi-head attention components, as

we expected, achieved the worst performance among its vari-

ants. All these results demonstrate the improvement of using

multi-head attention for gene expression prediction.

Noisy gene expression data

To validate the impact of the noisy problem in LINCS L1000 data-

set on the predictionperformance ofCIGER,we trained thismodel

on the whole dataset (i.e., without removing noisy profiles which

have APC scores < 0.6 among their bio-replicates) and compared

it with the one trained on high-quality data only (i.e., including only

profiles that have APC scores > 0.6 among their bio-replicates).

The results (i.e., NDCG, Precision@K) shown in Table S4 indicate

that noisy gene expression can significantly hinder the prediction

performance of CIGER. In particular, its NDCG scores decreased

from 0.8275 and 0.8460 to 0.7761 and 0.7966, respectively, for

up-regulated and down-regulated gene ranking.

Existing limitations

Although achieving superior results compared with the baseline

methods and showing feasibility in gene expression-based

drug repurposing for pancreatic cancer, our proposed method

still has some limitations. First, it cannot generate chemical-

induced gene expression profiles with respect to the new cell

lines (i.e., except 10 cell lines in the training dataset) caused by

the lack of cell line representations. Second, due to the noise

issue in the LINCS L1000 dataset, we could only utilize a small
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subset of these data for training, thereby hindering the prediction

performance of our method for de novo chemicals. Third, the

limited size of the LINCS L1000 dataset in terms of chemicals

(i.e., �20,000 small molecules) inhibits CIGER from learning

generalized representation for chemicals in the complex molec-

ular space. Finding efficient cell line representation, de-noising

geneexpressiondata, andpre-training on the largemolecular da-

tasets are the keys to surpassing these limitations, and we leave

them in our future works.

Conclusion
Large-scale analysis that leverages chemical-induced gene

expressionprofiles has attractedgreat attention indrugdiscovery.

However, the effectiveness of this approach is limited by the

spareness and noise measurement problems. In this study, we

propose CIGER, a novel and robust neural network-based model

for predicting the ranking of genes in the gene expression profiles

induced by de novo chemicals. Our model achieves state-of-the-

art results comparedwith othermethods for both geneexpression

classification and ranking tasks in a de novo chemical setting.

Furthermore, with the capability of predicting the ranking of genes

in the chemical-induced gene expression profiles across different

cell lines leveraging the chemical structures only, CIGER provides

new opportunities for subsequent molecular phenotype-based

drug repurposing by comparing the ranking of genes in chemi-

cal-induced profiles with the treatment profiles computed from

chemical-treated and -untreated disease states. The similar or

reverse of gene expression rankingwill suggest themost potential

drug candidates for specific diseases. In summary, CIGER could

be a powerful tool for phenotypic compound screening.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for information should be directed to the lead contact, Ping Zhang

(zhang.10631@osu.edu).

Materials availability

This study did not generate any new materials.

Data and code availability

The Bayesian-based peak deconvolution LINCS L1000 dataset is available at

https://github.com/njpipeorgan/L1000-bayesian. The pre-processed gene

expression data used in our study and gene expression profiles generated

from CIGER for all drugs in DrugBank are available at https://github.com/

pth1993/CIGER. CIGER source code and its usage instructions are available

in Github (https://github.com/pth1993/CIGER).

Ranking task definition

In the LINCS L1000 dataset, each experiment can be considered as a tuple of

the chemical compound, cell line, and corresponding gene expression profile.

These biological and chemical objects are transformed into numerical repre-

sentations for use in the computational models. In particular, the L1000 data-

set can be represented by the following matrices Xchem˛Rn3dchem , Xcell˛
Rn3dcell , Xgene˛Rng3dgene , and Z˛Rn3ng , where Xchem;Xcell ;Xgene are feature

matrices of chemicals, cell lines, and L1000 genes in the dataset, Z˛ Rn3ng

is the gene expression matrix, n; ng are numbers of experiments and L1000

genes, and dchem;dcell ;dgene are feature dimensions of chemical compound,

cell line, and gene, respectively. The goal of this task is predicting the ranking

of genes in the expression profile Z˛Rn3ng based on the feature matrices.

CIGER architecture

The CIGER architecture consists of four main components: (1) the feature-

mapping component, which transforms biological and chemical objects to nu-
merical representations, including a graph convolutional network, to transform

the simplified molecular-input line-entry system (SMILES) representations of

chemicals to numerical vectors and embedding lookup tables to transform

cell lines and L1000 gene indexes to binary vectors, (2) the attention compo-

nent, which looks at all L1000 genes and chemicals to create contextualized

representation for each gene, (3) the prediction component, which predicts

the ranking of all L1000 genes in gene expression, and (4) the learning-to-

rank objective function, which optimizes the global prediction performance

for all L1000 genes. Figure 1 presents the overview architecture of CIGER.

The details of each component are as follows.

Feature mapping for biological and chemical objects

We use the graph convolutional network and gene ontology consortium to

construct numerical representations for chemical compounds and L1000

genes. For cell lines, we simply use one-hot vectors.

The chemical feature matrix Xchem is generally pre-defined in traditional ap-

proaches. One popular method is the extended connectivity fingerprint

(ECFP), which represents molecular sub-structures by means of circular

atom neighborhoods. Specifically, the presence or absence of sub-structures

is encoded in a fixed-size binary vector. The main drawback of this method is

that the sub-structures need to be available before training and therefore may

not be the optimized way to represent the chemicals for particular tasks.

Recently, with the advancement of graph neural networks, some data-driven

methods have been proposed to effectively exploit the graph-based structure

of chemicals.52,53 Compared with pre-defined approaches, these methods

can automatically find the most important sub-structures that are optimized

representations for chemicals for the prediction tasks by optimizing the objec-

tive function from training. In our work, we use a graph convolutional network35

to exploit information from chemicals, which can be seen as graphs of atoms

(nodes) and bonds (edges). This method can be seen as the differentiable

variant of ECFP, in which every step is continuous and differentiable and

therefore allows updates from gradient propagation. In particular, the graph

convolutional network updates the representation of one particular node

from the information of its neighborhoods in the graph by convolutional oper-

ation so that each node in the output layer represents the sub-structure of the

original graph. Following the setting in,35 we use the 2-layer graph convolu-

tional network (radius = 2), which means that the sub-structures represented

by this method are the span of 2-hop distance from the atom. Inputs for the

graph convolutional network are the feature vectors of atoms and bonds

that capture their properties such as atom symbol, degree, and type of bonds.

The dimension of fingerprints generated by the graph convolutional network is

set to be 1,024 which is similar to ECFP for a fair comparison. The detailed im-

plementation of the graph convolution network used for chemicals is shown in

Note S2.

The Gene Ontology Consortium54 has been shown to be an effective way to

represent genes and proteins by capturing their biological process, molecular

function, and cellular component. In our experiments, we follow the data pro-

cessing described in Woo et al.24 by selecting 1,107 gene ontology terms that

appeared in at least three L1000 genes and using them to construct Xgene.

These representations can be seen as binary vectors, where the indexes of

bit 1 mean the appearance of gene ontology terms associated with these

indexes.

Multi-head attention for contextualized representation

We utilize multi-head attention34 to capture the dependencies among genes

for learning better representation. In particular, for ith experiment, chemical

x
ðiÞ
chem and cell line x

ðiÞ
cell are concatenated with each gene x

ðjÞ
gene in Xgene and

then put into the feedforward neural network layer and ReLU activation func-

tion to generate contextualized x
ðijÞ
gene�context as follows:

x
ðijÞ
gene�context = ReLU

�h
x
ðiÞ
chem; x

ðiÞ
cell ; x

ðjÞ
gene

i
W + b

�

where W˛Rðdchem +dcell +dgeneÞ3dh ;b˛dh are learned parameters and ½a;b� is a

concatenation operation on a; b. The contextualized representation for

L1000 genes is packed into matrix X
ðiÞ
gene�context and then put into multi-head

attention to learn attention-based representation. In particular, multi-head

attention transforms the input feature matrix (i.e., X
ðiÞ
gene�context ) to three sepa-

rate matrices QðiÞ;KðiÞ;VðiÞ˛Rng3dh as follows:

QðiÞ = XðiÞ
gene�contextWQ
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KðiÞ = XðiÞ
gene�contextWK

VðiÞ = X
ðiÞ
gene�contextWV

where WQ;WK ;WV˛Rdh3dh are the trainable parameter matrices, dh is the

dimension of transformed features, and then the attention-based representa-

tions for the input features are computed as follows:

OðiÞ = s

 
QðiÞKðiÞTffiffiffi

d
p

!
VðiÞ

whereOðiÞ˛Rng3dh , s, and d are the attention representation, softmax function,

and scale factor.

Multi-output prediction for gene ranking

The 2-layer feedforward neural network with ReLU activation function is used

to predict the rank of each gene in the gene expression profile. The weight of

this network is shared across all L1000 genes.

Learning-to-rank objective functions

CIGER optimizes the predictions for all L1000 genes together rather than indi-

vidually by using learning-to-rank objective functions. In particular, CIGER

treats the gene expression profiles as the lists ranked by their z-score and

then minimizes several learning-to-rank objective functions including both

pairwise (i.e., RankNet28) and listwise (i.e. ListNet,31 ListMLE,32 and RankCo-

sine33) functions between the predicted (y) and the ground-truth (z) gene

expression profiles. Details of these objective functions are presented in

Note S3.

Baseline methods

We compare CIGER with the following baseline models for chemical-induced

gene expression ranking and classification tasks.

Logistic regression

LR is the linear model used in the gene expression classification task. We use

the scikit-learn implementation55 to train this model on the LINCS L1000

dataset. Inputs for LR are the concatenations of 1,024-bit circular topological

fingerprints for chemical, one-hot vector for cell line, andmulti-hot vectors (i.e.,

1,107-bit) that represent the inclusion of Gene Ontology terms for L1000

genes. The outputs of linear functions are put into the logistic function tomodel

the probabilities of being (up- or down-) regulated for L1000 genes induced by

chemicals.

DeepCOP

DeepCOP is the neural network-based model for gene expression classifica-

tion task.24 We re-implement this model in PyTorch framework56 and use

the same hyper-parameters as in the original paper. This model consists of

three layers with SeLU activation function for the first layer and ReLU activation

function for the following layers. Inputs for DeepCOP are similar to those of LR,

and the objective function is binary cross-entropy between the ground-truth

and predicted labels.

Tensor-train weight optimization
40The tensor completion-based model is used to impute missing values in

high-dimensional (tensor) data from existing values. It has shown good perfor-

mance when applied to predict z-score values of the LINCS L1000 dataset.

This method leverages existing labels (z-score) only to make predictions, so

additional feature information such as chemicals, cell lines, and genes are

not required. We use the MATLAB implementation provided by the authors

to train this model in our de novo chemical setting.

CIGER-A

CIGER-A is the variant of our proposed model that makes predictions without

the attention mechanism.

CIGER-NA

CIGER-NA is the variant of our proposed model that does not use either neural

fingerprint or attention mechanism.

Evaluation metrics

To evaluate the performance of prediction models on the testing sets, the area

under the receiver operating characteristic (AUC) is chosen for classification
10 Patterns 3, 100441, April 8, 2022
tasks, and NDCG and Precision@K are used for ranking tasks. The details of

NDCG and Precision@K are as follows.

Normalized discounted cumulative Gain)

NDCG is the metric used to evaluate the performance of models in ranking

tasks. This metric focuses on two aspects of the ranking models: (1) giving

higher ranks for higher relevant items and (2) highly relevant items being ranked

higher than marginally relevant items and, in turn, having higher ranks than

non-relevant items. In particular, NDCG at rank p is calculated as follows:

NDCGp =
DCGp

IDCGp

where discounted cumulative gain (DCGp) and ideal discounted cumulative

gain (IDCGp), which is the maximum possible values of DCGp, are computed

as follows:

DCGp =
Xp
i = 1

2reli � 1

logði + 1Þ IDCGp =
XjRELpj
i = 1

2reli � 1

logði + 1Þ

where reli is the relevant score of the result at position i, and RELp is the sorted

list of relevant items up to position p. In our setting, the relevant scores are

z-score (minus z-score in the case of ranking down-regulated genes) values

in the gene expression profiles. Because negative scores cause NDCG to be

unbounded, so for up-regulated and down-regulated gene rankings we

set all negative relevant s to be 0. Precision@K is another metric we used to

evaluate the performance of models in ranking tasks. It is the proportion of

genes in the top-K predicted set that is up-regulated or down-regulated. In

particular, Precision@K is computed as follows:

Precision@K =

���Aground�truthXAtop�K
predicted

���
K

where Aground�truth is the set of up-regulated or down-regulated genes (i.e., we

select the top 200 genes that have the largest and smallest z-scores as the

sets of the ground-truth up-regulated and down-regulated genes, respec-

tively) and Atop�K
predicted is the sets of top-K genes in the predicted ranked lists.

In our study, we evaluate the performances of models at different K-levels

including 10, 50, 100, and 200.
Drug repurposing pipeline

Drug gene expression profile

To generate drug profiles used in the drug screening process, we sent queries

to the DrugBank database to retrieve the list of all existing drugs (i.e., 11,179

drugs) with their corresponding SMILES representations and then used CIGER

trained on the LINCS L1000 dataset to generate gene expression profiles (i.e.,

gene ranking) for these drugs from their SMILES representations. In our study,

each drug is represented by 10 cell-specific gene expression profiles. Note

that under the cross-validation setting, each profile is the average of the cor-

responding profiles generated from different models trained on different

data folds. In summary, this process results in a ranking matrix of 11,179

rows (drugs) and 10 columns (cell lines).

Treatment gene expression profile

For pancreatic the cancer treatment gene expression profile, we performed

differential expression analysis between metformin- and vitamin C-treated

samples and mock-treated samples with DESeq2.41 A recent study showed

that metformin and vitamin C treatment could restore TET2 activity in an

aggressive squamous-like pancreatic ductal adenocarcinoma sub-type, and

increase biomarkers of classical pancreatic tumors, which are related to

improved therapeutic responses and survival.44 To search for drugs that can

restore epigenetic control in pancreatic tumors, like metformin and vitamin

C, we used pancreatic cancer gene expression data from this study, where

the human pancreatic tumor cell line PSN1, orthotopically implanted into

mice, was treated with metformin combined with vitamin C or mock treatment.

RNA-seq gene expression data are filtered to get human-only reads. In total,

three metformin/vitamin C-treated samples and three mock-treated control

samples were used for differential expression analysis. Those up/down-regu-

lated genes can be used as signatures that characterize the treatment (i.e., the
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differential expression analysis is from mock-treated samples to treated

samples).

Screening method

A screening process was conducted by comparing drug profiles with treat-

ment profiles in terms of gene ranking. Specifically, Precision@200 and

GSEA scores wee used to find drugs whose profiles were most similar to the

treatment profiles with respect to each cell line. The reason is that we wanted

to find drugs that induce similar responses in pancreatic cancer as metformin/

vitamin C treatment, which has been shown to be effective in restoring epige-

netic control in pancreatic cancer cells and improving therapeutic responses.

Then, for each cell line, the top 10 most similar drug candidates were retrieved

for further analysis. Previous studies showed that consensus gene expression

profiles could give a more comprehensive representation and improve confi-

dence in gene-expression analysis, so we used results from all 10 cell lines

to determine drug candidates. In particular, we selected drugs that are in

the top 10 of at least three cell lines for Precision@200 and two2 cell lines

for GSEA as our potential treatments for pancreatic cancer.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100441.
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Supplemental Notes

Supplemental Note 1: Random Ranking Method

The random ranking method can be seen as the random permutation over
the gene sequence. Thus, its performances measured by Precision@K can be
computed theoretically. In particular, Precision@K returned by the random
ranking method can be seen as the random variable X = Y/K where Y follows
the hypergeometric distribution f(y|A,N, n) with A = K is the number of top-
K regulated genes, N = ng is the number of genes, and n = K is number of top
regulated genes in predicted profiles used to compute Precision@K. Then the
average performance of the random ranking method measured by Precision@K
is computed as X̄ = Ȳ

K = nA
NK = K

ng
. For measuring performances by NDCG

we run random ranking method 100 times for each gene expression profile and
return the average results.

Supplemental Note 2: Details of Data-driven Graph-based Fingerprint (Neural
Fingerprint)

The pseudo-code of data-driven graph-based fingerprint generated by graph
convolutional network is shown in Algorithm 1. In general, graph convolutional
network updates the representation of one particular nodes from information
of its neighborhoods in the graph by convolutional operation so each node in
the output layer represents the sub-structure of the original graph. Follow the
setting in [1], we use the 2-layer graph convolutional network (radius = 2) which
means that the sub-structures represented by this method are the span of 2-hop
distance from the atom. Inputs for graph convolutional network are the feature
vectors of atoms and bonds that captures their properties such as atom symbol,
degree, and type of bonds. The dimension of fingerprints generated by graph
convolutional network is set to be 1024 which is similar to ECFP for a fair
comparison.

Supplemental Note 3: Learning-to-rank Objective Functions

CIGER treats the gene expression profiles as the lists ranked by their z-
score values and then minimizes several learning-to-rank objective functions
including both pair-wise (i.e. RankNet) and list-wise (i.e. ListNet, ListMLE,
and RankCosine) functions between the predicted (Y) and the ground-truth
(Z) gene expression profiles. The details of these learning-to-rank objective
functions are presented in the following paragraphs.

ListNet. [2] is the list-wise ranking objective function that minimizes the cross-
entropy loss between top-1 probability of the predicted and ground-truth gene
expression profiles. In particular, the top-1 probability of gene i in the gene
expression profile j is the probability of that gene being ranked first among all
genes in that profile and is computed as follows:

P z(j)

top−1(x
(j)
i ) =

exp(z
(j)
i )∑ng

k=1 exp(z
(j)
k )



Algorithm 1: Pseudo-code of data-driven graph-based fingerprint

Input: Chemical graph = (V,E), radius R, hidden weights
(H1

1, ...,H
5
R), (U1, ...,Ul), (W1, ...,Wl)

Output: Neural fingerprint f
for l = 1 to R do

for i = 1 to |V | do
Vneighbor, Eneighbor ← Neighbors(v(i));

v
(i)
l ←

∑
v(j)∈Vneighbor

v
(j)
l−1;

e
(i)
l ←

∑
e(j)∈Eneighbor

e
(j)
0 ;

v
(i)
l ← concat(v

(i)
l , e

(i)
l );

v
(i)
l ← ReLU(v

(i)
l−1Ul + (v

(i)
l Wl);

v
(i)
l ← softmax(v

(i)
l H

|Vneighbor|
l );

f← f+ v
(i)
l ;

end

end

and then ListNet minimizes the loss:

LListNet = −
nb∑
j=1

ng∑
k=1

P z(j)

top−1(x
(j)
i ) log(P y(j)

top−1(x
(j)
i ))

ListMLE. [3] is the list-wise ranking objective function that maximizes the like-
lihood of the rank given the list of gene expression values. In particular, let
π(j) is the ranked list given the gene expression profile z(j), the negative log-
likelihood of the ranked lists is computed as follows:

LListMLE = −
nb∑
j=1

ng∑
i=1

exp(y
(j)

π
(j)
i

)∑ng

k=i exp(y
(j)

π
(j)
k

)

RankCosine. [4] is the list-wise ranking objective function that measures the
cosine similarity between the predicted and ground-truth ranking lists. In par-
ticular, this score is computed as follows:

LRankCosine =
1

2

nb∑
j=1

(
1− z(j)Ty(j)∥∥z(j)∥∥∥∥y(j)

∥∥
)

RankNet. [5] is the pair-wise ranking objective function that considers the rank-
ing between every pairs of genes. In particular, given the ranked list π(j) of gene
expression profiles z(j), RankNet is computed as the cross-entropy loss between
predicted and ground-truth pair-wise ranked probabilities as follows:

LRankNet =

nb∑
j=1

ng∑
i,k=1

−P̂ (j)
ik log(P

(j)
ik )− (1− P̂

(j)
ik ) log(1− P

(j)
ik )



where P̂
(j)
ik and P

(j)
ik are the ground-truth and predicted probabilities that gene

i is ranked higher than gene k and are computed as follows:

P̂
(j)
ik =

1

2
(1 + S

(j)
ik )

P
(j)
ik =

1

1 + exp(−(y(j)i − y
(j)
k ))

where S
(j)
ik = 1 if gene i is ranked higher than gene k in the ranked list π(j), -1

if gene k is ranked higher, and 0.5 if they are ranked equally.

Supplemental Note 4: Details of Methods for Experimental Validation

Cell Culture

PANC-1 and PSN-1 cells were obtained from ATCC. Cells were cultured in
complete Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, Cat No.21969-
035 USA) with 10% Fetal Bovine Serum (FBS), 2mM L-Glutamine (Gibco,
USA) and 50u/ml penicillin/streptomycin (Gibco, ref 15140-122, USA). Cells
were cultured at 37◦C with 5% CO2 in a humidified incubator. To harvest cells,
media was removed, and cells were washed with PBS and trypsinised with 2-
4 ml trypsin (Gibco, Cat No. 25200-056, USA) and incubated for 4 minutes
to detach. Trypsin was then neutralised by adding 8-10 ml complete media
and cells were collected and counted using countess (C10283 Fisher Scientific,
Rockford, IL, USA) following manufacturer’s protocol.

Drugs and Reagents

Drugs for Treatment. Drugs used with their stock and working concentrations
are summarised in Supplemental Table S7.

Antibody and Enzymes. Antibodies, enzymes used in western blot and dot blot
are summarised in Supplemental Table S8. TET2 and GATA6 primary anti-
bodies were obtained from Abcam (Cambridge, UK) and used at dilution of
1:500. 5hmc was obtained from Active motif (California, USA) and used at
dilution 1:1000. Beta-actin was obtained from Proteintech (USA) and used at
1:1000. Anti-ribbit HRP (7074S, Cell Signalling Technology Danvers, USA) and
anti-mouse HRP (7076S, Cell Signalling Technology Danvers, USA) were used
at dilution of 1:5000. RNA A (EN0531, Thermo Scientific, Waltham, USA),
used at concentration of 200 µg/ml/1x106 cells based on previous study [6].

Buffer and Solution. Buffer and solution used are summarised in Supplemental
Table S9. NuPAGE Sample buffer (NP008, Thermo Scientific, Waltham, USA)
and NuPAGE running buffer (NP0001-02, Thermo Scientific, Waltham, USA)
were used for western blot. Transfer buffer, lysis buffer, denaturing buffer and
TBST were prepared as described [7]. Transfer buffer was prepared as 10x stock
solution containing 144g Glycine, 30.2g tris base. Lysis buffer contained 100mM



Tris-HCL [pH8.5], 5mM EDTA, 0.2% SDS, 100mM NaCL, 0.5mg/ml Proteinase
K, denaturing buffer was made up of 200mM NaOH, 20mM EDTA and TBS-
0.1% Tween 20 was made with 6.05 Tris 8.76g NaCl, pH 7.6, with 0.1% Tween
20 (Acros Organics Cat No. 233360010, BVBA, Geel, Belgium). Ripa Buffer
(Ref 89900 Thermo Scientific, Waltham, USA) included protease inhibitor (Ref
04693116001, Roche, Basel, Switzerland) and phosphate inhibitor (Ref A32957,
Pierce, Thermo Scientific, Waltham, USA).

Protein Isolation and Western Blotting

Protein Isolation and Normalisation. Protein isolation was performed as de-
scribed published [7]. Briefly, cells are harvested and washed twice in cold PBS.
PBS was removed by spinning at 350 rpm for 5 minutes and for every 1,000,000
cells 100 µl Ripa Buffer supplemented with protease inhibitor (Ref 04693116001,
Roche, Basel, Switzerland) and phosphate inhibitor (Ref A32957 Pierce Thermo
Scientific, Waltham, USA) (as described in Supplemental Table S8) was added
and cells were lysed for 15 minutes while rotating at 4◦C . Samples were then
spined at 13000 rpm for 10 minutes and protein lysate was collected. Lysate ob-
tained was quantified using BCA kit (Ref 23225, Thermo Scientific, Waltham,
USA) with albumin standard (Ref 23209 Thermo Scientific, Waltham, USA)
in 96-well flat bottom plates (Geriner Bio-one Ref. 655080) following manu-
facturer’s protocol. Results were read and analysed using POLARstar Omega
Plate Reader and protein was normalised.

Western Blot. Western blots were performed and analysed as published [7].
Briefly, lysate containing 50 µg protein was mixed with 4X NuPAGE LDS Sam-
ple Buffer (NP0008, Thermo Scientific, Waltham, USA) with 1 mM DTT and
boiled at 95°C for 5 minutes. Samples were run on 4%-12% NuPAGE Bis-Tris
gels (Cat. No NP0335BOX, Thermo Scientific, Waltham, USA) in 1X Nu-
PAGE MOPS SDS Running Buffer (NP0001-02, Thermo Scientific, Waltham,
USA) for 100 minutes at 150 V. Proteins were then transferred onto Polyvinyli-
dene Difluoride (PVDF) membranes (IPVH00010, Sigma, St Louis, MO, USA)
in transfer buffer (Described in Supplemental Table S8). PVDF membranes
were activated in 100% methanol 10 minutes before transfer and methanol was
washed off and replaced with transfer buffer. Proteins were then transferred
in transfer buffer for 90 minutes at 100V. Membrane was checked using Pon-
ceau S staining (P7170-1L, Sigma, St Louis, MO, USA) by incubating in 3ml
Ponceau S staining, followed by 3 x 5 minutes wash. Membranes were then
blocked using 3% milk in TBS with 0.1% Tween20 (TBST) for 1 hour. Primary
antibody (As described in Supplemental Table S8) was then diluted in 3% milk
in TBST, and membranes were cut and incubated in corresponding antibody
overnight at 4◦C. Membranes were then washed 3 x 10-15 minutes in TBST
and incubated in secondary antibody (As describe in Supplemental Table S8)
at 1:5000 in 3% milk and TBST for 1 hour at room temperature followed by
3 x 10-15 minutes wash in TBST. To develop, membranes were incubated in
enhanced chemiluminescence kits (ECL) (Millipore, Burlington, MA, USA) for



1 minute. Excess substrate was drained off and signals were immediately de-
veloped using CL-Xposure film (Ref 34089 Thermo Scientific, Waltham, USA)
with X-ray film processer (Ecomax 1186-3-4000) and detected using Chemidoc
MP (Bio-Rad Laboratories, Hercules, CA, USA). For Chemidoc MP imaging,
bands were processed using Image Lab Software (Bio-Rad Laboratories, Her-
cules, CA, USA). Western images were further analysed and quantified using
ImageJ.

Loading controls were then checked and membranes were incubated in pri-
mary β-actin antibody (As described in Table Supplemental Table S8) in 1:1000
in 3% milk in TBST for 1 hour at room temperate and washed 3 X 10-15 minute
in TBST. Secondary antibody incubation (As described in Supplemental Ta-
ble S8) was then carried out in 1:5000 in 3% milk in TBST for 1 hour at room
temperature and then washed 3 X 10-15 minute in TBST. Western blot sig-
nals were then developed and detected as mentioned above with ECL (Pierce,
Thermo Scientific, Waltham, USA), and results were analysed using the same
methods as above.

DNA Isolation and Dot Blots

DNA Isolation. DNA isolations were performed as published [7]. Briefly cells
are trypsinised, collected and lysed in DNA lysis buffer (as described in Supple-
mental Table S9), and incubated at 55◦C for 72 hours while shaking. Samples
were centrifuged for 10 minutes at 13000 rpm and supernatant was removed.
One volume of isopropanol was then added, and cells were incubated for 5 min-
utes at room temperature, centrifuged for 10 minutes at 12000 rpm at 4◦C.
Supernatant was removed and DNA pellet was washed and resuspended in 70%
ethanol. Samples were centrifuged at 12000 rpm for 5 minutes at 4◦C and su-
pernatant was removed. Excess ethanol was left to evaporate, DNA pellet was
resuspended in 50-100 µl nuclease free water. RNAse A digestion was then car-
ried out with 200 µl/ml RNase A added/one million cells for 2 hours. Genomic
DNA (gDNA) was then sonicated using BRANSON digital sonifier 450 (appli-
ance number:364) for 20 cycles of 30 seconds on and off at 10% highest power.
DNA was then quantified using Nano Drop 1000 and normalised.

Dot Blot. Dot blots were performed as published [7]. Briefly, one volume of
DNA denaturing buffer was added to the normalised DNA sample and heated
at 95◦C for 10 minutes. Two volumes of 20X Saline-sodium citrate (SSC) (ENZ-
GEN426-0250, Enzo, New York, USA) were then added and samples were left
to cool on ice for 5 minutes. Serial dilution of DNA was prepared with DNA
amount ranging from 5 µg to 0.2 µg and samples were pipetted on to Amersham
Hybond-N+ blotting paper (GE Healthcare GERPN203B) and left partially
dry. Membranes were wrapped using Saran Wrap and crosslinked using XL-
1500 UV Crosslinker (Spectrolinker, appliance number 537, USA) at 1200J/m2.
Membrane was blocked in 5% milk in PBST for one hour, followed by overnight
5hmc primary antibody (As described in Supplemental Table S8) incubation
at 4◦C. On the following day, membrane was washed 3 x 10 minutes in TBST,
followed by secondary antibody incubation (Describe in Supplemental Table S8)



and 3 x 10 minutes in TBST. Membrane was then developed and detected same
as western blot using ECL (Millipore, Burlington, MA, USA). Results were then
further analysed and quantified using ImageJ.

Clonogenic

Clonogenic assays were performed as previously described [8]. Briefly, cells
were trypsinised, collected and counted as mentioned above. Cells were then
seeded in different density ranging of 200 cell into 6-well plates and left to attach
for four hours. Drugs are then added (as described in Supplemental Table S7)
with 100 µM linagliptin/well and 100 µMVitamin C and 20 µMmetformin/well.
Cells were incubated overnight. Within 24 hours of seeding, cells received sham
radiation. Cells were further incubated for 24 hours, and media was refreshed
with at least 3 ml complete media added into each well. Cells were incubated
for 13 days. Colonies were then stained using 0.4% methylene blue and colonies
with more than 50 cells were counted. Results were analysed using Prism 9.

Data and Image Analysis

Western blot and dot blot images captured using Chemidoc were processed
using Image Lab Software (Bio-Rad Laboratories, Hercules, CA, USA) and
further analysed using ImageJ. Results developed using x-ray films were scanned
and quantified using ImageJ. All results obtained were analysed and compared
using GraphPad Prism version 9. All experiments were performed at least
three times and results were analysed using either unpaired two-way t-tests,
one-way ANOVA, or two-way ANOVA. Data was presented as mean ± SD, and
a threshold of p<0.05 was considered statically significant.



Supplemental Tables

Metrics Models A375 A549 HA1E HCC515 HELA HT29 MCF7 PC3 VCAP YAPC

NDCG

TT-WOPT 0.7421 ± 0.0041 0.7367 ± 0.0103 0.7423 ± 0.0035 0.7346 ± 0.0059 0.7303 ± 0.0111 0.7468 ± 0.0091 0.7415 ± 0.0036 0.7298 ± 0.0028 0.7371 ± 0.0066 0.7386 ± 0.0044

DeepCOP 0.8134 ± 0.0053 0.7980 ± 0.0091 0.7957 ± 0.0087 0.7960 ± 0.0031 0.8013 ± 0.0050 0.8253 ± 0.0073 0.8140 ± 0.0016 0.8123 ± 0.0044 0.8024 ± 0.0106 0.8152 ± 0.0086

CIGER 0.8357 ± 0.0067 0.8188 ± 0.0129 0.8254 ± 0.0047 0.8089 ± 0.0058 0.8332 ± 0.0169 0.8362 ± 0.0115 0.8276 ± 0.0101 0.8267 ± 0.0034 0.8298 ± 0.0073 0.8315 ± 0.0074

P@10

TT-WOPT 0.2601 ± 0.0225 0.2476 ± 0.0179 0.2713 ± 0.0243 0.2482 ± 0.0129 0.2482 ± 0.0426 0.2790 ± 0.0419 0.2612 ± 0.0212 0.2499 ± 0.0258 0.2624 ± 0.0304 0.2813 ± 0.0556

DeepCOP 0.5417 ± 0.0295 0.4935 ± 0.0502 0.5166 ± 0.0186 0.4975 ± 0.0187 0.5368 ± 0.0528 0.5865 ± 0.0201 0.5532 ± 0.0047 0.5757 ± 0.0323 0.5160 ± 0.0513 0.5913 ± 0.0447

CIGER 0.6021 ± 0.0363 0.5468 ± 0.0631 0.5840 ± 0.0139 0.5365 ± 0.0292 0.6432 ± 0.0530 0.6055 ± 0.0481 0.5898 ± 0.0330 0.6232 ± 0.0164 0.6248 ± 0.0231 0.6290 ± 0.0159

P@50

TT-WOPT 0.2423 ± 0.0178 0.2345 ± 0.0160 0.2499 ± 0.0149 0.2328 ± 0.0096 0.2301 ± 0.0332 0.2552 ± 0.0283 0.2396 ± 0.0151 0.2290 ± 0.0211 0.2363 ± 0.0214 0.2427 ± 0.0354

DeepCOP 0.4757 ± 0.0176 0.4373 ± 0.0428 0.4250 ± 0.0211 0.4267 ± 0.0136 0.4558 ± 0.0253 0.5122 ± 0.0179 0.4654 ± 0.0090 0.4951 ± 0.0246 0.4486 ± 0.0376 0.5072 ± 0.0301

CIGER 0.5420 ± 0.0302 0.4994 ± 0.0453 0.5134 ± 0.0055 0.4768 ± 0.0228 0.5578 ± 0.0509 0.5421 ± 0.0328 0.5191 ± 0.0355 0.5451 ± 0.0188 0.5435 ± 0.0188 0.5408 ± 0.0141

P@100

TT-WOPT 0.2316 ± 0.0138 0.2249 ± 0.0194 0.2368 ± 0.0142 0.2229 ± 0.0039 0.2185 ± 0.0252 0.2369 ± 0.0235 0.2289 ± 0.0121 0.2193 ± 0.0137 0.2295 ± 0.0164 0.2321 ± 0.0290

DeepCOP 0.4262 ± 0.0140 0.3902 ± 0.0345 0.3705 ± 0.0182 0.3856 ± 0.0072 0.4051 ± 0.0187 0.4613 ± 0.0185 0.4197 ± 0.0107 0.4418 ± 0.0193 0.4083 ± 0.0259 0.4395 ± 0.0215

CIGER 0.4877 ± 0.0239 0.4545 ± 0.0380 0.4632 ± 0.0052 0.4324 ± 0.0160 0.4984 ± 0.0490 0.4898 ± 0.0288 0.4672 ± 0.0321 0.4851 ± 0.0125 0.4757 ± 0.0131 0.4806 ± 0.0131

P@200

TT-WOPT 0.2211 ± 0.0114 0.2167 ± 0.0154 0.2258 ± 0.0104 0.2122 ± 0.0048 0.2087 ± 0.0184 0.2224 ± 0.0172 0.2193 ± 0.0099 0.2108 ± 0.0109 0.2185 ± 0.0127 0.2219 ± 0.0225

DeepCOP 0.3646 ± 0.0093 0.3389 ± 0.0228 0.3207 ± 0.0161 0.3339 ± 0.0068 0.3462 ± 0.0147 0.3931 ± 0.0129 0.3603 ± 0.0055 0.3722 ± 0.0119 0.3460 ± 0.0143 0.3687 ± 0.0150

CIGER 0.4172 ± 0.0180 0.3879 ± 0.0252 0.3991 ± 0.0031 0.3716 ± 0.0134 0.4163 ± 0.0385 0.4174 ± 0.0219 0.3973 ± 0.0240 0.4070 ± 0.0085 0.3998 ± 0.0081 0.4119 ± 0.0072

Supplemental Table S1. Cell-specific performances (NDCG and Precision@K) of
TT-WOPT, DeepCOP, and CIGER for up-regulated gene ranking under 5-fold
cross-validation setting.

Metrics Models A375 A549 HA1E HCC515 HELA HT29 MCF7 PC3 VCAP YAPC

NDCG

TT-WOPT 0.7625 ± 0.0033 0.7500 ± 0.0069 0.7583 ± 0.0043 0.7513 ± 0.0065 0.7500 ± 0.0084 0.7584 ± 0.0096 0.7477 ± 0.0038 0.7468 ± 0.0030 0.7508 ± 0.0083 0.7629 ± 0.0140

DeepCOP 0.8441 ± 0.0032 0.8212 ± 0.0092 0.8258 ± 0.0051 0.8202 ± 0.0123 0.8173 ± 0.0039 0.8372 ± 0.0047 0.8245 ± 0.0058 0.8278 ± 0.0053 0.8394 ± 0.0073 0.8470 ± 0.0037

CIGER 0.8574 ± 0.0046 0.8378 ± 0.0096 0.8495 ± 0.0044 0.8251 ± 0.0087 0.8552 ± 0.0136 0.8519 ± 0.0053 0.8346 ± 0.0091 0.8412 ± 0.0015 0.8599 ± 0.0089 0.8625 ± 0.0028

P@10

TT-WOPT 0.2916 ± 0.0093 0.2941 ± 0.0172 0.2984 ± 0.0072 0.2782 ± 0.0414 0.2657 ± 0.0499 0.3214 ± 0.0386 0.2806 ± 0.0160 0.2683 ± 0.0169 0.2893 ± 0.0298 0.2909 ± 0.0372

DeepCOP 0.6355 ± 0.0167 0.5473 ± 0.0625 0.5334 ± 0.0288 0.5262 ± 0.0566 0.5316 ± 0.0612 0.6052 ± 0.0333 0.5883 ± 0.0198 0.5793 ± 0.0353 0.6178 ± 0.0379 0.6368 ± 0.0202

CIGER 0.6578 ± 0.0223 0.6151 ± 0.0611 0.6365 ± 0.0181 0.5472 ± 0.0329 0.6885 ± 0.0414 0.6522 ± 0.0258 0.6069 ± 0.0349 0.6198 ± 0.0201 0.6788 ± 0.0360 0.7004 ± 0.0520

P@50

TT-WOPT 0.2708 ± 0.0032 0.2615 ± 0.0169 0.2653 ± 0.0117 0.2553 ± 0.0231 0.2480 ± 0.0362 0.2800 ± 0.0285 0.2611 ± 0.0111 0.2462 ± 0.0157 0.2674 ± 0.0305 0.2647 ± 0.0278

DeepCOP 0.5473 ± 0.0163 0.4946 ± 0.0415 0.4748 ± 0.0230 0.4740 ± 0.0409 0.4652 ± 0.0234 0.5489 ± 0.0291 0.5157 ± 0.0160 0.5177 ± 0.0269 0.5479 ± 0.0317 0.5561 ± 0.0153

CIGER 0.5983 ± 0.0104 0.5523 ± 0.0436 0.5715 ± 0.0131 0.5038 ± 0.0267 0.6025 ± 0.0440 0.6019 ± 0.0220 0.5524 ± 0.0274 0.5655 ± 0.0074 0.6269 ± 0.0346 0.6162 ± 0.0132

P@100

TT-WOPT 0.2562 ± 0.0034 0.2452 ± 0.0189 0.2494 ± 0.0092 0.2398 ± 0.0157 0.2309 ± 0.0285 0.2614 ± 0.0234 0.2481 ± 0.0133 0.2348 ± 0.0113 0.2503 ± 0.0251 0.2528 ± 0.0269

DeepCOP 0.4890 ± 0.0127 0.4454 ± 0.0350 0.4348 ± 0.0219 0.4347 ± 0.0355 0.4213 ± 0.0164 0.4950 ± 0.0233 0.4648 ± 0.0125 0.4713 ± 0.0196 0.4925 ± 0.0269 0.5001 ± 0.0146

CIGER 0.5425 ± 0.0100 0.5078 ± 0.0344 0.5218 ± 0.0126 0.4652 ± 0.0243 0.5392 ± 0.0389 0.5530 ± 0.0226 0.5026 ± 0.0215 0.5183 ± 0.0045 0.5770 ± 0.0311 0.5543 ± 0.0114

P@200

TT-WOPT 0.2358 ± 0.0068 0.2300 ± 0.0154 0.2324 ± 0.0084 0.2239 ± 0.0068 0.2189 ± 0.0225 0.2387 ± 0.0165 0.2304 ± 0.0110 0.2205 ± 0.0075 0.2318 ± 0.0188 0.2337 ± 0.0178

DeepCOP 0.4144 ± 0.0080 0.3839 ± 0.0253 0.3855 ± 0.0155 0.3771 ± 0.0260 0.3706 ± 0.0101 0.4194 ± 0.0164 0.3985 ± 0.0101 0.4049 ± 0.0138 0.4214 ± 0.0170 0.4280 ± 0.0140

CIGER 0.4609 ± 0.0080 0.4273 ± 0.0267 0.4465 ± 0.0098 0.3985 ± 0.0169 0.4589 ± 0.0320 0.4680 ± 0.0161 0.4286 ± 0.0170 0.4422 ± 0.0046 0.4894 ± 0.0223 0.4657 ± 0.0084

Supplemental Table S2. Cell-specific performances (NDCG and Precision@K) of
TT-WOPT, DeepCOP, and CIGER for down-regulated gene ranking under 5-fold
cross-validation setting.



Model

Classification Task

Up-regulated Down-regulated

AU-PRC F1 AU-PRC F1

TT-WOPT 0.0527 ± 0.0010 0.0953 ± 0.0038 0.0563 ± 0.0013 0.0977 ± 0.0025

Logistic Regression 0.0848 ± 0.0065 0.1437 ± 0.0093 0.0961 ± 0.0053 0.1588 ± 0.0070

DeepCOP 0.1137 ± 0.0096 0.1733 ± 0.0078 0.1250 ± 0.0114 0.1894 ± 0.0126

CIGER 0.1498 ± 0.0052 0.2226 ± 0.0076 0.1542 ± 0.0082 0.2335 ± 0.0083

Supplemental Table S3. Performances (i.e., AU-PRC and F1) of TT-WOPT,
Logistic Regression, DeepCOP, and CIGER for up-regulated and down-regulated
gene classification under 5-fold cross-validation setting.

Up-regulated gene ranking

Setting NDCG P@10 P@50 P@100 P@200

Full data 0.7761 ± 0.0029 0.4070 ± 0.0028 0.3447 ± 0.0042 0.3124 ± 0.0085 0.2804 ± 0.0091

Filtered data 0.8275 ± 0.0041 0.5973 ± 0.0170 0.5276 ± 0.0126 0.4735 ± 0.0101 0.4027 ± 0.0077

Down-regulated gene ranking

Setting NDCG P@10 P@50 P@100 P@200

Full data 0.7966 ± 0.0049 0.4762 ± 0.0164 0.4079 ± 0.0173 0.3281 ± 0.0235 0.3182 ± 0.0136

Filtered data 0.8460 ± 0.0023 0.6342 ± 0.0120 0.5753 ± 0.0041 0.5250 ± 0.0034 0.4465 ± 0.0035

Supplemental Table S4. Average performances (NDCG and Precision@K) of
CIGER when training with all gene expression profiles (i.e., full data) and high-
quality gene expression profiles (i.e., filtered data) for ranking up-regulated and
down-regulated genes under the 5-fold cross-validation setting.



A375 A549 HA1E HCC515 HELA HT29 MCF7 PC3 VCAP YAPC

Rank P@200 Rank P@200 Rank P@200 Rank P@200 Rank P@200 Rank P@200 Rank P@200 Rank P@200 Rank P@200 Rank P@200

Sucralfate 4 0.3150 3 0.3300 14 0.3200 4 0.3400 3 0.3350 5 0.3700 11 0.3300 3 0.3250 8 0.3300 4 0.3400

Inositol Hexas-
ulphate

6 0.3000 4 0.3200 13 0.3200 3 0.3500 17 0.3250 1 0.3900 3 0.3650 4 0.3200 19 0.3100 3 0.3450

Ginsenoside B2 7 0.3000 7 0.3100 2 0.3500 6 0.3300 4 0.3350 4 0.3750 7 0.3400 5 0.3150 9 0.3300 5 0.3350

Madecassoside 9 0.2850 11 0.3000 6 0.3300 12 0.3250 5 0.3350 13 0.3500 14 0.3250 20 0.2800 15 0.3200 6 0.3200

Ginsenoside
Rb1

13 0.2800 10 0.3000 3 0.3400 9 0.3250 12 0.3300 11 0.3550 15 0.3250 13 0.2900 11 0.3250 20 0.3100

Chromium glu-
conate

24 0.2400 15 0.2900 5 0.3350 10 0.3250 11 0.3300 16 0.3500 12 0.3250 15 0.2850 10 0.3250 15 0.3100

Sodium fer-
ric gluconate
complex

5 0.3150 5 0.3100 9 0.3300 13 0.3250 9 0.3300 28 0.3350 9 0.3300 6 0.3050 12 0.3200 26 0.3000

Betadex 10 0.2800 19 0.2850 19 0.3050 32 0.3000 10 0.3300 39 0.3250 13 0.3250 8 0.3050 5 0.3350 10 0.3150

Sucrosofate 3 0.3200 2 0.3450 11 0.3250 1 0.3700 2 0.3500 2 0.3900 1 0.3700 2 0.3400 3 0.3450 2 0.3500

Supplemental Table S5. Cell-specific ranks and the corresponding Precision@200
scores of pancreatic cancer’s drug candidates calculated from our drug repurpos-
ing pipeline. Drugs in top 10 cell-specific evaluations are highlighted.

A375 A549 HA1E HCC515 HELA HT29 MCF7 PC3 VCAP YAPC

Rank GSEA Rank GSEA Rank GSEA Rank GSEA Rank GSEA Rank GSEA Rank GSEA Rank GSEA Rank GSEA Rank GSEA

Dipyridamole 2 0.3475 3198 0.3021 1 0.3565 72 0.3388 119 0.2667 134 0.3270 23 0.2868 1 0.3921 5 0.4107 1 0.3657

Gedatolisib 886 0.0000 4464 0.0000 496 0.2597 59 0.3429 183 0.2480 2 0.3626 14 0.3006 2 0.3640 8 0.4027 5 0.3449

AZD-8055 886 0.0000 3732 0.2817 524 0.2565 8 0.3770 98 0.2716 1891 0.2684 8 0.3108 35 0.3098 11 0.4006 72 0.2935

Linagliptin 886 0.0000 10374 0.0000 620 0.2452 21 0.3626 206 0.2415 1050 0.2916 21 0.2946 7 0.3272 36 0.3756 6 0.3386

ZSTK-474 814 0.1893 4168 0.2498 435 0.2704 7 0.3773 181 0.2483 1006 0.2936 34 0.2774 37 0.3091 2 0.4214 3 0.3524

Biguanide 886 0.0000 2 0.4528 222 0.2882 2771 0.0000 687 0.1912 3 0.3604 946 0.0000 606 0.0000 200 0.3182 791 0.0000

CH-5132799 886 0.0000 3503 0.2914 880 0.2294 6 0.3775 81 0.2771 1511 0.2776 10 0.3054 117 0.2863 49 0.3715 73 0.2929

Vistusertib 886 0.0000 3627 0.2868 532 0.2555 5 0.3778 107 0.2701 1508 0.2776 6 0.3185 49 0.3049 9 0.4012 90 0.2889

Preladenant 886 0.0000 3988 0.2658 504 0.2589 94 0.3308 126 0.2650 656 0.3091 7 0.3154 5 0.3342 16 0.3935 9 0.3338

Supplemental Table S6. Cell-specific ranks and the corresponding GSEA scores
of pancreatic cancer’s drug candidates calculated from our drug repurposing
pipeline. Drugs in top 10 cell-specific evaluations are highlighted.



Drug Cat.No Company Stock concentration (mM) Working concentration (uM)

AZD-8055 Lot 25910107 LKT lab 40 0.05

Preladenant (SCH-420814) A3735

APExBIO

40 1

Linagliptin A4034 100 100

Dipyridamole B1933 100 100

Metformin 13118 Cayman Chemical
Prepare fresh

20

Vitamin C (L-sorbic Acid) A92902-100G Sigma-Aldrich 100

Supplemental Table S7. Drugs used for treatments with their stock concentration
and working concentration.

Antibody type Company Catalogue number Dilution

TET2 primary
Abcam

ab124297 1:500

GATA6 primary antibody ab22600 1:500

5hmc Active Motif 39769 1:1000

b-actin Proteintech 60008-1-1g 1:1000

Anti-Rabbit HRP
Cell Signal Technology

7074S 1:5000

Anti-Mouse HRP 7076S 1:5000

RNAse A Thermo Scientific EN0531 200 µg/ml/1x106 cells

Supplemental Table S8. Antibodies and enzyme used for western blot and blot
bot with their working dilutions.



Buffer type Content/company Application

NuPAGE LDS Sample Buffer (4X) NP0008
NuPAGE, Thermo Scientific, Waltham, USA

Western blotNuPAGE MOPS SDS Running Buffer
(20X)

NP0001-02

Transfer buffer Glycine 144 g, tris base 30.2 g

Ripa Buffer

Thermo Fisher Ref 89900

Western blot, protein extraction

Supplemented with protease inhibitor

(Ref 04693116001, Roche, Basel, Switzerland)

and phosphate inhibitor (Ref A32957

Pierce Thermo Scientific, Waltham, USA)

Lysis Buffer
100 mM Tris-HCL [pH8.5], 5 mM EDTA,

Dot blot

0.2% SDS, 100mM NaCL, 0.5 mg/ml Proteinase K

Denaturing buffer 200 mM NaOH, 20mM EDTA

TBS-0.1% Tween 20
6.05 Tris 8.76g NaCl, pH 7.6,

Dot blot, Western blot

with 0.1% Tween 20 (Acros Organics Cat 233360010)

Supplemental Table S9. Buffers and solutions used in western blot and dot blot.



Supplemental Figures

Supplemental Figure S1. Molecular structures of drugs selected by our drug
screening pipeline (w.r.t. Precision@200) as potential treatments for pancreatic
cancer.



Supplemental Figure S2. Molecular structures of drugs selected by our drug
screening pipeline (w.r.t. GSEA) as potential treatments for pancreatic cancer.



Supplemental Figure S3. Western blot and dot blot. (A) Western blot for TET2 and
GATA6 level. (B) Dot blot for 5mhc.
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