
Appendix A: Lack of identification of net age overstatement parameters

Using the same notation as in the text we have

ΠT = (1/φno)[Θ̂S ]−1Πo

and

∆T = (1/λno)[Θ̂S ]−1∆o

In a closed population the relation between the vectors for populations in two successive cen-

suses and the vector of intercensal deaths is:

ΠT
t+k = ΠT

t −∆T
[t,t+k] (A.1)

Using the first two expressions in (A.1) yields:

(1/φno)[Θ̂S ]−1Πo
t+k = (1/φno)[Θ̂S ]−1Πo

t − (1/λno)[Θ̂S ]−1∆o
[t,t+k] (A.2)

From (A.2) we see that only (φno/λno) is identifiable with the available information.
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Appendix B: Behavior of the age misreporting index cmRo
x,[t1,t2]

The expression of the age misreporting index is

cmRo
x,[t1,t2]

=
cmP o

x+k,t2
/cmP o

x,t1

1− (cmDo
x,[t1,t2]

/cmP o
x,t1

)

a ratio of two different estimators of the same quantity, namely the cumulative probability of

survival of the population aged x and over at time t1 to age (x + k) and over at time t2. Use of

cumulative quantities in the index is an important prerequisite since it minimizes the impact of

age misreporting within the bounds of the cumulative quantities. Thus, erroneous transfers over

age x do not affect population counts at ages x and over. These quantities are influenced only by

transfers from ages younger than x into ages x and above or by transfers from ages x and above to

ages younger than x. Because use of cumulative quantities complicates the algebra, we will redefine

the expression for single years of age to obtain:

Ro
x,[t1,t2]

=
P o
x+k,t2

/P o
x,t1

1− (Dx,[t1,t2]/P
o
x,t1

)

or the ratio of a conventional survival ratio computed from two successive population counts to

the survival ratio computed from the complement of a measure of the conditional probability of

dying between the two censuses. If the population is stationary, the numerator is simply the ratio

Lx+k/Lx in a life table and the denominator is the complement of the probability of dying in the

intercensal period, namely, 1− (1− Lx+k/Lx). Taking logs on both sides we get,

ln
(
Ro

x,[t1,t2]

)
∼ −INx,x+k − ln

(
1−

[
1− exp

(
−IDx,x+k

)])
(B.1)

where IDx,x+k and INx,x+k are estimators of the integrated hazards between x and x+k consistent with

the survival ratios in the denominator and numerator respectively. When the population is closed

to migration, coverage is perfect and there is no net age overstatement, expression (B.1) equals

0 since IDx,x+k = INx,x+k = ITx,x+k , that is, both estimators yield the correct value of integrated

hazards. However, when there is (net) age overstatement expression (B.1) becomes

ln
(
Ro

x,[t1,t2]

)
∼ ln

(
h(x+ k)

h(x)

)
− ITx,x+k − ln

(
1− g(x)

h(x)

[
1− exp(−ITx,x+k)

])
(B.2)

where h(x) is an increasing function of age that depends on age overstatement of populations and

g(x) is an increasing function of age that depends only on overstatement of ages at death. Thus,

the behavior of the sequence of values Rx,[t1,t2] depends on functions g(x), h(x) and ITx,x+k, where

ITx,x+k refers to the true value of Ix,x+k. In turn, these functions depend on the true population

age distribution, age-specific mortality rates, and the age-specific propensities to misreport ages

embedded in the standard pattern of age misreporting. To assess the effects of age misreporting

on the index, we now examine the behavior of the functions h(x) and g(x).

32



Both h(x) and g(x) are functions of the propensity to overstate ages and of the (true)underlying

population and deaths age distribution. Assume that the propensity to overstate ages (of popu-

lations or deaths) is age invariant (or increases with age) and that the following three conditions

hold: (a) the (true) age distribution slopes sharply downward, (b) the age distribution of deaths

increases with age, and (c) the rate of decrease of population with age is smaller than the rate of

increase of deaths with age. Under these three conditions, almost universally verified in growing

human populations, the ratio h(x+k)/h(x) will always be larger than 1 and will increase with age,

g(x) will always be larger than 1 and increase with age, and the rate of increase in g(x) will exceed

the rate of increase in h(x) so that g(x) > h(x) almost everywhere in the age span.

When g(x) and h(x) are equal to 1, there is neither population nor death age overstatement

or, if there is, their effects cancel each other out. Expression (B.2) can be simplified if we expand

the log expression on the right as a Taylor series around a value of g(x)/h(x) = 1:

ln
(
Ro

x,[t1,t2]

)
∼ ln

(
h(x+ k)

h(x)

)
− ITx,x+k +

(
g(x)

h(x)
− 1

)
(1 + ITx,x+k) + ITx,x+k =

ln

(
h(x+ k)

h(x)

)
+

(
g(x)

h(x)
− 1

)
(1 + ITx,x+k)

(B.3)

When ITx,x+t is small and h(x+ k)/h(x) = g(x)/h(x) = 1 the above expression is close to 0.

Expression (B.3) is the analytic support for inferences regarding the effects of age misre-

porting on the index cmRx,[t1,t2]. Two caveats are important. First, although in our derivation

we assumed stationarity, departures from it may complicate the algebra but leave implications

of expression (B.3) intact. Second, to make the algebra tractable the derivations above do not

refer to the cumulative functions, as required by the original index. The issue is whether the

same inferences can carry over from the discrete to the cumulative functions. We now show in-

formally that this is the case. We can think of the cumulative ratios as functions not of the

exact integrated hazards, as in expressions (B.1)-(B.3) but rather as expressions of mean val-

ues of corresponding integrated hazards. Thus, in a stationary population, the survival ratio of

the cumulative populations at ages x and x + k is the ratio T (x + k)/T (x) which can be writ-

ten as
∫∞
x+k[exp(−

∫ y
0 µ(s)ds)]dx/

∫∞
x [exp(−

∫ y
0 µ(s)ds)]dx. Using the mean value theorem in nu-

merator and denominator leads to the approximation exp(−
∫ x+k+i′

x+i µ(s)ds) or, more generally,

exp(−
∫ x∗∗

x∗ µ(s)ds) where x∗ > x and x∗∗ > x+ k. Upon taking logs in this expression we retrieve

an integrated hazard over two ages that are not fixed ex ante (such as x and x + k) but, rather,

between limits (ages) that are functions of the underlying force of mortality. Thus, the expressions

above that use the symbols INx,x+k, IDx,x+k and ITx,x+k for integrated hazards between two exact

ages, can also accurately represent relations when the integrated hazards refer to those associated

with cumulative quantities. In summary, all derivations based on discrete functions carry over to

cumulative quantities. In particular, the following scenarios can be defined for the discrete and, by

extension, the cumulative functions.

1. When there is systematic age overstatement of population counts ONLY, h(x) > 1 and
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g(x) = 1, then expression (B.3) reduces to

ln(Ro
x,[t1,t2]

) ∼ ln

(
h(x+ k)

h(x)

)
+ (h−1(x)− 1)(1 + ITx,x+k) < 0

This inequality holds because the positive term in the expression, e.g the factor that distorts

the survival ratio based on population counts, is smaller than the negative factor that distorts

the second estimator of the survival ratio based on intercensal death rates.

2. When there is systematic age overstatement of death counts ONLY, h(x) = 1 and g(x) > 1,

the expression becomes

ln(Ro
x,[t1,t2]

) ∼ ln(g(x)− 1)(1 + ITx,x+k) > 0

and all terms in the expression are positive.

3. When there is systematic overstatement of BOTH population and death counts, g(x) >

h(x) > 1, then

ln(Ro
x,[t1,t2]

) ∼ ln

(
h(x+ k)

h(x)

)
+

(
g(x)

h(x)
− 1

)
(1 + ITx,x+k) > 0

because, by assumption, all terms are positive.

These predicted impacts of age misreporting are consistent both in previous simulation studies

(Condran et al., 1991; Palloni and Pinto, 2004; Grushka, 1996) and in our simulation.

Two important remarks are needed. First, empirical patterns of age overstatement of deaths

and populations could offset each other and produce observed survival ratios close to 1 even though

the underlying data are incorrect. That is, scenario (3) above is such that the log of the observed

survival ratios cmRx,[t1,t2] could be 0 at all ages even when there is net age overstatement. Because

of this, a diagnostic of conditions based on the observed value of cmRx,[t1,t2] (or its log) can only

detect consistency (including error consistency) of age declaration in population and death counts,

rather than suggest accuracy (Dechter and Preston, 1991).

Second, and most important, throughout we assumed that both census and death counts had

perfect coverage and that the sequence cmRx,[t1,t2] is only influenced by age misreporting. This

is an unrealistic assumption at least for LAC countries. When there is defective census or death

registration coverage the log of the discrete ratios of survival can be expressed as

ln(Rx,[t1,t2]) ∼ ln

(
Ct2

Ct1

)
+ ln

(
h(x+ k)

h(x)

)
−
(
CD[t1,t2] · g(x)

Ct1 · h(x)
− 1

)
(1 + ITx,x+k) (B.4)

where Ct1 , Ct2 and CD[t1,t2] are the completeness of the first and second census and the average

completeness of intercensal death registration, respectively. These quantities are computed as the

ratio of the true to the observed counts.As conventionally done in the literature, we assume that

34



completeness of population and death registration are age invariant. The evaluation study described

below leads to a choice of procedures that are robust to violations of the age invariance assumption.

This enables us to follow standard practice and restrict Ci to be age invariant.

Thus, unless all Ct1 = Ct2 and CD[t1,t2] = Ct1 , it is impossible to separate the influences of

age overstatement and of defective completeness from the observed sequence of values cmRx,[t1,t2]

alone. Even if there is no age misreporting at all, expression (B.4) can yield non-zero values and

mimic age patterns that result naturally from age overstatement alone. In particular, when death

registration is perfect, e.g. CD[t1,t2] = 1, but Ct1 6= Ct2 , the value of the index will drift away from

0 in an age dependent fashion. This is shown in Figure B.1 that displays the cumulative survival

ratios for a case where CD[t1,t2] = 1 but Ct1/Ct2 < 1 (left panel) and then when the census figures

are properly adjusted for completeness of enumeration so that Ct1/Ct2 = 1 (right panel).
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Figure B.1: Behavior of index of age misstatement with differential censuses completeness.
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Appendix C: Simulated populations

C.1 Objectives

The creation of a large set of simulated populations has two objectives. The first is to explore

and estimate relations between observed quantities, e.g. the sequence cmRx,[t1,t2] and unknown

parameters that the investigator desires to estimate, e.g. parameters controlling the levels of age

misreporting of population and deaths. The second aim is to assess the performance of techniques

to (i) adjust for relative completeness of death registration and (ii) evaluate the integrated strategy

to estimate life tables in populations with defective coverage and systematic age misreporting.

The set of simulated population is designed to include as many populations as could be con-

structed with a large combination of several parameters. The intent is to have a sufficiently large

set so that the an investigator can safely invoke the assumption that the defective age distribu-

tions and counts of deaths and population that she is studying and seeks to adjust belongs to the

simulated sets, e.g. that there is at least one simulated population characterized but deaths and

population age distributions that are arbitrarily close to the observed one.

The evaluation study is an extension of work described in Palloni and Pinto (2004). It is

different from another evaluation study by Hill and colleagues (Hill et al., 2009) in that the simulated

populations include consideration of systematic age misreporting that follow the standard pattern

of age misreporting.

C.2 Simulated populations

The simulated populations depend on three sets of functions. The first are demographic parameters

that uniquely identify age distribution of deaths and populations, conditional of age patterns of

mortality and fertility. The second identify the age patterns of mortality and fertility. Finally,

the third set of functions define the distortions of counts and age distributions of populations and

deaths. We discuss these in turn.

C.2.1 Demographic parameters, initial populations and population trajectories

Five master (female) populations were created, one stable and four non-stable populations, that

represent trajectories followed during a 100 year period, from 1900 to 2000. The stable population

has a GRR = 3.03 and E(0) = 45 with a natural rate of increase r = 0.025. This model stable

population roughly corresponds to the average of LAC populations in the period 1940-60, e.g. not

yet heavily perturbed by large scale net migration, as is the case in Argentina, Brazil, Cuba, and

Uruguay, or fertility changes, as in the cases of Argentina and Uruguay. We also include four

non-stable populations profiles that follow (approximately) the mortality and fertility schedules for

Costa Rica, Mexico, Guatemala Argentina, and Uruguay during the period 1900-2000. The initial

stable distribution for the first three non stable populations are set to be equal to the stable pop-

ulations with parameters r and E(0) equal to those estimated around 1900 in the corresponding
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countries (Costa Rica, Mexico and Guatemala). In contrast, the initial age distributions corre-

sponding to the fourth non stable profile (Argentina and Uruguay) are set equal to the observed

average age distribution in population censuses within the period 1850-1900. Thus, the initial pop-

ulations (and deaths) distributions roughly correspond to the actual initial starting populations

experienced in the LAC region. The decade-specific demographic parameters in the four non stable

populations for the period of interest (1900-2000) are displayed in Table C.1

C.2.2 Age patterns of fertility and mortality

The calculation of yearly and age specific counts of populations and deaths during the 1900-2000

periods follows standard population projection techniques and demands specification of patterns of

fertility and mortality. For mortality we chose the West and South models in the Coale-Demeny

family of life tables. For fertility, we adopt a unique age pattern of fertility identical to the one used

in the computations of the Coale-Demeny stable population models (Coale et al., 1983). We assume

throughout that each type of demographic transition in the non stable populations preserves the

age patterns of mortality and fertility. Since all calculations are in single years age group both

the Coale-Demeny life tables and fertility patterns were transformed into single years schedules of

mortality and fertility, respectively. The transformation of the life tables functions into single years

functions was carried out by strictly adhering to separator factors adopted by Coale and Demeny.

The single-year fertility functions was derived using splines.

In summary, we create 10 stable and non-stable populations (five masters for the West and

five masters for the South mortality models) that span a 100 year period from 1900 to 2000 and

represent a very broad set of experiences, from those preserving population stability throughout,

to those that remain stable up until 1950 or thereabouts, to those shifting to quasi-stability from

1930 up to 1980 and, finally, to those with little or no stability at all from the outset.

C.2.3 Distortions

We introduce three different types of distortions. The first is related to defective completeness of

death and population counts. We let Ct1 and Ct2 to take on values between .8 and 1 in intervals of .5

whereas CD[t1,t2] takes values between .7 and 1 in intervals of .5. This yields a total of 175 different

combination of defective completeness. When combined with 10 master populations, we generate a

total of 1,750 populations. The unknown parameters controlling the levels of net age overstatement

of population and death counts were assigned values ranging between 0 and 3 in intervals of .5

for a total of 36 possible patterns of age misreporting. When combined with the previous 1,750

populations they generate 63,000 populations. Finally, to represent age varying completeness of

population and death registration we define two patterns, one with higher understatement at ages

45-54 and 70+ (concave upward) and another with higher understatement at ages over 70 (J-

shaped). When combined with 10 master populations and 36 patterns of age misreporting we

obtain 720 additional populations. Altogether there are a total of 63,720 simulated populations.
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C.3 Evaluation of techniques to adjust for relative completeness

of death registration

An important advantage of the set of simulated populations is that it enables us to study the impact

of distortions of different nature on population indicators. It is through examination of relations

observed in the simulated population that we noted that the two unknown parameters controlling

levels of age net overstatement could, under some assumptions, be recovered from the sequence of

values cmRx,[t1,t2]. Most importantly, however, the simulated populations can be used to assess

the robustness of alternative techniques to estimate relative completeness of death registration to

violations of assumptions. This is an important step as the procedures to estimate parameters of

severity of age misreporting do not perform well on data distorted by defective relative completeness.

C.3.1 Techniques to adjust for relative completeness of death registration

The set of techniques to detect and adjust for faulty completeness evaluated in this study are

summarized in Table C.2.We considered a longer list of techniques but, with two exceptions, chose

to test only those that did not rely on the assumption of stability or quasi-stability. The table

identifies techniques using the names of researcher(s) who proposed them (or modified an original

version), highlights key assumptions on which they rely and the information required to implement

each of them. These techniques share important commonalities and all but two (Brass No 1 and

Preston-Hill No 1) do not invoke the assumption of stability. Yet they differ in at least one feature

that, under suitable empirical conditions, potentially grants them a competitive advantage over

other methods.

The combination of highly heterogeneous demographic conditions, diversity in the weaknesses

of national vital statistics and population censuses counts, and variability of adjustment techniques,

each relying on specialized assumptions, makes the choice of adjustments for any particular case

a non-trivial matter. Ideally, one would like to be able to choose a very small set of techniques

that, under given empirical conditions, produce optimal estimates. To support this endeavor our

evaluation study assesses the performance of candidate techniques by applying them to the 63,720

thousands simulated. We then compute multiple error measures under the simulated set of condi-

tions that violate (or not) assumptions on which the techniques rest. Although others could have

been chosen, the results of the evaluation we describe here are based on one error measure, namely,

the mean absolute value of the proportionate error, MAPE. For any given technique we observe

a distribution of MAPE that corresponds to well defined conditions (e.g. violation (or not) of as-

sumptions). For example, suppose we use a technique T in all populations that do not violate any

of the assumptions on which the technique relies. We would not expect the numerical value of the

parameter estimated by T to always be identical to the population parameter as computations rely

on a number of approximations whose impact may vary depending on the nature of the population

being examined (stable versus non stable, under model West or under model South, etc.). Thus

MAPE are truly random and should have a mean equal to 0. Assume now that the technique is
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applied in populations that violate a subset of its assumptions. In this case, MAPE will have both

a random and a systematic component and will be distributed with a non-zero mean identical to

the expected value of the bias associated with the technique given conditions that violate assump-

tions. More generally, we can compute not just the expected value (and bias) but also the entire

distribution of MAPE for each technique and for each set of conditions that violate assumptions we

care to specify. In particular, we can calculate medians, quartiles and the probability that MAPE

is less than .05.

C.3.2 Results of the evaluation study

Table C.3 displays a number of statistics for the quantity MAPE associated with each techniques

we chose to evaluate under three different scenarios.To simplify the table we display statistics for

only a subset of all the techniques we studied. Each of this is identified by an acronym defined in

Appendix D. Panel A is for scenarios that include population either stable or non-stable and where

the completeness of the two successive census may be different but there is no age misreporting.

Panels B and C are for scenarios where the populations may experience higher age misreporting in

death counts than in population counts (age misreporting 1 and Panel 2) or higher age misreporting

in population counts than in death counts (age misreporting 2).This is one of many tables we

were able to assemble that targeted different subsets of assumptions and display errors associated

with violations in those assumptions. Other tables that display errors when different classes of

assumptions are violated could be built.

The main messages from the table are the following. First, even under the worst conditions

(Panels B and C) Brass-Hill method (br2Ce) delivers an optimal performance for estimation of

relative completeness of two censuses. Note that with probability 1 it will produce an estimate that

is within 5 percent of the true value of the parameter.

Second, estimates from the multiple variants of Bennett-Horiuchi technique (bh1Co5-bh2Co75)

perform quite badly, even in the absence of age misreporting (Panel A) and so do all the other

methods except variants of Bennett-Horiuchi with adjusted rates of growth (bh1Co5-mix-bh2Co75-

mix). This is a consequence of the fact that changing completeness of the censuses bounding an

intercensal interval, biases the age specific rates of growth. This is a problem to which the adjusted

Bennett-Horiuchi technique is much less sensitive to. The third finding is that, under the most

general and worst conditions (Panels B), even the optimal method (adjusted Bennett-Horiuchi

technique) does not have an impeccable record, as one would not expect its estimates to be with

5 percent of the true value in less than 30 percent of the cases. A similar result obtains in Panel

C. In both cases though the performance of the method is satisfactory as the median error is less

than 7 percent.

C.3.3 Robustness to error of older adult age misreporting

The key result of the evaluation study is this: if one excludes populations with defective census

completeness, the optimal choice of techniques to adjust for relative completeness of death reg-
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istration is always one of the variants of Bennett-Horiuchi method. Importantly, however, the

Bennett-Horiuchi technique does not perform well unless a correction is introduced to adjust for

different completeness of population counts in the first and second census. This could, of course,

be a serious limitation were it not for a second result of our evaluation study. The finding is that

we confirm a result first reported by Ken Hill (Hill et al., 2009) namely, that the modified Brass

technique (Brass-Hill) to estimate relative completeness of death registration also produces a robust

estimate of relative censuses completeness, namely, of the ratio Ct1/Ct2 . In their original study Hill

and colleagues included a limited set of distortions due to age misreporting. However, the same

finding is replicated in our study based on simulations of a much larger array of distortions due

to age misreporting. It follows that estimates from Brass-Hill and Bennett-Horiuchi are sufficient

to correct the observed values of the ratios cmRx.Both the estimate from Brass-Hill and Bennett-

Horiuchi techniques are mean optimal, in the following sense: the average error of the estimates

they produce are lower than those of other techniques under all conditions spawned by the simu-

lated populations. It does not mean that, once these techniques are applied to observed data, the

adjusted mortality rates (and derived functions of the life table) will also be best estimates. This

is because the sensitivity to violations of assumptions of techniques we included in the evaluation

study varies depending on the particular subset of assumptions that are violated. The Brass-Hill

and Bennett-Horiuchi estimates are, on average best, but they may not be the best choice were

we to restrict examination to populations where a few assumptions are not met (age misreporting)

but others are (censuses differential completeness). Another way of saying this is that the strategy

we propose based on the evaluation study can only aspire to identify a mean global optimal, rather

than a mean local optimal, candidate technique among alternative possible ones. This is discussed

in more detail in Appendix C and is highlighted in the discussion section.

Overall, these are remarkably fortunate results for they suggest that, after all, it is possible to

adjust the sequence cmRx for defective completeness of population and death registration even if the

observed data are contaminated by age misreporting.“Fortunate results” may be an overstatement.

Insensitivity of some techniques that adjust for defective death and population to errors of age

misreporting is more or less expected due to the utilization of cumulative rather than age-specific

counts of population and deaths. If this were not the case, a quest to correct the data for systematic

age misreporting would be futile unless coverage of census and death counts are perfect (or equally

bad).

41



Table C.1: Parameters of the non-stable populations.1

I II III IV

Year E(0) GRR r E(0) GRR r E(0) GRR r E(0) GRR r

1900 34.70 3.60 0.05 26.30 6.20 0.04 22.10 5.80 0.03 45.40 1.80 0.02

1910 35.10 3.40 0.05 29.60 5.70 0.04 25.40 5.70 0.03 48.90 1.70 0.02

1920 35.10 3.20 0.05 32.90 5.20 0.04 28.70 5.20 0.03 51.30 1.60 0.02

1930 42.20 2.60 0.05 36.20 4.70 0.04 32.00 4.70 0.03 54.40 1.50 0.02

1940 46.90 2.50 0.05 41.80 4.20 0.04 37.40 3.80 0.03 59.60 1.40 0.02

1950 55.60 2.40 0.05 50.70 3.40 0.04 40.20 3.50 0.03 66.30 1.30 0.02

1960 62.60 2.30 0.05 58.50 3.30 0.04 47.00 3.30 0.03 68.40 1.40 0.02

1970 65.40 2.10 0.05 62.60 3.20 0.04 53.90 3.10 0.03 68.80 1.50 0.02

1980 72.60 1.70 0.05 67.70 2.10 0.04 58.20 3.00 0.03 71.00 1.30 0.02

1990 75.70 1.50 0.05 71.50 1.50 0.04 62.60 2.60 0.03 72.80 1.20 0.02

2000 77.30 1.30 0.05 73.40 1.20 0.04 65.90 2.20 0.03 75.20 1.10 0.02

1 Non-stable I-III mimic population trajectories in Costa Rica, Mexico and Guatemala; Non-stable

IV mimics Argentina and Uruguay’s trajectories
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Table C.2: Methods to adjust for completeness of death registration: assumptions and required

data.1

Method Assumptions Required Data

Brass (Brass and CELADE, 1975)(B) 1-2-3-4-5 B

Brass (1979b,a)Brass-Hill (BHill2) 2-3-4 A

Martin (1980)(Martin3) 1-2-3-4-6 B

Bennett and Horiuchi (1981) No 1 (BH 1) 1-2-3-4 A

Bennet-Horiuchi No 2 (BH 2) 1-2-3-4 A

Bennet-Horicuhi No 3 (BH 3) 1-2-3-4 A

Bennet-Horiuchi No 4 (BH 4) 1-2-3-4 A

Bennet-Horiuchi No 5 (2SBH 4) 1-2-3-4 A

Preston and Hill (1980) No 1 (PH 1) 1-2-3-4-5 A

Preston-Hill No 2 (PH 2) 1-2-3-4 A

Preston and Bennett (1983) (PB) 1-2-3-4 A

Preston and Lahiri (1991) No 1 (PL 1) 1-2-3-4 A

Preston-Lahiri No 2 (PL 2) 1-2-3-4 A

1See appendix D for definitions of the four variants of Bennett-Horiuchi method and the two

variants of Preston-Lahiri method.
2BHill is method used to retrieve estimates of the ratio of completeness of the first relative to the

second census.
3Martin is a variant of Brass classic method that relaxes the assumption of stability and assumes

instead past mortality decline.

KEYS FOR ASSUMPTIONS

1. Identical completeness of census counts in both census

2. Closed to migration

3. No age misreporting

4. Invariant completeness by age

5. Stability

6. Quasi stability

KEYS FOR REQUIRED DATA

A. Two censuses and intercensal deaths

B. One census and one to three years of deaths by age
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Appendix D: Techniques to adjust for relative completeness of
population censuses and death registration

Although we assessed performance of a larger number of techniques, Table C.2 reports results

for those that are best known. In some cases a technique can be applied using different data config-

urations (different age groups, different age groupings etc.). We consider these variants separately

rather than using one heading for all. The following are the acronyms used to identify them as well

as the original sources

1. br2Ce = Brass-Hill 2 census completeness

2. ph5Ce = Preston-Hill census completeness (start at age 5) (Preston and Hill, 1980)

3. ph10Ce = ibid (start at age 10)

4. ph15Ce = ibid (start at age 15)

5. martin = Martin death completeness (Martin, 1980)

6. bh1Co5 = Bennett-Horiuchi I death completeness (forward accumulation starting at age 5)

(Bennett and Horiuchi, 1981)

7. bh1Co75 = Bennett-Horiuchi I death completeness (backward accumulation starting at age

75)

8. bh2Co5 = Bennett-Horiuchi II death completeness (forward accumulation starting at age 5)

9. bh2Co75 = Bennett-Horiuchi II death completeness (backward accumulation starting at age

75)

10. bh1Co5 mix = adjusted Bennett-Horiuchi I death completeness (forward accumulation start-

ing at age 5)

11. bh1Co75 mix = adjusted Bennett-Horiuchi I death completeness (backward accumulation

starting at age 75)

12. bh2Co5 mix = mix adjusted Bennett-Horiuchi II death completeness (forward accumulation

starting at age 5)

13. bh2Co75 mix = adjusted Bennett-Horiuchi II death completeness (backward accumulation

starting at age 5)

14. br1Co = Brass 1 death completeness (Brass and CELADE, 1975)

15. br2Co = Brass 2 death completeness
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16. pbCo = Preston-Bennett death completeness (Preston and Bennett, 1983)

17. plCo5 = Preston-Lahiri death completeness(start age 5) (Preston and Lahiri, 1991)

18. phCo5 = Preston-Hill death completeness (start age 5) (Preston and Hill, 1980)

19. ph10Co = Preston-Hill death completeness (start age 10)

20. ph15Co = Preston-Hill death completeness (start age 15)
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Appendix E: Sensitivity analysis

E.1 Objectives

In this appendix we assess sensitivity of adjusted estimates of population and death counts to

violation of the to key assumptions, namely, one involving the pattern of age misreporting and the

identify assumption.

We use a subset of simulated populations consisting of an initially stable population under

Model South distorted by 175 patterns of defective completeness. We then apply a new standard

of age misreporting and introduce, as we did in the original simulation, 36 combinations of values

of levels of age misreporting, 6 for death and 6 for population counts. This leads to a total of 6,300

simulated populations characterized by patterns of age misreporting different from the Costa Rican

one. We then apply the proposed adjustment procedure (which requires to invoke the assumption of

a Costa Rican patterns of age misreporting) and retrieve an adjusted sequence of values cmRx,[t1,t2],

estimates of unknown parameters for levels of age misreporting, and adjusted life tables. We then

compare selected statistics of the adjusted life tables with the true life table that generated the

data. The differences between the two are a measure of the errors associated with misidentification

of the age pattern of age misreporting.

E.2 New pattern of age misreporting

Without additional constraints, the number of potential candidates to become alternative standard

for net age overstatement is infinite. To narrow down the set of plausible candidates we modify

separately the probabilities of net overstatement and the conditional probabilities of overstating by

n years.

First, we choose a standard for the probabilities of net overstatement that satisfies two condi-

tions:

1. Condition 1: it has approximately the same probabilities of net overreporting at ages 45 and

and 100 as the Costa Rican standard. This condition constrains the level parameters to be

within the same range or parameter space as those compatible with the Costa Rican standard,

e.g. (0− 3).

2. Condition 2: the new standard probabilities increase much more rapidly with age than in the

Costa Rican standard. This will reflect situations were the standard pattern producing the

data imply much worse age misreporting than is embedded in the Costa Rican standard.

The function that defines the probabilities of net overstatement is P (x) = .18 ∗ (1 − S(x)) + .15

where S(x) is a Gompertz survival function with level parameter α = .030 and slope parameter

β = .80. It attains a value equal to 1 at age 45 and a median value at age 58. Other transformations

of the function S(x) are of course possible. The function we use here distorts in significant ways

the shape of the Costa Rican standard (from linear to logistic). It also maximizes differences in
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probabilities between ages 45 and 90 while simultaneously allowing room for level parameters to

increase (decreases) these probabilities to the same maximum and minimum levels allowed by the

Costa Rican standard.

Second, the conditional probabilities of misreporting age by n years follows a nearly symmet-

rical binomial distribution with binomial probability p = .50. This is in stark contrast with the

(approximately) negative binomial distribution embedded in the Costa Rican standard.

Figure E.1 displays the unconditional and conditional probabilities embedded in the alternative

standard

E.2.1 Effects of using an incorrect standard of age misreporting

Results of the sensitivity exercise are in Figure E.2. The figure displays the cumulative distribution

of relative errors in estimates of life expectancy at age 45 (top panel) and 60 (bottom panel). These

figures reveal two properties of the resulting estimates. First, the bulk of errors (over 95 percent)

are positive, namely, the estimated values of life expectancy are higher than the true ones. This is

consistent with the fact that the standard that generated the simulated populations has significantly

higher probabilities of net overstatement than the Costa Rican standard used to retrieve estimates

of parameters. Thus, the outcome of using a standard probabilities of overstatement than rise much

slower with age than the one that generates the data will be to under adjust mortality rates and

overestimate life expectancy at adult ages. Second, the distribution of errors for life expectancy at

age 45 is quite benign as they are less than 5 percent in about 80 percent of cases. In contrast, the

errors are more serious for life expectancy at age 60 as only in 35 percent of cases are the errors

below 5 percent.

Two final caveats. First, although the alternative pattern of age misreporting used in this

sensitivity exercise departs significantly from the Costa Rican standard, it is still based on the

assumption of net overstatement. But this may not be a universal feature of age misreporting. In

their work on age misreporting, Preston and colleagues find that net understatement is not uncom-

mon among US African Americans and has been found elsewhere (Preston et al., 1999)(Preston

personal communication). Even though net understatement, like net overstatement, must lead to

underestimates of old age mortality, its presence in observed data invalidates the use of a pattern

of age misreporting based on net overstatement.

Second, it is also possible that in some populations overstating ages by more than 10 years

can be a frequent occurrence, rather than a rare event. If so, the conditional distribution of n

assumed throughout will depart in significant ways from the true distribution as this must have a

much thicker right tail. In these cases the investigator should estimate separately the density of

the random variable n and redefine the standard of age misreporting accordingly.
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E.2.2 Failure of the “identity” assumption: deaths and population age misre-

porting follow different patterns

Because there are no known data on which to base the construction of a standard pattern of

age misreporting of death counts, we assumed throughout that this was identical to the standard

pattern of age misreporting of population counts. The only defense against potential problems

caused by violation of the assumption is to examine the behavior of selected indicators. First, as

is the case when there is misidentification of the standard pattern of population age misreporting

(see above), the quantities in error will be estimates of the unknown level parameters λno, φno.

If departures from the identity assumption are significant, estimates of the level parameters will

be implausible, e.g. they will fall outside the range contained in the simulated population set

and/or the fit of sequence cmRx,[t1,t2] to the data will be deficient (even if estimates are within the

legitimate range).

Of course, if the investigator suspects or has ancillary evidence that misreporting of age in

death counts is light, the parameter φno could be set to zero, only parameter must be estimated,

and the identity assumption is unnecessary.
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Figure E.1: Alternative standard of age misreporting: unconditional and conditional probabilities

of age misreporting
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Figure E.2: Cumulative distribution of errors in estimates of E(45) and E(60) (sensitivity to

misidentification of standard schedule of age misreporting).
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Source: Costa Rica Special study of 2000 population census.
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