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Supplementary Text 

miRNA-seq library preparation and sequencing  
Testing cohort samples were allocated to randomized batches for library preparation, such that 
samples from each timepoint were distributed evenly over all sequencing runs. Validation cohort 
samples were processed in batches as collected. All libraries were prepared using the Illumina 
TruSeq Small RNA protocol with minor modification following the manufacturer’s instructions.  
Briefly, for each sample, 280 ng of total RNA was ligated to the sRNA 3′ adaptor (5’-
TCTGGAATTCTCGGGTGCCAAGGAACTCC-3’) with T4 RNA Ligase 2, truncated (New 
England BioLabs) for 1 h at 22°C, and subsequently ligated to a 5′ adaptor: 5’-
GUUCAGAGUUCUACAGUCCGACGAUCNNN-3’) with T4 RNA ligase 1 (New England 
BioLabs) for 1 h at 20°C. The constructed small RNA library was first reverse-transcribed using 
GX1 (5′- GGAGTTCCTTGGCACCCGAGA) as the RT primer then subjected to PCR 
amplification for 13 cycles, using the primers GX1 (5′-
CAAGCAGAAGACGGCATACGAGAT[NNNNNN]GTGACTGGAGTTCCTTGGCACCCGA
GAATTCCA-3’) and GX2 (5′- 
AATGATACGGCGACCACCGAGATCTACAC[NNNNNNNN]CGACAGGTTCAGAGTTCT
ACAGTCCGA-3’), followed by 6% TBE PAGE gel purification with size selection (for targeted 
small RNAs of 17–35 nt). Individual libraries were prepared using a unique index primer 
(NNNNNNNN in the GX1 and GX2 primer) in order to allow for pooling of multiple samples 
prior to sequencing. The purified libraries were quantified using qPCR. Sequencing of paired- 
(testing cohort) or single-end (validation) 50 cycles was performed on a HiSeq 2500 (Illumina 
Inc., San Diego, CA), and image processing and base calling were conducted using Illumina's 
RTA pipeline. 
 
Raw sequencing reads were processed with the nf-core smRNASeq pipeline version 1.0(34) 
using the GRCm38 genome reference (with the parameter --genome GRCm38) and adapters for 
the Illumina small RNA protocol (by setting --protocol illumina). Briefly, trimmed reads were 
mapped using bowtie(35) to miRBase(36) mature miRNAs (using the parameters -k 50 --best --
strata), and the number of reads mapping to each was counted using samtools stats(37). Each 
library was also subjected to extensive quality control, including estimation of library 
complexity, contamination, sequence quality, read length and depth, among other metrics 
detailed in the pipeline repository. Mapped reads were merged into a matrix of counts per gene 
for each sample at each timepoint and normalized to counts per million (CPM) reads mapped, as 
implemented in edgeR(38). Surrogate variable analysis was used to check for confounding 
experimental effects(39). None was apparent in the testing set. The miRNA dataset is submitted 
to GEO under accession number GSE173785. 
 
miRNA analysis  
Log normalized miRNA were generated by taking the log (base 2) of CPMs [i.e., 
log2(CPM+0.01)] and used for singular value decomposition (SVD). We treated each mouse as a 
replicate to investigate how expression changed as the mice moved through the leukemic state-
space (PC1). Differentially expressed (DE) miRNA were determined by comparing control 
samples to the samples classified according to critical points (𝑐𝑐1, 𝑐𝑐2,  and 𝑐𝑐3) using miRTOP 
generated miRNA counts and default settings of DEseq2(40, 41). For the validation cohort, data 
were processed by removing adapters using cutadapt v1.9.1, and trimmed sequences were 
aligned to mm9 genome using Bowtie v0.12.7 with “--best” option(42, 43). Mature miRNAs 



 
 

counts were determined using R scripts and miRbase v21(36). Log normalized counts were again 
generated from CPM [i.e., log2(CPM+0.01)]; one sample (out of 99 total samples) was removed 
as an outlier based on poor library quality and abnormal expression patterns.  
 
Identification of the miRNA state-space and correlation with Kit expression 
In order to identify which principal component was most associated with AML state-transition, 
we examined all principal components of the data matrix composed of all time-series miRNA 
expression data from CM and control samples and correlated them with expression of Kit gene, 
which is an immunophenotypic marker of AML. We observed that PC1 had both the highest R2 
correlation with Kit expression as well as the lowest p-value of all PCs (Figure S3, Table S1). 
PC1 and PC2 accounted for 5 and 4%, respectively, of the total variance present in the data. Kit 
expression was determined using the matched mRNA sequencing (RNA-seq) for each sample as 
previously described(13). The percentage of cells that expressed the cKit protein (% cKit+) was 
determined in each sample using flow cytometry (Table S10). cKit+ was compared to PC1 and 
time (Figure S1A-B) and was shown to be similar to Kit mRNA expression (Figure S1C). To 
confirm that the miRNA state-space loadings (𝑉𝑉1∗) were associated with AML, we calculated the 
correlation between each miRNA expression and % cKit+ for each sample (Figure S1D; Table 
S11). This showed that the miRNA with the largest negative loadings values (positive 
contribution to AML) were also the most correlated with % cKit+. An unpaired t-test was 
performed to compare the PC1 components of the CM and control mice at each time point and 
showed a significant difference between PC1 and % cKit+ cells for timepoints t=1,2,3, and 8 
(Table S2).  
 
Other dimensionality reduction methods were investigated to construct the AML state-space and 
were compared to the SVD-derived state-space (Figure S11). We observed that the space 
constructed with diffusion mapping was most similar to the one created with the SVD. This is 
expected as diffusion mapping uses PCA prior to the application of the diffusion kernel. 
Nonlinear methods including t-SNE and UMAP did not result in clear separation between the 
control and CM samples. As a result, the SVD-based state-space was used for the final analysis. 
The advantage of the SVD-derived state-space is that SVD has no free parameters and 
maximally preserves the information in the data. All dimensionality reduction algorithms were 
run with default parameters using the R packages umap v0.2.7.0, Rtsne v0.15, and destiny v3.4.0 
for UMAP, t-SNE, and diffusion map respectively.  
 
Pathway analysis of miRNA gene targets 
The miRNAs were mapped to experimentally validated gene targets using miRTarBase v8.0 
(12). By combining the gene targets with Gene Ontology (GO), KEGG, and WikiPathway 
databases, pathways and GO terms were converted to their targeting miRNA based on the 
approach of Godard et al. 2015(13–16). A significant limitation of this approach was that there 
are currently very few experimentally validated miRNA-gene targets for mice. We therefore 
limited our investigation of the biological role of our findings in order to avoid over 
interpretation of the pathway and miRNA-gene target results.  
 
Investigating the AML state-space miRNA loading values 
The predicted contribution of each miRNA to AML was tested by identifying miRNA that had 
been reported to be involved in inv(16) AML previously. The reported role of each miRNA was 



 
 

noted and then compared to its predicted contribution based on its loading value; large negative 
loading values have a positive contribution, large positive values have a negative contribution, 
and loading values near zero have a small contribution. Seven miRNA were found in the 
literature, and except for those that had small contributions, all predicted contributions miRNA 
matched the reported role in the literature (Table S8). To compare the relationship between the 
miRNA and AML genes reported in Rockne et al. (13), the top 10 miRNA with the highest and 
lowest contribution to AML were selected from the persistent DE miRNA. The correlation of the 
expression of these five genes and 20 miRNAs were determined using all CM samples (Figure 
5B). This showed that the miRNA most correlated with the AML genes were those that had a 
positive contribution to AML (negative PC1 loading values).   
 
Expression dynamics aligned by critical points 
Hierarchical clustering was performed on a correlation matrix consisting of mean centered log2 
normalized CPM expression for all CM samples. All miRNA that had zero values in half the CM 
samples were included in the analysis (894 miRNA). Four expression dynamic groups were 
identified with the top-level bifurcation of the dendrogram produced by the hierarchical 
clustering. The expression dynamic plots were created by calculating and plotting the mean 
expression of all miRNA contained in the group for each CM sample. The mean expression 
values were then plotted vs PC1. 
 
Angle between mRNA and miRNA principal components 
The angle between each of the PCs from mRNA and miRNA (Figure S9A) is computed such 
that for two vectors a and b, 𝜃𝜃 =  cos−1 � 𝒂𝒂⋅𝒃𝒃

‖𝒂𝒂‖‖𝒃𝒃‖
� where ‖⋅‖ is the L-2 norm, or magnitude of the 

vector.  
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Fig. S1. Kit expression plots. 
Kit expression was determined both by flow cytometry using the percent of cells that were cKit 
positive (% cKit+) and by mRNA expression of Kit in each sample. A) % cKit+ is plotted as a 
function of the AML state-space (PC1 coordinate). B) % cKit+ is plotted as a function of time. In 
both A) and B), sample trajectories are shown by connecting the time point samples for each 
mouse. C) %cKit+ and Kit mRNA measured as counts per million (cpm) are plotted for each 
sample to show general agreement between the two measures of Kit. D) For CM mice only, the 
Pearson correlation coefficient (ρ) was determined between %cKit+ and the expression of each 
miRNA. Then, the Pearson correlation coefficient was plotted as a function of the PC1 loading 
value of the miRNA. The result shows that miRNA that are more highly correlated with % cKit+ 
also tend to have a high contribution to AML (negative PC1 loading value) and vice versa.  
  



 
 

 

 
Fig. S2. Top PCs correlated with Kit Expression. 
All principal components (PCs) were tested for correlation with Kit expression. (A-D). The first 
four PCs, which were above the “elbow” of the singular value plot, are shown. PC1 showed the 
best correlation (R2=0.68; p < 0.001) of all PCs and was used to define the miRNA AML state-
space.  



 
 

 
Fig. S3. Kit and PC1 compared between CM vs control mice at early time points. 
(A) CM and control sample cKit+ cells are compared at both the pre-induction (t=0) and the first 
time point after induction of the CM fusion gene (t=1) using flow cytometry as previously 
described (13). In this mouse model, cKit+ cells are an immunophenotypic marker for AML; 
there were no statistically significant differences between control and CM samples at either time 
point (unpaired t-test p=0.37 for t=0, p=0.82 for t=1). (B) When the same comparison between 
CM and control is made using the AML state-space component (PC1), the CM samples show a 
significant decrease in their PC1 component post-induction (unpaired t-test, p<0.01 for t=1). The 
change in PC1 indicates that the samples have started transitioning toward AML in the state-
space. This supports the state-space representation (i.e. the miRNA transcriptome) as an early 
indicator of state-transition and is able to detect transition toward AML before any cKit+ cells 
can be detected.  



 
 

 
Fig. S4. Estimation of the transition critical point 𝒄𝒄𝟐𝟐. 
(A) The Boltzmann stationary distribution in the state-space is given by 𝑝𝑝(𝑥𝑥,∞) = exp (−∇𝑈𝑈𝑝𝑝). 
(B) The quasi-potential computed for different values of 𝑐𝑐2 in the range 𝑐𝑐1 ≤ 𝑐𝑐2 ≤ 𝑐𝑐3, where the 
location of 𝑐𝑐2 is shown as a black circle. As 𝑐𝑐2 varies from 𝑐𝑐1 to 𝑐𝑐3, the shape of the quasi-
potential changes, and so too does the predicted stationary distribution. (C) To summarize the 
probability of one state (𝑐𝑐1) or the other (𝑐𝑐3) for various values of 𝑐𝑐2, we compute the Boltzmann 

ratio (B.R.), given by 𝐵𝐵.𝑅𝑅. =
exp�−∇𝑈𝑈𝑝𝑝(𝑐𝑐3)�

exp�−∇𝑈𝑈𝑝𝑝(𝑐𝑐1)�
. If 𝐵𝐵.𝑅𝑅. > 1, then the state 𝑐𝑐3 is more likely, if 𝐵𝐵.𝑅𝑅. <

1 then the state 𝑐𝑐1 is more likely. We see that the B.R. is maximized for the 𝑐𝑐3 state at the 
boundary of the K1 and K2 clusters. Values of the parameters are given in Table S2. (D)  State-
transition critical points for CM mice are identified in the state-space which characterize the 
state-transition from health to AML (control samples shown in grey). Using k-means clustering, 
CM samples were identified as perturbed healthy( 𝑐𝑐1  in green), transition (𝑐𝑐2 in purple), or AML 
(𝑐𝑐3in salmon).  



 
 

 
Fig. S5. Simulation study of estimation of transition critical point 𝒄𝒄𝟐𝟐. 
(A) By solving the Langevin equation forward in time to create 1000 virtual state-transition 
trajectories and randomly sampling 100 points from each trajectory, a virtual state-space is 
created over time (x-axis PC1, y-axis time). We performed k-means clustering with k=3, (K1 = 
blue, K2 = green, K3 = red) and plot the cluster means and boundaries between clusters K1-K2 
and K2-K3. (B) The known critical points used in the simulation 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 are shown as solid 
lines and the estimators derived from A) are shown as box and whisker plots (red line is mean, 
box is inner quartile, and whiskers are outer quartiles) of the distribution of samples. We see that 
the mean of K1 is close to 𝑐𝑐1, the boundary of K1 and K2 is closest to 𝑐𝑐2 and the mean of K3 is 
closest to 𝑐𝑐3, supporting our approach to use these as estimators for the critical points in our 
model. Actual data is less densely sampled in the state-space and produces slightly different 
estimators. 
  



 
 

 
Fig S6. State-space trajectories of CM mice. 
The trajectory of each mouse in the AML state-space is shown as function of time, and each 
mouse is plotted in a different color. Critical points are shown as dashed lines. Except for mouse 
13 which never developed AML, all CM mice transition from the state (𝑐𝑐1) toward the AML 
state (𝑐𝑐3). The control mice remain near the healthy state.  
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Fig. S7. DE miRNA pathways. 
The pathways implicated by DE miRNA for each of the early, transition, late, and persistent 
events are shown by indicating the miRNA implicated in each pathway (black). Any 
experimentally validated KEGG or WikiPathway pathway associated with a DE miRNA from 
the four comparison was reported. The contribution of each miRNA to AML is indicated as 
either positive (negative loading value) or negative (positive loading value). 
  



 
 

 
Fig. S8. Simulation of miRNA state-transition dynamics. 
(A) By solving the stochastic Langevin equation of motion forward in time 𝑑𝑑𝑋𝑋𝑡𝑡 =
−∇𝑈𝑈𝑝𝑝(𝑋𝑋𝑡𝑡)𝑑𝑑𝑑𝑑 + �2𝛽𝛽−1𝑑𝑑𝐵𝐵𝑡𝑡 with parameters and initial conditions (t=1 month post induction) 
estimated from the validation cohort of CM mice, the model correctly predicts the transition 
from a state of perturbed hematopoiesis (𝑐𝑐1) to AML (𝑐𝑐3) with different mice (colored lines) 
manifesting AML at different time points. Controls (black lines) remain in the normal state of 
hematopoiesis (𝑐𝑐1). (B) The quasi-potentials inferred from the data for CM mice undergoing 
state-transition to AML (red line) and controls (black line). The shape of the AML potential 
clearly shows a predicted state transition to the lower energy state 𝑐𝑐3 as compared to the control 
potential. Because the equation of motion is stochastic, the prediction of the time to develop 
AML (Figure 4B,C) is given by integrating the corresponding Fokker-Planck probability density 
function.  



 
 

 
Fig. S9. Comparison of miRNA and mRNA state-spaces. 
(A) A heatmap representation of the angle (in degrees) between all non-zero PCs from miRNA 
(x-axis) and mRNA (y-axis) data. The angle between PCs was determined by taking the inverse 
cosine of their dot product. An angle close to 90o indicates that the two PCs represent sources of 
variance within the data that are orthogonal. The PCs with the smallest angle are those 
corresponding to the AML state-space (miRNA PC1 and mRNA PC2; green arrows, inset). (B) 
State-spaces for miRNA and mRNA plotted against each other annotated with critical points 
reveals similarities in both the state-transition dynamics and the critical point classification. Only 
5 out of 129 samples would be categorized differently depending on which critical points were 
used, mRNA or miRNA (blue arrows). The linear fit of all samples is shown (blue dashes)  



 
 

 
Fig. S10. Alternative dimensionality reduction algorithms. 
The miRNA state-space is constructed using different dimensionality reduction algorithms: 
UMAP, t-SNE, and Diffusion Map to compare with the state-space constructed with the singular 
value decomposition. For each algorithm, plots were made showing both the first two 
components and the component that best separates the AML samples is plotted versus time. The 
SVD was selected to create the state-space and for analysis in the main text because it is a linear 



 
 

method and requires no free parameters, in contrast to the free parameters; perplexity (UMAP, t-
SNE) and the variance of the Gaussian kernel (Diffusion Map).   



 
 

 
Fig. S11. Mean squared displacement analysis. 
Mean squared displacement (MSD) analysis of miRNA trajectories in the AML state-space. (A) 
MSD computed from PC1 trajectories for n=7 CM mice with log-scale y-axis. Each mouse 
trajectory is a different color, coordinated with the panel on the right. (B) Linear fit of the MSDs 
for each CM mouse. The mean of the slopes of the linear fits is used as an estimator of the 
diffusion coefficient 𝛽𝛽 in both the Langevin equation of motion and Fokker-Planck probability 
density model. (C-D) Same analysis for control mice. The slopes of the MSD curves and linear 
fits are smaller for the control mice as compared to the CM mice. The flat MSD curves and 
reduced slopes for the control mice suggesting confined diffusion, as compared to the CM mice. 
Diffusion parameters are shown in Table S2. 
  



 
 

 
Table S1. Kit expression correlation table. (separate file) 
Kit mRNA expression was correlated with each principal component produced by performing 
singular value decomposition on miRNA expression. Correlation R2 and p-values were reported. 
 
Table S2. PC1 CM vs control t-tests. 
Multiple unpaired t-tests with Welch correction to test the null hypothesis that the difference in 
PC1 between control and CM samples is zero with false discovery rate 0.01 and significance 
level 0.05. Differences are statistically significant at timepoints t=1,2,3,5, and 8. Standard error 
(SE). 
 Significant? P-value Mean of 

CTRL 
Mean of 
CM 

Difference SE of 
difference 

t=0 No 0.752933 0.04943 0.05369 -0.004263 0.01318 
t=1 Yes 0.000960 0.06554 -0.04231 0.1079 0.02427 
t=2 Yes 0.001608 0.07611 -0.01019 0.08631 0.02058 
t=3 Yes 0.026812 0.04367 -0.05936 0.1030 0.03563 
t=4 No 0.115786 -0.009718 -0.1186 0.1088 0.05826 
t=5 Yes 0.046836 0.01371 -0.06079 0.07450 0.02856 
t=6 No 0.203053 0.01556 -0.06044 0.07600 0.05200 
t=7 No 0.269865 0.04867 -0.09886 0.1475 0.09896 
t=8 Yes 0.046496 0.02301 -0.02530 0.04831 0.01978 
t=9 No 0.238416 0.04269 -0.1163 0.1589 0.06594 

 
Table S3. State-space coordinates. (separate file) 
Coordinates of each sample in the AML state-space. The 2D AML state-space was constructed 
by plotting PC1 vs PC2 for each sample.  
 
Table S4. Critical points and simulation parameters. 
For controls, 𝑐𝑐2 was taken to be the midpoint between 𝑐𝑐1 and 𝑐𝑐3. Parameters were estimated as 
described in main text and supplemental methods. 
 

Parameter Meaning Value 
𝒄𝒄𝟏𝟏 Normal hematopoiesis -0.0042 

𝒄𝒄𝟐𝟐 Transition state -0.0816 

𝒄𝒄𝟑𝟑 AML -0.3294 

𝜶𝜶 Scaling factor of quasi-potential 100 

𝜷𝜷 Diffusion coefficient 285.7143 

𝜷𝜷𝑯𝑯 Diffusion coefficient for controls 1.4286e+03 

 
Table S5. DE miRNA lists. (separate file) 
The differentially expressed (DE) miRNA that define the early, transition, late, persistent event 
in AML were reported.  
 
Table S6. miRNA in each expression dynamics group.  (separate file) 
The table lists the miRNA contained within each of the four dynamic expression groups. 
 



 
 

Table S7. Pathway summary key. (separate file) 
The pathways implicated for each of the expression dynamic groups were grouped to summarize 
their function. This table includes their grouping and summarized function. 
 
Table S8. Inv(16) AML miRNA. 
miRNA previously reported as being associated with inv(16) AML were used to compare their 
reported expression in AML to their predicted contribution to AML based on their PC1 loading 
value.  

miRNA PC1 Loading AML Contribution Direction in AML Concurrent? Reference 

miR-126a-3p -0.0681 Positive Up Yes Li et al. 2008 (31); Zhang et al. 2021 (9) 

miR-126a-5p -0.0682 Positive Up Yes Li et al. 2008 (31) 

miR-92-3p -0.0019 Small Down NA Li et al. 2008 (31) 

miR-99a-5p 0.0048 Small Up (vs other AMLs) NA Dixon-McIver et al. 2008 (32) 

miR-100-5p -0.0132 Positive Up (vs other AMLs) Yes Dixon-McIver et al. 2008 (32) 

miR-224-5p -0.0088 Small Up (vs other AMLs) NA Dixon-McIver et al. 2008 (32) 

miR-142-3p 0.0233 Negative Down Yes Cammarata et al. 2010 (33) 

miR-99-3p 0.0146 Negative Down Yes Cammarata et al. 2010 (33) 

 
Table S9. PC1 loading values for each miRNA. (separate file) 
For each miRNA, the table records the associated PC1 loading values. 
 
Table S10. cKit positive values. (separate file) 
Flow cytometry was used to determine the percent of cells that were cKit positive (%cKit+) for 
each sample. 
 
Table S11. miRNA vs Kit correlation table. (separate file) 
%cKit+ values were correlated with the expression of each miRNA. R2 and p-values are 
reported. 
 
Table S12. Sample IDs. (separate file) 
The table provides a key to the sample names and sample identifiers used in the manuscript 
figures. 
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